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Abstract

The amount of data being collected in databases today far exceeds our ability to

analyze them without the use of automated analysis techniques. Data Mining is

evolving to provide automated analysis solutions and is defined as the non-trivial

process of identifying valid, novel, potentially useful, and ultimately understandable

patterns in data and describing them in a concise and meaningful manner. Data

mining is a discipline lying at the interface of statistics, database technology, pattern

recognition, machine learning, and other areas. In recent years increasing attention

has been given to probabilistic and statistical approaches that historically provide

an intellectual background to the analysis of collected data when uncertainty in

data has to be taken into account and when is not possible to create complete and

consistent model of the world. One of the most widely used statistical methods in

Data Mining for classification tasks is the Naive Bayes Classifier that, despite of its

strong assumptions, has been proved to be useful in many application domains.

Studies on Naive Bayes Classifiers, like most studies in Data Mining have focused

on a relatively simple representation of data: a database relation, or a standard data

table, or a set of points in a feature space. In fact, the relational model is clean and

simple, and a relational table can be easily mapped into the mathematical concept

of matrix. However, with the advent of the information age, we have witnessed to

a dramatic growth of applications in government, business, education and science,

many of which are sources of various data, organised in different structures and

formats. The chances that computers have provided have enlarged the meaning of

"data", have defined new sorts of problems in knowledge discovery, and are leading

to the development of completely new classes of models and data analysis algorithms

that take the "structure" of data into account.

The structure of data can be in various forms. In this work we consider two

common interpretations of structured data: the occurrence of relations between

categories of the units of analysis, that is, between the principal entities of a sta-

tistical study (categorization structure) or the occurrence of relations between the

units of analysis and/or the units observation, that is, the secondary entities of the

statistical study that are correlated with the units of analysis (unit structure).

In this thesis we face and deeply investigate the problem of Naive Bayesian

learning from these two forms of structured data. In particular, for the case of

categorization structure, we propose a framework for the usage of Naive Bayes

classifiers in the case of hierarchically related categories, while, for the case of unit

structure, we resort to a multi-relational approach to Data Mining.
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4 Abstract

A principle that guided the writing of this thesis was that it should present a

balance of theory and practice. In particular, proposed algorithms have been em-

pirically evaluated on real datasets and applications principally concern the field of

Document Engineering. Document Engineering is the computer science discipline

that investigates systems for documents in any form and in all media and is con-

cerned with principles, tools and processes that improve our ability to create, man-

age, and maintain documents. It includes, among other topics, Text Categorization,

Document Image Classification, Document Retrieval and Document Understanding.



Chapter 1

Introduction

The amount of data being collected in databases today far exceeds our ability to ana-

lyze them without the use of automated analysis techniques. The field of knowledge

discovery in databases (KDD) is evolving to provide automated analysis solutions.

Knowledge discovery is defined as the non-trivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in data and describing

them in a concise and meaningful manner. This process is interactive and iterative,

involving numerous steps. Information flows forwards from one stage to the next,

as well as backwards to previous stages. The main step is data mining.

Data mining automates the process of finding relationships and patterns in raw

data and delivers results that can be either utilized in an automated decision support

system or assessed by a human analyst. A data mining task consists of analysing

data collected in databases in order to help answer questions such as:

• What goods should be promoted to this customer?

• What is the probability that a certain customer will respond to a planned

promotion?

• Can one predict the most profitable securities to buy/sell during the next

trading session?

• Will this customer default on a loan or pay back on schedule?

• What medical diagnose should be assigned to this patient?

• How large the peak loads of a telephone or energy network are going to be?

• Why the facility suddenly starts to produce defective goods?

• What is the main topic of a textual (web) document?

• Can one predict whether a molecule is mutagenic or not?

One of the fundamental tasks in data mining is Classification. In the usual clas-

sification setting, input or training data consists of multiple examples, each having

multiple attributes or features. Each example is tagged with a class label. The goal

5
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is to learn the target concept associated with each class by finding regularities in

examples of a class that characterize the class in question and discriminate it from

the other classes. This problem has been extensively studied in the literature and

several and disparate approaches have been proposed.

Most of proposed solutions for classification are able to classify a new untagged

example in one of the possible classes on the basis of an induced complete and

consistent model of the world. However, in many problem domains it is not possible

to create complete and consistent models of the world. Therefore it is necessary

to act in uncertain worlds (which the real world is). Furthermore, the very act

of preparing knowledge to support Data Mining tasks requires that we leave some

facts unknown, unsaid or approximately summarized. For example, if we encode

the knowledge about the “satisfaction of a customer” in a rule, the rule will have

many exceptions which we cannot afford to enumerate and the conditions under

which the rules apply are usually ambiguously defined and difficult to satisfy in real

life.

A way to act taking the uncertainty into account is by means of statistical ap-

proaches for learning. In statistical approaches for learning, a “belief” is associated

to the decision taken. It is often based on the attempt to draw statistical conclusions

from the conditional probability P (H|E), that is the probability of an hypothesis

H (to be true) given that the event E has been observed (to be true). This idea is

called Bayesian statistics and derives from the so-called “Bayes Theorem” (Thomas

Bayes-1763) [Bay63]. The Bayes theorem paves the way to the idea to use a concept

of intuitive probability in statistical theory and practice.

One of the most studied approaches in Bayesian statistics for classification pur-

poses is the Naive Bayes classifier. The naive Bayes classifier is based on the es-

timation of the posterior probability that an example belongs to a class according

to the Bayesian statistical framework. The naive Bayes classifier is also based on

the assumption that, given the class, attributes are independent each other. This

assumption is clearly false if the predictor variables are statistically dependent.

However, even in this case, Domingos and Pazzani [DP97] empirically and formally

proved that the naive Bayesian classifier can give good results. Due to its sim-

plicity and its performances in large-scale datasets, it is used in a wide range of

applications.

This thesis faces the problem of mining Naive Bayes statistical classifiers in

presence of structured data taking into account different aspects related to both

theoretical and applicative problems. In particular, several aspects have been in-

vestigated and different algorithms have been also proposed. Experiments mainly

concern the field of Document Engineering. Document Engineering is the computer

science discipline that investigates systems for documents in any form and in all

media. It is concerned with principles, tools and processes that improve our ability

to create, manage, and maintain documents.
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1.1 Motivations

The problem of mining statistical classifiers has been extensively investigated in the

literature. However, the rapid growth of information available and new and more

complex applications demand the use of more sophisticated approaches that are

able to deal with both complex data and previously known background knowledge.

Studies on Naive Bayes Classifiers, like most studies in Data Mining, have fo-

cussed on a relatively simple representation of data: a database relation, or a stan-

dard data table, or a set of points in a feature space. In fact, the relational model

is clean and simple, and a relational table can be easily mapped into the mathe-

matical concept of matrix. However, with the advent of the information age, we

have witnessed to a dramatic growth of applications in government, business, edu-

cation and science, many of which are sources of various data, organized in different

structures and formats. The chances that computers have provided have enlarged

the meaning of “data”, have defined new sorts of problems in knowledge discovery,

and are leading to the development of completely new classes of models and data

analysis algorithms that take the “structure” of data into account.

The structure in structured data can be in various forms [BCM00]. A first type

of structured data is represented by tree-structured or taxonomic attributes, that is

attributes whose domain values are ordered in a rooted hierarchical tree. In data

mining taxonomies are used to support generalisation-based knowledge discovery

or attribute-oriented induction [HCC92] in order to reduce the computational com-

plexity of the mining algorithms, while in machine learning taxonomies define some

form of background knowledge to be used during the learning process [AAK95]. A

different, but someway related, form of structure in the attribute domain is that of

relational variables/attributes, as they are referred to in the field of data analysis,

that are characterized by the definition of a dissimilarity matrix on the domain

values [Ler00].

In all these examples the “structure” is in the attribute domain, that is, in the

definition of a possibly weighted binary relationship defined on the value set. In

symbolic data analysis [BD00] another type of binary relation is considered, which

involves a variable describing an observed object and the set of values that the

variable can take. In general the relation can be an order/equality relation (e.g.,

"number-of-inhabitants ≤ 100") or set inclusion (e.g., "gross-national-product ⊆

[40,50]"). This different type of “structure” is very useful when the unit of analysis

is not a single individual but a class (or group) of individuals. For instance, the

description of a group of daily connections to a department network can be obtained

by aggregating the values of the attributes Destination-IP, Nation-Time-Zone and

Start-Hour. The result is a conjunction of different binary relations involving the

three variables and (a set of) domain values (e.g. "Destination-IP≤ 87 AND Nation-

Time-Zone > -4 AND Start-Hour ∈ [22..24]"). How to extract patterns from this

kind of "structured data" describing different groups of individuals is indeed the

main goal of the research area known as symbolic data analysis.

Another form of “structure” in the data is represented by dependencies between

variables or attributes. In the case of hierarchical pairwise variable dependencies
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the set of values taken by a variable Y depends on the set of values taken by another

value X (e.g. "if obj-type=river then color=blue" or "if gender=male then number-

of-pregnancies=not-applicable"). More in general a weight can be associated with

each dependence. It represents the "strength" of the dependence and often corre-

sponds to a probability value, such as in the case of probabilistic causal relationships

(e.g. "if driving-speed=very-high then mortal-accident=yes with probability 0.4").

A further generalization of this type of "dependency structure" is represented by

probabilistic graphical models, such as Bayesian networks, which are characterised

by the fact that each variable is directly influenced by only a few others (e.g. "both

student’s intelligence and difficulty of material affect the degree of understanding

of a subject").

Both taxonomic and symbolic data are extensions of classical data tables, where

objects are described by a fixed set of attribute-value pairs, possibly with some

form of attribute dependencies. By representing the units of analysis as rows of the

data table and attributes as columns, we can easily see that all types of “structures”

presented above affect either a single column, or multiple columns, but they never

express some kind of dependence between rows. The term “relational data” has been

used by the data analysis community to introduce a different type of “structure”

concerning a relationship between each pair of objects. The most common case of

relational data is when we have (a matrix of) dissimilarity data between objects,

each of which can be described by the same fixed set of attributes [HB02]. Techni-

cally, this kind of “relational data” must be represented by two tables of a relational

database, one describing the objects to be analysed and the other describing the

relations (e.g., the dissimilarity matrix) between them.

Recently, the term relational data has also been adopted by the data mining

community to refer to the more general (and complex) case in which multiple re-

lationships exist between objects, which can even be described by different sets of

attributes. This means that the unit of analysis is not necessarily a single row of a

data table but is composed by multiple rows in multiple tables. In this “structured”

unit of analysis it is necessary to distinguish the target object of analysis (rows of

a target table representing the principal entities under study) from the other task

task relevant objects: discovered patterns (e.g., generalizations) must refer to tar-

get objects which may or may not have some relationships with other task relevant

objects. Studies on how to analyse or mine this kind of structured data fall in the re-

cently established research area of (multi-)relational data mining (MRDM) [DL01].

The data model that can suitably represent the units of analysis studied in MRDM

is that of relational database. However, to be able to analyse relational databases

containing multiple relations properly, specific algorithms have to be written that

cope with the structural information that occurs in relational databases [KBSV99].

In this thesis we investigate two cases of structured data presented above in

the context of Naive Bayes classification. The first case concerns the presence of a

taxonomical relation on the categories of the units of analysis (categorization struc-

ture) and the second case concerns the presence of relationships between objects

composing the units of analysis (unit structure).
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1.2 Contribution

The main contribution of this thesis concerns the extension of statistical classifiers

and, in particular, Bayesian classifiers, to deal with two particular cases of struc-

tured data, namely categorization structure and unit structure. The former will

be investigated in the context of propositional learning, while to represent the unit

structure, we will resort to the multi-relational data mining setting.

1.2.1 Classification in a hierarchy of categories

Classification in a hierarchy of categories is receiving growing attention in the lit-

erature especially in some specific application domains, such as text classification,

functional genomics, and in general, in applications where it is possible to define a

is-a relation between categories. Indeed, for what concerns text classification, many

popular search engines and text databases arrange examples (documents) in topic

hierarchies, such as Yahoo, Google Directory, Medical Subject Headings (MeSH) in

MEDLINE, Open Directory Project (ODP) (www.dmoz.org) and Reuters Corpus

Volume I (RCV1). In functional genomics, the problem of predicting the functional

class of a gene cabn be considered as a problem of hierarchical classification since

genes are organized hierarchically. For example in the Munich Information Cen-

ter for Protein Sequences (MIPS) hierarchy 1, the top level of the hierarchy has

classes such as: "Metabolism", "Energy", "Transcription" and "Protein Synthe-

sis". Each of these classes is iteratively subdivided into more specific classes, so

to obtain a hierarchy which is up to 4 levels deep. An example of a subclass of

"Metabolism" is "amino-acid metabolism", and an example of a subclass of this

is "amino-acid biosynthesis". An example of a gene in this subclass is YPR145w

(gene name ASN1, product "asparagine synthetase") [BBD+02] [CK01]. In such ap-

plications pre-defined categories are organized in a hierarchical structure (tree-like

structure). Such a structure reflects relations between concepts in the application

domain covered by the classification.

This hierarchical arrangement is essential when the number of categories is quite

high and the use of a non-hierarchical classifier (flat classifier) would lead to a frag-

mentation of the class, producing many classes with few members. On the other

hand, the hierarchical classification arranges examples hierarchically, thus support-

ing a thematic search by browsing topics of interests. The structural relationship

among categories can be taken into account when devising the classification process.

While in flat classification a given example is assigned to a category on the basis

of the output of one classifier, in hierarchical classification, the assignment of a

document to a category can be done on the basis of the output of multiple sets of

classifiers, which are associated to different levels of the hierarchy and distribute

examples among categories in a top-down way. The advantage of this hierarchical

view of the classification process is that the problem is partitioned into smaller

subproblems, each of which can be effectively and efficiently managed. Another

motivation is given by the observation that at different levels of the hierarchy the

1http://mips.gsf.de/proj/yeast/catalogues/funcat/
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same example can be represented in a different way. In particular, it is possible to

use different abstractions of the same object varying the level of the hierarchy (e.g.

it is possible to emphasize some features rather than others at different levels of the

hierarchy).

Although there are several approaches that face the problem of hierarchical clas-

sification of examples, they are often strictly related to the application in hand and

lack of a general and domain free approach to the problem. In this thesis, we pro-

pose a general framework for hierarchical classification of examples. It supports the

change of representation of examples at different levels of hierarchy. The framework

includes a tree distance-based thresholding algorithm for the classification of exam-

ples in internal categories of the hierarchy. It can be applied to any classifier, such

as naive Bayes, that returns a degree of membership (e.g. probabilistic or distance

based) of an example to a category. The framework can manage a variety of situ-

ations in terms of hierarchical structure: examples can be assigned to any node in

the hierarchy, some nodes can have no associated examples and internal nodes can

have only one child.

1.2.2 Classification in Multi-Relational Data Mining

In hierarchical classification the predicted attribute is supposed to be structured.

Anyway, it does not consider the eventuality that the training data represent rela-

tions between the target objects and the task relevant objects (unit structure). In

order to deal with this second problem, it is necessary to resort to multi-relational

data mining. Multi-Relational Data Mining is a new branch of data mining research

that overcomes the problem of single table assumption that assumes that the train-

ing set can be represented as a single relational table, where each row corresponds

to an example and each column to a predictor variable or to the target variable.

This assumption is made in classical data mining and seems quite restrictive in some

data mining applications, where data are stored in a database and are organized

into several tables for reasons of efficient storage and access ore are stored in the

form of complex objects. In this context, both predictor variables and the target

variable are represented as attributes of distinct tables (relations) eventually related

each other by means of foreign key constraints defining a structure in the data.

Several approaches for classification in multi-relational setting have been pro-

posed in the literature, but often the problem is solved by moulding a relational

database into a single table format, such that traditional attribute-value algorithms

are able to work on [KHS01]. This approach is known it the literature as propo-

sitionalization. Two techniques have been proposed for propositionalization. The

former is based on the principle that it is possible to consider a single relation recon-

structed by performing a relational join operation on the tables. This technique is

fraught with many difficulties in practice [DR98] [Get01b]. It produces an extremely

large and impractical to handle table with lots of data being repeated. A different

technique is the construction of a single central relation that summarizes and/or

aggregates information which can be found in other tables. Also this approach has

some drawbacks, since information about how data were originally structured is
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lost [KRZ+03]. In order to overcome such limitations, structural Multi-relational

data mining approaches are being used, especially for the classification task [Blo98]

[FGKP99a] [KW01b] [PK95] [FL04].

In this thesis we present two different solutions to the problem of mining classi-

fiers from relational data. In particular, we intend to extend the naive Bayes classi-

fication to the case of relational data. The first solution is based on the use of a set

of first-order classification rules in the context of naive Bayesian classification. We

present differences, benefits and drawbacks of the proposed approach with respect to

similar approaches reported in the literature. The second solution is inspired by re-

cent studies on the usage of association rules for classification purposes [DZWL99a]

[BG03a]. This approach, named associative classification [LHM98], presents several

advantages. First, differently from most of classifiers as decision trees, association

rules consider the simultaneous correspondence of values of different attributes,

hence allowing to achieve better accuracy [BG03a]. Second, associative classifi-

cation makes association rule mining techniques applicable to classification tasks.

Third, the user can decide to mine both association rules and a classification model

in the same data mining process [LHM98]. Fourth, the associative classification

approach helps to solve understandability problems [CM93a] [PMS97a] that may

occur with some classification methods. We propose a multi-relational associative

classifier that performs the classification at different granularity levels and takes

advantage from domain specific knowledge in form of rules that support qualitative

reasoning.

1.3 Outline of Thesis

This thesis is organized as follows: in the next chapter the problem of Naive Bayesian

probabilistic classification in classical data mining is introduced. The problem of

hierarchical classification is also described and investigated. In the third chapter the

Naive Bayes classification in multi-relational Data Mining is described and several

approaches are proposed. In the fourth chapter some applications of Naive Bayes

classification in the field of document engineering are proposed. Other applications

are reported in chapter five. Finally, in the sixth chapter conclusions are drawn and

future works are proposed.
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Chapter 2

Naive Bayesian Hierarchical

Classification

This chapter formally defines the classification problem in data mining focusing

the attention on the Naive Bayesian classification. We review some of the seminal

works reported in the literature and we illustrate the classification problem when

hierarchical relations between target categories are taken into account. We also

propose a general framework for hierarchical classification of examples. It can be

applied to any classifier that returns a degree of membership, such as probabilistic

or distance-based classifier.

2.1 Data Mining and statistical classification

Knowledge discovery in databases (KDD) is defined as the non-trivial process of

identifying valid, novel, potentially useful, and ultimately understandable patterns

in data and describing them in a concise and meaningful manner [FPSM92]. This

process is interactive and iterative, involving numerous steps with many decisions

being made by the user [FPSS96]. The overall KDD process involves the following

steps:

1. Understanding the application domain: includes defining relevant prior knowl-

edge and goals of the application.

2. Extracting the target data set: includes selecting a data set or focusing on a

subset of variables.

3. Data cleaning and preprocessing: includes basic operations, such as noise

removal and handling of missing data. Data from real-world sources are often

erroneous, incomplete, and inconsistent, perhaps due to operation error or

system implementation flaws. Such low quality data needs to be cleaned prior

to data mining.

4. Data integration: includes integrating multiple, heterogeneous data sources.

13
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5. Data reduction and projection: includes finding useful features to represent

the data (depending on the goal of the task) and using dimensionality reduc-

tion or transformation methods.

6. Choosing the task of data mining: includes deciding the purpose of the model

derived by the data mining algorithm (e.g., summarization, classification, re-

gression, clustering, discovering association rules and functional dependencies,

rule extraction, or a combination of these).

7. Choosing the data mining algorithm(s): includes selecting method(s) to be

used for searching patterns in data, such as deciding on which model and

parameters may be appropriate.

8. Data mining: includes searching for patterns of interest in a particular repre-

sentational form or a set of such representations.

9. Interpretation: includes interpreting the discovered patterns, as well as the

possible visualization of the extracted patterns. One can analyze the patterns

automatically or semiautomatically to identify the truly interesting/useful

patterns for the user.

10. Using discovered knowledge: includes incorporating this knowledge into the

performance system, taking actions based on knowledge.

Information flows forwards from one stage to the next, as well as backwards to

previous stages.

KDD (or Data Mining) on its extensive exception brings together techniques

from machine learning, pattern recognition, statistics, databases, linguistics and vi-

sualization in order to extract information from large databases. It is an interdisci-

plinary field with a general goal of predicting outcomes and uncovering relationships

in data. It uses automated tools employing sophisticated algorithms to discover hid-

den patterns, associations, anomalies and/or structure from large amounts of data

stored in data warehouses or other information repositories. Data mining tasks

can be descriptive, i.e., discovering interesting patterns describing the data, and

predictive, i.e., predicting the behavior of the model based on available data.

In many predictive data mining tasks, we can assume that data are generated

independently and with an identical and unknown distribution P on some domainX

and are associated with a value in some domain Y according to an unknown function

g. The domain of g is spanned by m independent (or predictor or explanatory)

random variables Xi (both numerical and categorical), that is X = X1 × X2 ×

· · · ×Xm and the goal is to predict the dependent (or response or target) variable

Y . An inductive data mining algorithm takes a training sample S = {(x, y) ∈

X × Y |y = g(x)} as input and returns a function f which is hopefully close to

g on the domain X. In this scenario, when the target variable Y is a symbolic

attribute (Y = C1, C2, . . . , CL), the inference task is called classification, when Y

is a continuous value, the inference task is called regression. In this thesis we focus

our attention in classification. In particular, we tackle the problem of automatic
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classification of data characterized by a non-deterministic nature for which it is not

possible to create a complete and consistent model of the world to be modelled.

In such cases, a typical choice is to resort to probabilistic classification that

permits to act taking the uncertainty into account. Statistical classification finds

its roots in Statistical Decision Theory [Ber93] and can be formally stated as a

problem of expected risk minimization. Let D be the set of functions such that

D = {f |f : X → Y } and RS be a risk function defined in D such that:

RS(f) = E{L(y, f(x))|(x, y) ∈ S} (2.1)

where L(y, f(x)) is the loss incurred when the true y is estimated by ŷ = f(x). The

goal is to find a function fopt such that

fopt = argminfRS(f) (2.2)

Under the general setting of Statistical Decision Theory, several methods and

techniques have been studied in the literature. Such methods are able to find the

fopt function according to different loss functions and different function estimations.

They include: Linear Regression, Linear Discriminant Analysis, Logistic Regression,

Decision Trees, K-Nearest Neighbor, Support Vector Machines and Bayesian Net-

works. In the following subsections we briefly describe such methods.

2.1.1 Linear Regression

Linear models are classifiers that partition the sample space X and associate each

partition with a class value. Generally, in linear models, the domain X is spanned

in m numerical random variables and the term "linear" pertains the fact that "de-

cision boundaries" are represented in form of planes. Classical linear models for

classification are: Linear Regression, Linear Discriminant Analysis and Logistic

Regression.

In Linear Regression, the prediction model is computed according to the linear

regression function:

Ŷ = X(XT X)−1XT Y

Where X represents the input matrix N × (m+ 1) (N is the number of training

examples) with a row for each training example and composed by (m+1) columns

corresponding to m inputs and a leading column of 1’s for the intercept. Y is the

indicator N × L response matrix of 0’s and 1’s, with each row having a single 1.

Let B̂ = (XT X)−1XT Y be the m + 1 × L coefficient matrix and x be a new

instance to be classified, the classifier computes the fitted output L vector

f(x) = [(1, x)B̂]T

and returns the best class:
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Figure 2.1: Simple case of a 2-class linear Regression application in 2-dimensional sample space

ŷ = argmaxi=1..L fi(x) (2.3)

Linear regression provides a simple approach to use statistical regression for clas-

sification problems (see Figure 2.1). However, the approach has a severe limitation

when the number of classes is L ≥ 3, especially prevalent when L is large. Because

of the rigid nature of the regression model, classes can be masked by others [HTF01]

and, in extreme situations, even if classes are perfectly separated by linear decision

boundaries, yet linear regression completely misses some classes. To overcome this

limitation, Frank et al. [FWI+98] proposed an approach that finds a different re-

gression model for each partition of the sample space following an approach similar

to classification trees, namely model trees [WW97][MECA04].

2.1.2 Linear Discriminant Analysis

In Linear Discriminant Analysis, the main idea is to estimate the class posterior

distribution for optimal classification. The class posterior distribution is a discrete

probability distribution that a given example is classified in a class P̂ (Y |X).

A simple application of the Bayes Theorem permits to estimate P (Y |X):

P (Y = y|X = x) =
P (X = x|Y = y)P (Y = y)

∑

l=1..L

P (X = x|Y = Cl)P (Y = Cl)

where P (Y ) is the prior probability and P (X = x|Y = y) is the class density or

likelihood.

Many techniques are based on the application of this formula, they mainly differ

in the estimation of the likelihood. In Discriminant Analysis it is generally assumed

that each class density is a multivariate Gaussian [DH73], that is:

fl(x) = P (Y = Cl|X = x) =
1

(2π)p/2|ΣCl
|1/2

e
−1/2(x−µCl

)T Σ−1

Cl
(x−µYl

)
(2.4)
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where the ΣCl
is the covariance matrix associated to the l− th class value and µCl

is the vector of the attribute averages associated to the l − th class value.

Linear Discriminant Analysis arises in the special case when we assume that the

classes have the same covariance matrix, that is, ΣCl
= Σ for each l = 1..L. In

this case the discriminant functions that partition the sample space in Cl and its

complement ¬Cl is (from 2.4, by passing to logarithms):

δCl
(x) = xT Σ−1µCl

− 1/2µT
Cl

Σ−1µCl
+ log(πCl

) (2.5)

where πCl
is the priori probability of class l.

The class is estimated by:

ŷ = argmaxi=1..L δCl
(x) (2.6)

Linear Discriminant Analysis generally provides an accurate model when the

decision boundaries in the data can be described by linear models. Indeed, in such

cases, the gaussian models are stable. [MSTC94].

2.1.3 Logistic Regression

Another linear method for classification is Logistic Regression. As in the case

of Linear Discriminant Analysis, in logistic regression the goal is to estimate the

posterior probability distribution P (Y |X). [HL00]. The estimation is performed by

means of linear functions in x. The model has the form:

log
P (Y = Cl|X = x)

P (Y = CL|X = x)
= β10 + βT

1 x

log
P (Y = C2|X = x)

P (Y = CL|X = x)
= β20 + βT

2 x

...

log
P (Y = CL−1|X = x)

P (Y = CL|X = x)
= β(L−1)0 + βT

L−1x

The computation of the probabilities depends on the parameter

β = {β10, β20, ..., β(L−1)0, βL−1}

that is typically estimated by maximizing the following measure:

−
N

∑

i=1

L
∑

l=1

sgn(Cl, yi)log(P (Y = Cl, |Xi, β)) (2.7)

where sgn(Cl, yi) = 1 if Cl = yi, 0 otherwise.

The maximization of this equation in typically obtained by finding the value of

β that equals to zero the first derivative in β and leaves positive the determinant

of the Hessian matrix.
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Figure 2.2: Linear separation of the sample space(a). Non linear separation of the sample space(b)

Figure 2.3: A decision tree for the didactic example Play Tennis

Logistic Regression models are used mostly as data analysis and inference tool,

where the goal is to understand the role of an input variable in explaining the

outcome [HTF01].

Logistic Regression, as most linear models provide an approach to define linear

boundaries that partition the sample space. However, in most cases, the nature of

the underlying problem is not linear and, in such case, the predicted model cannot

be adequate for the problem in hand and different techniques have to be adopted

(see Figure 2.2).

2.1.4 Decision Trees

Decision trees return a decision tree. A decision tree classifier represents a disjunc-

tion of conjunctions of constraints on the attribute values of examples. A decision

tree can be represented by a tree structure characterized by two types of nodes:

internal nodes, that represent a partition of the sample space according to the value

of an attribute, and leaves, that represent the taken decision. In Figure 2.3, an

example of decision tree for the didactic example Play Tennis [Qui86] is reported.

A new example is classified by starting at the root node of the tree, testing the

attribute specified by this node and then moving down the tree branch correspond-

ing to the value of the attribute in the given example. This process is then repeated

for the subtree rooted at the new node. The entire process is repeated until a leaf
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node is reached.

Several algorithms have been proposed to learn decision tree, and most of them

are variations of the core algorithm ID3 [Qui86] and its successor C4.5 [Qui93].

The algorithm employs a top-down greedy search through the space of the possible

decision trees. In particular, ID3 construct decision trees in a top-down fashion.

The main step concerns the the selection of the attribute to be tested. For this

purpose, a statistical test is generally used and the goal is to find the attribute that

is most useful for classifying examples.

Formally, in the evaluation of a single node, the algorithm chooses the attribute

that minimizes the information lost on the basis of an impurity function. An im-

purity function is a function

Φ : [0, 1]m → <+ (2.8)

such that, given a probability vector PC =< p1, p2, ..., pL > where pi = P (Ci),

Φ(PC)

• is minimal if all training examples belong to a single class (∃i = 1..m s.t.

pi = 1)

• is maximal if examples are equally distributed over the classes (∀i = 1..m,

pi = 1/m)

• is symmetric with respect to the components of PC

• is differentiable over [0, 1]m

If an internal node t associated with a probability vector PC(t) represents a

test on the jth attribute and produces k different nodes t1, t2, ..., tk, the best test

maximizes the impurity lost:

Gain(t, j) = Φ(PC(t)) −
k

∑

i=1

N(ti)

N(t)
Φ(PC(ti))

where N(t) represents the number of examples that fall in the node t

The impurity measure implemented in ID3 is the entropy:

E(PC) = −
L

∑

j=1

pi lg2 pi

Another typically used measure is:

GainRatio(t, j) = Gain(t, j)/IV (t, j)

where

IV (t, j) = −
k

∑

i=1

|N(ti)|

N(t)
lg2

|N(ti)|

N(t)
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Differently from the information gain, the gain ratio does not favour splits with

multiple attributes.

Several variants have been investigated in the literature and from them we cite

the Gini Index proposed by Breiman et al. [BFOS84]. The Gini index is another

impurity measure defined as follows:

GIndex(PC) = 1−
L

∑

j=1

p2
i

Differently from previously described methods, in the original formulation of

decision tree learners the assumption is that the independent random variables

X1, X2, ...Xm are discrete. In order to deal with continuous attributes, a discretiza-

tion by considering as "split points" the middle point between two consecutive

values is typically used [BFOS84].

Decision trees provides a simple and efficient way to learn classifiers. The main

advance in the use of decision trees is in the understandability if the induced model.

In fact, a decision tree can always be transformed in a set of rules that are easily

understandable to a human. The number of extracted rules equals the number of

leaves in the tree.

2.1.5 K-Nearest Neighbors

K-Nearest Neighbor (K-NN) is a particular classifier that achieves flexibility in

estimating the class of a given example over the whole sample space, by fitting a

different but simple model separately at each query point x′. This is done by using

only those observations close to the target point x′. More precisely, given a new

example x′ (query point), the method uses a subset of the training set, Nk(x′), to

compute the class y′ associated to x′. Nk(x′) is the neighborhood of x′ defined by

the k closest points in the training set. Formally:

f(x′) = argmaxy′∈Y

∑

x∈Nk(x′)

δ(y′, y)

where y is the class associated to x

δ(y′, y) =

{

1 if y′ = y

0 if y′ 6= y

When the value of y′ is not unique (there is no dominant class) then f(x′) can be

considered “unknown”.

Figure 2.4 reports an example of classification of a new instance (red point). The

closest example is a "plus", this means that a 1-NN classifier returns "plus". A 2-

NN classifier returns "unknown" because in the neighborhood there are 2 examples

and there is no dominant class.

A variant of the standard K-NN algorithm gives more importance to the in-

stances that are closest to the target point (locally weighted K-NN). This approach
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Figure 2.4: Knn Example

assigns a greater weight to instances that are close to the target point and reduces

the weight for more distant instances:

f(x′) = argmaxy′∈Y

∑

x∈Nk(x′)

1

d(x′, x)2
δ(y′, y)

If d(x′, x) = 0 for some x, then f(x′) assumes the value y = f(x).

In the example reported in Figure 2.4, differently from the classical 2-NN clas-

sifier, the weighted 2-NN classifier classifies the new instance as "plus" instead of

"unknown".

In the K-NN method, great importance is given to the distance measure. The

measure is used both in the definition of the neighborhood Nk(x′) and in the defi-

nition of the weights.

Typically used measures are [Mit97]:

Euclidean distance. This distance is defined for real values and is based on the

following equation:

d(x′, x′′) :=

√

√

√

√

m
∑

i=1

(x′i − x
′′
i )2

Minkowski distance. This distance is defined for real values and, given a para-

meter q, it is computed by means of the following equation:

d(x′, x′′) := (

m
∑

i=1

(x′i − x
′′
i )q)1/q

Hamming distance. This distance is defined in {0, 1}m and is computed by count-

ing the number of differences in the values of the input vectors.

Stanfill-Waltz distance. [SW86] Stanfill and Waltz introduced the Value Differ-

ence Metric (VDM) to define the similarity for discrete attributes. The VDM

computes a distance for each pair of the different values a symbolic feature

can assume. It essentially compares the relative frequencies of each pair of

symbolic values across all classes. Two attribute values have a small distance

if their relative frequencies are approximately equal for all output classes.
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Figure 2.5: Support vectors used to define a separating hyperplanes

K-NN is an instance-based learner because, in contrast to learning methods that

construct a general, explicit description of the target function, K-NN simply stores

the training examples and uses them in the classification of a new instance. This

property makes the K-NN method a high effective method in case of large datasets.

Another important aspect is that K-NN is particularly robust to noisy training data.

A practical limitation of the K-NN method is that the distance measure is com-

puted considering all attributes and not a subset of them. In the case that some

attributes are not statistically significant in the prediction of the class, K-NN is not

able to isolate them. The typically adopted solution uses weights to give more or

less importance to "significant" or "non-significant" attributes respectively.

2.1.6 Support Vector Machines

Recently, a new learning technique has emerged and become quite popular in prac-

tical domains because of its good performance and its theoretical foundations in the

statistical learning theory: support vector machines (SVMs), proposed by Vapnik

[Vap95].

Given a set of positive and negative examples (SVMs are defined for two-classes

problems), an SVM identifies the hyperplane in Rm that linearly separates positive

and negative examples with the maximum margin (optimal separating hyperplane).

In general, the hyperplane can be constructed as the linear combination of all train-

ing examples, however, only some examples, called support vectors, do actually

contribute to the optimal separating hyperplane (see Figure 2.5), which can be

represented as:

f(x) = (
∑

x∗ ∈ SUPP

(y∗αix
∗))Tx+ b (2.9)

where SUPP ⊆ S represents the set of the support vectors and y∗ is the class associ-

ated to x∗. The coefficients α and b are determined by solving a large-scale quadratic

programming problem for which efficient algorithms exist, which are guaranteed to

find the global optimum.
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SVMs are based on the Structural Risk Minimization principle: a function that

can classify training data accurately and which belongs to a set of functions with

the lowest capacity (particularly in the VC-dimension) [Vap95] will generalize best,

regardless of the dimensionality of the feature space m. Therefore, SVMs can gen-

eralize well even in large feature space, such as those used in text categorization. In

the case of the separating hyperplane, minimizing the VC-dimension corresponds

to maximizing the margin.

The linear separability appears to be a strong limitation. However, SVMs can

be generalized to non-linearly separable training data by mapping the data into

another feature space F via a non-linear map:

Φ : <m → F (2.10)

and then performing the above linear algorithm in F . Generally the map introduce

new features that do take into account the correlation between the input features.

The solution has the form:

f(x) = (
∑

x∗ ∈ SUPP

(y∗αiΦ(x∗)))T Φ(x) + b (2.11)

that is non linear in the original feature set.

However, training a Support Vector Machine requires the solution of a very

large quadratic programming (QP) problem and optimized algorithms have been

proposed in the literature. They include: SVM light, proposed by Joachims [Joa,

Joa99a] and Sequential Minimal Optimization (SMO) proposed by Platt [Pla98].

The latter is very fast and is based on the idea of breaking the large quadratic

programming (QP) problem down into a series of smaller QP problems that can be

solved analytically.

2.1.7 Bayesian Networks

Bayesian Networks [Pea88] are compact graphical representations for high- dimen-

sional joint distributions. They exploit the underlying conditional independences

in the domain and the fact that only a few aspects of the domain affect each other

directly.

Formally, a Bayesian Network B is composed of a structure and parameters. The

structure is a directed acyclic graph that encodes a set of conditional independence

relationships among variables. The nodes of the graph correspond directly to the

attributes and the directed arcs represent dependence of attributes to their parents.

The lack of directed arcs among attributes represent a conditional independence

relationship.

In Figure 2.6, an example of Bayesian Network is reported. The lack of arcs

between attributes Attr8 and Attr11indicate that they are conditionally independent

given Attr1.

The parameters of the network are the local probability distributions attached

to each variable. The structure and parameters taken together encode the joint
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Figure 2.6: A Bayesian Network representing the conditional probabilities of attributes given the

independent events described by Attr1 and Attr10

probability of the variables. In particular, given an attribute Xi, the structure

implicitly defines Pa(Xi), the set of attributes associated to the parent nodes of the

node represented by Xi.

For each attribute Xi, it is possible to define a conditional probability distri-

bution PB(Xi|Pa(Xi)). A Bayesian Network B defines a unique joint probability

distribution over the sample space, defined by the following equation.

PB(X1, X2, ..., Xm) =
m
∏

i=1

PB(Xi|Pa(Xi)) (2.12)

The problem of learning a Bayesian network from data can be broken into two

components: learning the structure and learning the parameters. If the structure

is known, then the problem reduces to learning the parameters. If the structure is

unknown, the learner must first find the structure before learning the parameters

(actually in many cases they are induced simultaneously). Learning the structure

can itself be decomposed into searching for structures and evaluating structures.

In any case, the learned Bayesian Network can be profitably used for classifica-

tion purposes, as proposed by Friedman and his colleagues [FGG97], who introduced

tree-augmented naive Bayesian (TAN) Networks in which the class variable has no

parents and each observed attribute has as parents the class variable and at most

one other observed attribute. Thus, each attribute can have one augmenting edge

pointing to it.

In Figure 2.7, an example of TAN model for the dataset "pima" taken from

[FGG97] is reported. The attribute C is the target variable (class).

2.2 Naive Bayesian Classification

A different solution is provided by the Naive Bayesian classifier. The Naive Bayesian

classifier1 is a simple and computationally efficient learning algorithm with theoret-

1The term Naive Bayesian Classifier has been introduced by Kononenko [Kon90]. It refers to

the Simple Bayesian Classifier [Lan93] and idiot Bayes [Bun90]
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Figure 2.7: An example of TAN model for the dataset "pima"

ical roots in the Bayes theorem.

The Bayes theorem states that:

• Let A1, A2, ..., AL be mutually exclusive (disjoint) events whose union has

probability one. That is,
∑L

i=1 P (Ai) = 1.

• Let the probabilities P (Ai) be known.

• Let B be an event for which the conditional probability of B given Ai, P (B|Ai)

is known for each Ai.

Then:

P (Ai|B) =
P (B|Ai)P (Ai)

∑L
j=1 P (B|Ai)P (Ai)

(2.13)

The probabilities P (Ai|B) reflect our updated or revised beliefs about Ai, in the

light of the knowledge that B has occurred.

Making a notational change by identifying the events A1, A2, ..., AL with classes

of a classification problem C1, C2, ..., CL and by identifying the event B as the union

of events (X1 = x1, X2 = x2, ...Xm = xm), where, as specified in section 2.1, Xi are

random predictor variables and xi(i = 1..m) are values, the Bayes formula can be

written:

P (Y = Ci|X1 = x1, X2 = x2, ...Xm = xm) =

P (X1 = x1, X2 = x2, ...Xm = xm|Y = Ci)P (Y = Ci)
∑L

j=1 P (X1 = x1, X2 = x2, ...Xm = xm|Y = Cj)P (Y = Cj)
(2.14)

P (Y = Ci|X1 = x1, X2 = x2, ...Xm = xm) is referred to as a posterior probabil-

ity, P (Y = Ci) as the prior probability, and P (Y = Ci|X1 = x1, X2 = x2, ...Xm =

xm) as the likelihood. The result of the Bayes Theorem 2.14 expresses the funda-

mental task of learning by experience in terms of the relation of prior and posterior

probability.

Once the probabilities have been estimated, the class is predicted by identifying

the most probable one.

f(x) = argmaxi P (Y = Ci|X1 = x1, X2 = x2, ...Xm = xm) (2.15)

i = 1..L
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In the estimation of the posterior probability, the denominator of formula 2.14

can be ignored, since it is the same for all classes. Thus, in Bayesian Learning, the

problem is, given an unlabeled example x = x1, x2..., xn, to individuate the most

probable class to which x belongs.

f(x) = argmaxi P (X1 = x1, X2 = x2, ...Xm = xm|Y = Ci)P (Y = Ci) (2.16)

i = 1..L

Bayes theorem plays an important role in inducting inference since 1961, when

Harold Jeffreys devised five essential rules of inductive inference under which the

theorem could be subsumed as representing one important case of probabilistic

inference [Jef61]. Afterward, the Bayes theorem has been used in several statistical

approaches for learning [Got80](e.g. Bayesian Networks 2.1.7). Each approach tries

to estimate the value of the likelihood in a different way.

One of the most common approaches is the Naive Bayesian Learner, where the

estimation of the likelihood is performed by means of the simplistic (naive) assump-

tion that an attributes is independent of each other, given the class. Formally:

P (X1 = x1, X2 = x2, ...Xm = xm|Y = Ci) =

m
∏

j=1

P (X1 = x1|Y = Ci) (2.17)

Thus, the discriminant function is:

f(x) = argmaxi P (Y = Ci)
m
∏

j=1

P (X1 = x1|Y = Ci) (2.18)

The naive assumption is clearly false when the predictor variables are statis-

tically dependent. Furthermore, in practical domains, the attributes are seldom

independent given the class. For this reason, the Naive Bayesian Learner has been

considered not much reliable and has been initially used as baseline for comparison

with more sophisticated algorithms. Despite of this scepticism, in past years it has

been shown that in many domains the prediction accuracy of the naive Bayesian

classifier compares well with that of other more complex learning algorithms includ-

ing decision tree learning, rule learning, and instance-based learning algorithms.

In particular, Cestnik et al. [CKB87], Clark and Nibblett [CN89] and Cestink

[Ces90] compared the naive Bayesian classifier with rule learners and results empiri-

cally proved the effectiveness of the naive Bayesian classifier. Langley et al. [LIT92]

compared the Naive Bayesian classifier with a decision tree learner and found that it

is more accurate in most of cases. Finally, Domingos and Pazzani [DP96] compared

several learners in information filtering tasks and found that the Naive Bayesian

classifier is the most accurate.

In addition, the naive Bayesian classifier has been proved robust to noise and

irrelevant attributes [ZW00] and Kononenko [Kon00] reported that domain experts

(in medicine), found learned theories easy to understand.

In past years, several attempts to improve the Bayesian Classifier have been

performed. Such improvements concerned three different and non-orthogonal direc-

tions, namely, improvements in the treatment of numeric attributes, improvements
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in the treatment of statistically dependent attributes (with respect to the class)

and, finally, improvements in the classifier’s expressiveness by means of a more

sophisticate representation.

2.2.1 Numeric attributes

The Naive Bayes classifier has been defined for discrete attributes. To extend the

standard Naive Bayes classifier to both continuous and discrete attributes, several

approaches have been proposed. The simplest approach consists in a preprocessing

step that aims to discretize continuous attributes. A different solution consists in

an embedded discretization method that discretize continuous attributes during the

learning phase.

One of the approaches that follows the latter solution has been proposed by John

and Langley [JL95], where two discretization algorithms are compared: a kernel

density estimation of numeric attributes and an estimation based on a Gaussian

distribution. The authors empirically proved that the kernel density estimation

algorithm is, in general, the better solution.

An independent study by Dougherty et al. [DKS95] showed that the performance

of the naive Bayes algorithm is significantly improved when features are discretized

using an entropy-based method. On the contrary, when purity-based methods are

applied, the performance of the naive Bayes algorithm is not significantly improved.

2.2.2 Relaxing the independence assumption

The assumption of conditional independence made by naive Bayes learners has often

been regarded as unrealistic. Therefore, several attempts to relax this assumption

can be found in the literature. Most of them have been proposed chronologically

before the empirical and formal considerations on the optimality region of the naive

Bayes classifier illustrated by Domingos and Pazzani [DP97] in 1997.

In 1991, Kononenko proposed an approach (namely, Semi-Naive Bayesian Clas-

sifier) [Kon91] that is based on the joining of dependent attribute values. The

dependence/independence is checked accordingly to a statistical test. Experiments

conducted to evaluate the effectiveness of this approach did not show significant

improvements in accuracy.

Langley and Sage [LS94] responded to the problem by embedding the naive

Bayesian scheme within an algorithm that carries out a greedy search through the

space of features (so, resorting to a feature selection problem). They found that

it is, in general, beneficial in domains that involve significant correlation among

attributes. However, in most domains no advantage of the proposed approach is

noticed.

Following the idea proposed by Kononenko, Pazzani [Paz96] proposed a method

to join attributes, rather than values. The algorithm is based on an iterative pro-

cedure that joins two attributes at each step. The evaluation of the effectiveness

of the join is based on a cross-validation approach. The method shows improve-

ments with respect to the standard naive Bayesian classifier. However, the author
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noticed that the main advantage concerned the case when the Bayesian classifier

was substantially less accurate than decision trees learners.

In 2002, Webb et al. [WBW02] [WBWss] proposed a method named AODE, that

overcomes the attribute independence assumption of naive Bayes by averaging over

all models in which all attributes depend upon the class and a single other attribute.

The resulting classification learning algorithm for nominal data is computationally

efficient and achieves lower error rates. However, the learned theories are not easily

understandable.

2.2.3 Optimality of Naive Bayes Classifier

Despite of this multitude of approaches, Domingos and Pazzani [DP97] showed that

relaxing the independence assumption is not always the best way to improve naive

Bayesian classifier. Indeed, the paper presents both formal and empirical results

showing that even when the independance assumption is violated by a wide margin,

the naive Bayesian classifier returns the same classification of the Bayesian classifier

that takes into account the statistical dependence among attributes (non-naive).

The basic idea is that, even if the classifier does not return correct probabilities,

the discriminant function 2.18 still returns correct estimations.

The authors proved a set of both sufficient and necessary conditions for the

global optimality of the naive Bayes classifier. For global optimality, they intend

that, for each example in the sample space, the zero-one loss (error rate) is the

same of the Bayesian classifier that is not based on the independence assumption

of attributes given the class. Among others, interesting results are that the naive

Bayesian classifier is globally optimal for learning conjunctions and disjunctions of

literals.

The authors also proved limitations of the naive Bayes classifier. In particular,

when all attributes are nominal, the Bayesian classifier is not globally optimal for

classes that are not discriminable by linear functions of linear features.

Another important aspect of the naive Bayesian classifier observed for two class

problems, is that, even if the classifier does not return a correct estimation of the

class, it tends to rank examples well [ZE01]. This is an important point because a

simple modification of the naive Bayesian classifier will allow it to better discrimi-

nate all positive examples from negatives [DP97]. This modification is particularly

useful in the case of learning (m− of −n) concepts [MP91] as well as in the case of

unbalanced data [ZE01].

2.2.4 Improving the classifier’s expressiveness

A different research direction on naive Bayesian classifiers is improving the classi-

fier’s expressiveness. Langley [Lan93] proposes a method, named RBC (Recursive

Bayesian Classifier), that recursively partitions the instance space in sub-regions

by means of a hierarchical clustering algorithm. A Bayesian classifier is learned for

each sub-region. Although the method paves the way in revising the naive Bayesian

classifier, the results do not show significant improvements over it.
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A different approach, proposed by Kohavi [Koh96] is NBTree that scales up

the accuracy of Naive Bayesian classifier in large datasets as well as decision trees

learners. This demand derives from the observation that, increasing the size of the

training set, the Naive Bayesian classifier tends to degrade its performances in terms

of classification accuracy [DP97][Koh96]. NBTree induces a hybrid of decision tree

classifiers and Naive Bayesian classifiers. Each node of the decision tree classifier

represents a split over the sample space, while the leaves represent a Naive Bayesian

Classifier. An empirical analysis of NBTree shows that, in general, NBTree tends to

outperform either approaches alone, namely the Naive Bayesian classifier and the

decision trees classifier, in the case of large datasets. The performance of NBTree

is comparable to that of the standard Naive Bayesian Classifier.

Sahami, in 1996 [Sah96], proposed a learning algorithm, named Kdb, very similar

to Bayesian networks. Kdb learns Bayesian classifiers that allow each attribute to

depend on at most k other attributes within a class for a given number k. When k

is equal to 0, Kdb generates naive Bayesian classifiers, while when k is equal to the

number of all attributes 1, Kdb creates full Bayesian classifiers without attribute

independences.

Friedman et al., in 1997, [FGG97], compared naive Bayesian classifier with

Bayesian Networks (see 2.1.7) that is, a much powerful representation that has

the bayesian classifier as a special case and found that Bayesian Networks tend to

produce no improvements and, sometimes, lead to large reduction in accuracy with

respect to the naive Bayesian classifier. From this observation, they proposed a

intermediate solution that allows each attribute to depend on at most one other at-

tribute in addition to the class. This method has been named TAN and is a special

case of Kdb (in terms of expressiveness). Experiments showed that TAN provides

interesting results in terms of accuracy.

In 2000, Zheng and Webb proposed LBR (Lazy Bayesian Rule Learning al-

gorithm) which differ from NBTree for the fact that avoids the problem of small

disjunctions of tree learning algorithms. The small disjunct problem, called by Holte

et al. [HAP89], is defined as the problem that occurs when a disjunct covers only a

few training examples and, Holte et al. by examining previously learned concepts,

showed that small disjuncts are much more error prone than large disjuncts. To

overcome this problem, LBR adopts a lazy approach and generates a rule that is

the most appropriate to the test example.

Among all methods presented above, both LBR and TAN show some real im-

provement with respect to the standard naive Bayesian classifier. However, both

techniques obtain this result at a considerable computational cost. In order to face

the computational complexity problem, Webb et al. [WBW02] [WBWss] proposed

a different approach named AODE, which works by averaging over all models in

which all attributes depend upon the class and a single other attribute. The result-

ing classification learning algorithm for nominal data is computationally efficient

and achieves lower error rates. Experiments delivers comparable prediction accu-

racy to LBR and TAN with improved computational efficiency.
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2.3 The roles of data: units of analysis and units of

observation

In this thesis we try to further improve the expressiveness of the naive Bayesian

classifier by facing the problem of naive Bayesian classification taking the “structure”

of data into account.

The structure of data can be in various forms. In this work we consider two

common interpretations of structured data: the occurrence of relations between

categories of the units of analysis (categorization structure) or the occurrence of

relations between the units of analysis and/or the observation units (unit structure).

Before formally describing the problems we face, some useful definitions are

necessary. In particular it is important to formally define the concepts of unit of

analysis and unit of observation.

A Unit of analysis is the observable entity that is analyzed in a statistical study

and to which the generalizations made by a statistical analysis apply.

This definition contrasts with the definition of the Unit of observation that is

the entity which is observed or about which information is systematically collected.

The unit of observation is the same as the unit of analysis when the generalizations

being made from a statistical analysis are attributed to the unit of observation (i.e.,

the objects about which data were collected and organized for statistical analysis).

The difference between units of analysis and units of observation is basically due

to the difference between primary and secondary data. Primary data are originated

by the researcher for the specific purpose of addressing the research problem. Typ-

ical methods for the collection of primary data are interviews (in social science) or

experiments (in other scientific discipline).

Secondary data are collected for some purpose other than the problem at hand.

They generally are census data (in social science) or data published on research

reports (in other scientific disciplines). Secondary data are cheaper to collect and

sometimes they are the only source of data where it is possible to conduct primary

research on the topic of interest. The disadvantage related to secondary data are

the validity (e.g collected questionnaires may not be ideally worded for the research

question at hand) and the convergence of a population different from that targeted

in a data mining task.

If units of observation always refer to primary research (and hence to primary

data), the units of analysis strongly depend on the problem at hand. While the

units of observation and analysis are often the same, the wealth of secondary data

sources creates opportunities to conduct analysis with data from multiple units of

observation. This is probably most recognizable in research fields, such as Bioin-

formatics and spatial Data mining where secondary data sources are considered of

great relevance in the analysis of data.

Example 2.1 For instance, suppose that, for a social survey, data about each per-

son in a dwelling and information about the housing structure are collected. There-

fore, this study collects data for two units of observation:

• persons
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• housing structures

From these data, different units of analysis may be constructed:

• Household could be examined as a unit of analysis by combining data from

people living in the same dwelling.

• Family could be treated as the unit of analysis by combining data from all

members in a dwelling sharing a familial relationship.

Example 2.1 shows how the unit of analysis can be constructed from units of

observation consisting of some type of relationship constructed by time, space or

social properties.

In traditional data mining relatively simple transformations are required to ob-

tain units of analysis from the units of observation explicitly stored in the database.

The unit of observation is often the same as the unit of analysis, in which case no

transformation at all is required. Conversely, in this thesis we face the problem

of taking the “structure” into account. Where the structure is defined in terms of

relations between units of analysis and/or units of observation and the relations

between the units of observation. In the following section we take into account the

occurrence of relations between categories of the units of analysis (categorization

structure) and we propose a framework that supports the induction of statistical

models for hierarchical classification of entities.

2.4 Classification in a Hierarchy of categories

Most of research in predictive Data Mining has focused on classifying examples into

a set of categories with no structural relationships among them (flat classification).

However, in many application domains, instances are organized in a hierarchy of

categories in order to support a thematic search by browsing topics of interests.

This is the case of text classification or functional genomics.

Indeed, many popular search engines and text databases arrange instances (doc-

uments) in topic hierarchies, such as Yahoo, Google Directory, Medical Subject

Headings (MeSH) in MEDLINE, Open Directory Project (ODP)2 and Reuters Cor-

pus Volume I (RCV1). In functional genomics, a typical application is to predict the

functional class of a gene, where genes are organized hierarchically. For example in

the Munich Information Center for Protein Sequences (MIPS) hierarchy 3, the top

level of the hierarchy has classes such as: "Metabolism", "Energy", "Transcription"

and "Protein Synthesis". Each of these classes is iteratively subdivided into more

specific classes, so to obtain a hierarchy which is up to 4 levels deep. An example of

a subclass of "Metabolism" is "amino-acid metabolism", and an example of a sub-

class of this is "amino-acid biosynthesis". An example of a gene in this subclass is

YPR145w (gene name ASN1, product "asparagine synthetase") [BBD+02] [CK01].

2www.dmoz.org
3http://mips.gsf.de/proj/yeast/catalogues/funcat/



32 2.4 Classification in a Hierarchy of categories

In all these applications pre-defined categories are organized in a hierarchical

structure (tree-like structure). Such a structure reflects relations between concepts

in the application domain covered by the classification.

This hierarchical arrangement is essential when the number of categories is quite

high and the use of a non-hierarchical classifier (flat classifier) would lead to a

fragmentation of the class, producing many classes with few members. Furthermore,

the hierarchical classification arranges examples hierarchically, thus supporting a

thematic search by browsing topics of interests. The structural relationship among

categories can be taken into account when devising the classification process. While

in flat classification a given example is assigned to a category on the basis of the

output of one classifier, in hierarchical classification, the assignment of an example

to a category can be done on the basis of the output of multiple sets of classifiers,

which are associated to different levels of the hierarchy and distribute examples

among categories in a top-down way. The advantage of this hierarchical view of the

classification process is that the problem is partitioned into smaller subproblems,

each of which can be effectively and efficiently managed. Another motivation is

given by the observation that at different levels of the hierarchy the same example

can be represented in a different way. In particular, it is possible to give different

abstractions of the same object varying the level of the hierarchy (e.g. it is possible

to emphasize some attributes rather than others at different levels of the hierarchy).

However, taking into account the hierarchy poses additional issues in the devel-

opment of methods supporting hierarchical classification. First, instances can either

be associated to the leaves of the hierarchy or to internal nodes. Second, the set of

attributes selected to build a classifier can either be category specific or the same

for all categories (corpus-based). Third, the training set associated to each cate-

gory may include or not training examples of subcategories. Fourth, the classifier

may take into account or not the hierarchical relation between categories. Fifth,

some stopping criterion is required for hierarchical classification of new instances in

non-leaf categories. Sixth, new performance evaluation criteria are required to take

into account the different types of classification errors.

Although there are several approaches that face the problem of hierarchical

classification [BBD+02] [KS97] [MRMN98] [Mla98b] [DMSK00] [DC00] [NGL97]

[RS02] [WWP99], they are often strictly related to the application in hand and lack

of a general approach that is independent of the domain.

Here, we propose a general framework for hierarchical classification. It supports

the change of representation of examples at different levels of hierarchy. The frame-

work includes a tree distance-based thresholding algorithm for classifying instances

in internal categories of the hierarchy. Although it is applied to Naive Bayes classi-

fiers, it can be also applied to any classifier that returns a degree of membership (e.g.

probabilistic and distance based) of an example to a category. The framework can

manage a variety of situations in terms of hierarchical structure: examples can be

assigned to any node in the hierarchy, some nodes can have no associated examples

and internal nodes can have only one child. In the next subsections the proposed

framework is described and a complexity analysis that formally proves the its ef-

ficiency is provided. Afterward, the proposed approach is compared with related
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Figure 2.8: a) Hierarchical training set; b) proper training set.

works found in the literature. The empirical evaluation is reported in chapter 4 in

the context of automatic classification of documents on the basis of their textual

content.

2.4.1 Hierarchical classification: the framework

In our proposal, a classifier is learned for each each internal category c of the hi-

erarchy. This classifier is used to decide, during the classification process, which

category ci, subcategory of c, is the most appropriate to receive the instance to

be classified. Thus, in the learning process several classifiers have to be learned

from a set of examples. An important aspect in the learning phase concerns the

training set. Indeed, for each internal category, different opportunities to build a

training set are possible. In [CM03], we identified two different approaches. In the

first approach, called Hierarchical Training Set, the training set includes examples

belonging to the subtree rooted in a category (positive examples) and examples of

the sibling subtrees (negative examples). The second alternative is called Proper

training set (See Figure 2.8), which include instances of a category (positive ex-

amples) and instances of the sibling categories (negative examples). In this thesis

we only consider Hierarchical Training Sets for two reasons. In [CM03], we already

showed that hierarchical training sets perform better than proper training sets in

the text categorization domain. Second, when no training example is associated to

internal categories, proper training sets cannot be used, since it would be impossible

to build a classifier.

A different issue we face concerns the representation of training examples. In

the text categorization domain, Apté et al. [ADW94] propose two different types

of representations: the same feature vector for all categories or several specialized

feature vectors for different categories. The former is obtained by selecting features
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from a universal set of features built by examining all examples in the training

set, while the latter is obtained by selecting a feature set from several local sets of

features built for each category by examining only examples of that category.

It has been observed that increasing the number of categories leads to an in-

crease in the number of necessary features [BL97a]. To keep the dimensionality

problem under control, it is possible to use local feature sets. On the other hand,

the uniqueness of the feature set permits the application of several statistical and

machine learning algorithms (e.g. nearest neighbour or naive Bayes classifier) de-

fined for multi-class problems. These algorithms are appropriate for single-class

categorization and are theoretically founded on the assumption that all examples

are points of the same (multidimensional) feature space.

In the context of hierarchical classification a different, somewhat intermediate,

solution can be adopted. Examples of both an internal category c and its subcate-

gories are represented by means of the same feature set in order to build a classifier

that assigns examples in c to one of its direct subcategories. However, different

internal categories may have different feature sets. In other terms, by taking into

account the hierarchy, it is possible to define several representations (sets of fea-

tures) for each example. Each representation is useful for the classification of an

example at one level of the hierarchy.

For instance, examples of the general category “Mammals” can be well rep-

resented by general features like “has bones”, while examples concerning specific

classes (e.g., “Cats”) are better represented by specific features like “can mew”. In

the case of hierarchies representing is-a relations between categories, this multiple

representation of examples corresponds to having several abstractions of the same

entity, each of which is appropriate for a particular decision problem.

In our hierarchical categorization framework 2.9, we use this multiple represen-

tation of examples, which permits the application of multi-class learning algorithms

for the induction of classifiers associated at each internal node. The outputs of the

classifier associated to the category c are the degrees of membership of the input

example to all direct subcategories. When the degrees of membership (or scores)

are all lower than the corresponding automatically detected thresholds, the example

is assigned to the category c.

The classification of a new example is performed by searching the hierarchy of

categories. Search proceeds top-down from the root to the leaves according to a

greedy strategy. When the example reaches an internal category c, it is represented

on the basis of the feature set associated to c. The classifier of category c returns

a score for each direct subcategory. Then, among subcategories whose score is

greater than the corresponding threshold, the one with the highest score is chosen.

Search proceeds recursively from that subcategory, until no score is greater than

the corresponding threshold or a leaf category is reached. The last crossed node

in the hierarchy is returned as the candidate category for example classification

(single-category classification). If search stops at the root, then the example is

considered unclassified. It is noteworthy that the application of a classifier is always

preceded by a change in the example representation according to the set of selected

features. Since selected features are expected to be more specific for lower levels
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categories, the example is represented at decreasing levels of abstraction during the

classification process. This automated representation change is highly desirable in

hierarchical categorization.

Another noteworthy observation is that the application of an exhaustive search

strategy would be incorrect in this framework, since the different representations

of a example make the classification scores incomparable across different nodes in

the hierarchy. This is particularly evident for naive Bayes classifiers since posterior

probabilities are defined on different probability spaces 4.

A special case is represented by categories with a unique direct subcategory. A

probabilistic classifier would assign a unit probability to all examples that reach a

category c with a single subcategory c′, since no alternative to c′ is given. In this

case, the thresholding procedure cannot work properly: if the threshold is less than

one, all examples that reach c would be passed down to c′, thus committing some

errors for those examples that actually belong to c; otherwise, no example would be

passed down to c′, thus committing some errors for those examples that should be

actually classified in a subcategory of c. To avoid this problem, a dummy sibling

category of c′ is introduced during the learning process. The training examples

associated to the dummy subcategory are only those associated to c. The effect is

that examples of c can be considered as negative examples for all subcategories of

c itself. Therefore, the prior probability of all direct subcategories of c do not sum

to 1.0 since the possibility that the example belongs to no subcategory should be

taken into account. While the dummy category is used during the learning process,

it plays no role during the classification process, since scores associated to the

dummy category are not considered. The assignment of the example to c is based

only on the thresholds, whose bottom-up automated determination permits to take

into account the final effect of local decisions taken by the classifier associated to c.

2.4.2 Automated threshold determination

As pointed out in the previous section, a classifier is learned for each internal cate-

gory c of the hierarchy. This classifier is used to decide, during the classification of a

new example, which category ci ∈ DirectSubCategories(c) is the most appropriate

to receive the example. In general, however, an example should not be necessarily

passed down to a subcategory of c. This makes sense in the case that:

1. The example to be classified belongs to a general category rather than a

specific category, or

2. The example to be classified belongs to a specific category that is not present

in the hierarchy and makes more sense to classify the example in the “general

category” rather than in a wrong category.

To support the classification of examples also in the internal categories of the

hierarchy, it is necessary to compute the thresholds that represent the “minimal

4A probability space is a triple (Space, S, P) on the domain S, where (S, S) is a measurable

space, S are the measurable subsets of S, and P is a measure on S with P(S)=1. Different features

sets associated to internal categories define different measurable spaces
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Figure 2.9: Classification of a new instance. On the basis of the scores returned by the first

classifier (associated to the category class1 ) the example is passed down to class1.2. The scores

returned by the second classifier (associated to the category class1.2 ), are not high enough to pass

down the example to either class1.2.1 or class1.2.2. Therefore, the example is classified in the

class1.2 category.

score” (returned by the classifier) such that an example can be considered belonging

to a direct subcategory. More formally, let γc→c′(d) denote the score 5 returned by

the classifier associated to the internal category c when the decision of classifying

the example d in the subcategory c′ is made. Thresholds are used to decide if a new

testing example is characterized by a score that justifies the assignment of such a

example to c′. Formally, a new example d temporary assigned to a category c will

be passed down to a category c′ if γc→c′(d) > Thc(c
′), where Thc(c

′) represents

“minimal score” such that an example assigned to c can be considered belonging to

c′.

The algorithm for automated threshold determination is based on a bottom-up

strategy and tries to minimize a measure that is based on a tree distance.

Before describing the algorithm and the used measure, some useful notations

are introduced:

1. Training(c) is the set of positive examples in the hierarchical training set of

category c;

2. Taining(c/ci) =
(

Training(c)
⋃

cj∈DirectSubCategories(c)

Training(cj)
)

−Training(ci)

is the set of positive examples in Training(c) but not in Training(ci);

3. DirectSubCategories(c) is the set of direct subcategories of c in the hierarchy;

4. γc(ci) = bγc→c′(d)|d ∈ Training(ci)c is the list of values taken by the classifier

for all examples of category ci (or a subcategory);

5. γc(¬ci) = bγc→c′(d)|d ∈ Training(c/ci)c is the list of values taken by the

classifier for each example in c or a direct subcategory of c different from ci;

5In the case of naive Bayes Classifier γc→c′ (d) = Pc(c′|d)
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6. V = γc(ci) ∪ γc(¬ci)sorted in ascending order;

The algorithm (see Algorithm 2.1 [MCLA04]) takes in input the categories c and

c′, where c′ is a child of c, and returns the threshold associated to c′ (Thc(c
′)).

Thc(c
′) is determined by examining the sorted list V of classification scores and by

selecting the middle point between two values in V such that the expected error is

minimized. This error is estimated on the basis of the distance between two nodes

in a tree structure (see Definition 2.1)

Algorithm 2.1 Automated Threshold definition algorithm for a category ci

find_thresholds(c,c’,thresholdSet) {

if not leaf(c’) then

∀c′′ ∈ SubClasses(c′) //recursive bottom-up threshold determination

thresholdSet←find_thresholds(c’,c”,thresholdSet);

compute_and_sort(V,c,c’);

Thc(c
′)← 0;

bestError←∞;

∀k = 0, ..., |V | { //choose a possible threshold

if k=0 then threshold← V [1]− ε;

elseif k=|V| then threshold ← V[k];

else threshold ← (V[k]+V[k+1])/2;

error ← 0; ∀v ∈ γc(c
′) { //compute tree distance-based errors

let d ∈ Training(c′)s.t.v = γc→c′(d)

if v > threshold then

error+ = δHierarchy(c′)(class(d), classify(d, thresholdSet,Hierarchy(c
′)))

else

error+ = δHierarchy(c′)(class(d), c);

}

∀v ∈ γc(¬c
′) {

let d ∈ Training(c/c′) s.t. v = γc→c′(d)

if v > threshold then

error+ = δHierarchy(c)(class(d), classify(d, thresholdSet,Hierarchy(c
′)))

else

error+ = 0;

}

if error< bestError then //choose the best threshold

Thc(c
′)← threshold; bestError ← error;

}

thresholdSet ∪ {< c′, Thc(c
′) >;

}
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Definition 2.1 (tree distance)

Let Categories be the set of all the categories, the tree distance δHierarchy is

a function δHierarchy : Categories → < that associates two categories c1, c2 ∈

Categories with a real value such that the following conditions are fulfilled:

I ∀c1, c2 ∈ Categories 0 = δHierarchy(c1, c1) ≤ δHierarchy(c1, c2) = δHierarchy(c2, c1)

II ∀c1, c2 ∈ Categories : δHierarchy(c1, c2) = 0 =⇒ c1 = c2

III ∀c1, c2, c3, c4 ∈ Categories : δHierarchy(c1, c2) + δHierarchy(c3, c4) ≤

≤ max{δHierarchy(c1, c3)+δHierarchy(c2, c4), δHierarchy(c1, c4)+δHierarchy(c2, c3)}

In a tree distance, the dissimilarity between two categories is reproduced as

the sum of the weights of all edges of the (unique) path connecting the two cate-

gories in the hierarchy [EMTB00]. When a unit weight is associated to each edge

(as in our proposal) the dissimilarity is the length of the path. Intuitively, the

automated thresholding algorithm tries to compute thresholds by minimizing the

distance between the true class of an example and the class returned by the hierar-

chical classifier.

The computation proceeds bottom-up, from leaves to the root. In [CM03] a top-

down approach was proposed. However, this approach suffers from two problems:

• It is conservative in the sense that it tends to classify examples in higher

categories;

• When a threshold is defined, it is not possible to take into account the possibly

wrong decisions taken by classifiers at lower levels of the hierarchy.

Another difference is that in our previous work thresholds were determined by

maximizing the FScore [Seb02] of the hierarchical classification on training exam-

ples. Although this approach gives promising results, it presents the limitation

that the distance between “target” and “assigned” categories in the hierarchy is not

considered when a misclassification error occurs.

2.4.3 Learning Complexity

In the hierarchical classification framework, the original learning problem is par-

titioned into smaller subproblems each of which can be efficiently managed. This

leads to an efficiency gain, with respect to the flat classifier, that depends on the

number classes associated to each learned classifier. More formally, let

• f(number of classes, number of training examples, number of features) be the

learning complexity of a generic classification algorithm.

• r be the total number of classes

• n be the number of training examples

• a be the number of features



Naive Bayesian Hierarchical Classification 39

• d be the depth of the hierarchy

• k number of children of a generic internal node (for simplicity, in this analysis

we suppose that k is constant).

Then the complexity of a flat classifier is: f(r, n, a). For what concerns the com-

plexity of the hierarchical framework, it is:

• f(k, n, a) for the first level;

• k · f(k, n/k, a) for the second level, in the worst case that all examples are

classified in lower categories

• k2 · f(k, n/k2, a) for the third level.

By generalizing, the complexity of the hierarchical framework is:

d
∑

i=1

kif(k,
n

ki
, a) (2.19)

If we use a naive Bayes classifier, the complexity of the learning phase is linear

in the number of training examples, in the number of features and in the number

of classes [Mit97]. In such a case the time complexity of a flat classifier is

O(n · a · r) (2.20)

while in the case of hierarchical framework, it is:

O
(

d
∑

i=1

ki · (
n

ki
· k · a)

)

= O
(

d
∑

i=1

(n · k · a)
)

= O(d · n · k · a) (2.21)

Both are linear in the number of training examples and in the number of features.

The difference is that the complexity of a flat classifier is linear in the number of

classes, while the complexity of the hierarchical framework is linear in the product

of the number of children of each node and the depth of the tree. Under the

assumption of a balanced hierarchy with constant branching factor k, we have d =

logkr. Therefore the complexity of the hierarchical framework is

O(n · a · logkr) (2.22)

Comparing the 2.22 with 2.20, we note that, in case of naive Bayesian clas-

sification, the hierarchical framework is particularly efficient when the number of

categories is quite high. If we consider that the Bayesian classifier is particularly ac-

curate when the number of attributes is relatively small [DP97], we expect that the

naive Bayesian classifier takes great advantage of the use of the Hierarchical frame-

work. This is confirmed by results on the application of the proposed algorithm in

text categorization (see Section 4.1).
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2.4.4 Related Work

In the literature, several approaches have been proposed that face the problem of

hierarchical classification. Most of them have been applied in the context of text

categorization. They differ in terms of several aspects that principally involve the

definition of the problem, the example representation and the learning strategy. As

for the definition of the problem, a classifier that classifies examples into L categories

can be formulated in two different ways: either a binary classifier is induced for each

category, or a 1-of-L (or multi-class) classifier is learned to determine whether a new

example belongs to one of the L categories [Seb02]. Our approach is based on the

second formulation.

As for the example representation, each example can be described by several

sets of features, each of which is useful for the classification of the example at one

level of the hierarchy. In this way, general features and specific features are not

forced to coexist in the same feature set.

As for the learning process, it is possible to consider the hierarchy of categories

either in the formulation of the learning algorithm or in the definition of the train-

ing sets. Training sets can be specialized for each internal node of the hierarchy by

considering only examples of the sub-hierarchy rooted in the internal node (hierar-

chical training set). This is an alternative to using all examples for each learning

problem like in flat classification.

Some of these aspects have been considered in related works. In particular,

in the seminal work by Koller and Sahami [KS97] a different feature set is built

for each node in the hierarchy. For the learning step, two Bayesian classifiers are

compared, namely the naïve Bayes and KDB [Sah96]. A distinct classifier is built

for each internal node (i.e., split) of the hierarchy. In the classification step, which

proceeds top-down, it is used to decide to which subtree to send the new example.

There is no possibility of recovering errors performed by the classifiers associated to

the higher levels in the hierarchy. Two limitations of this study are the possibility

of associating instances only to the leaves of the hierarchy and the effectiveness of

the learning methods only for relatively small vocabularies (<100 features).

McCallum et al. [MRMN98] proposed a method based on the naive Bayes

learner. A unique feature set is defined for the entire training set. Because of the

uniqueness of the feature set, Bayesian classifiers associated at internal nodes are

homogeneous, and, as formalized by Mitchell [Mit98] the hierarchical organization

of homogeneous classifiers is equivalent to a single flat classifier. In other terms, the

hierarchical structure would have no practical impact on the classification process.

This explains why, in the learning step, McCallum et al. use a statistical technique

known as shrinkage to smooth parameter estimates for lower-level categories with

parameter estimates for their ancestors in the category hierarchy. For the classi-

fication step, the authors compare two techniques: exploring all possible paths in

the hierarchy and greedily selecting the most probable one/two branches as done

in [KS97]. Results show that greedy selection is more error prone but also more

computational efficient. As in the previous work, all examples can be assigned only

to the leaves of the hierarchy.
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Mladenić [Mla98b] used the hierarchical structure to decompose a problem into

a set of subproblems corresponding to categories (nodes in the hierarchy). For each

subproblem, a naive Bayes classifier is built from a set of positive examples, which is

constructed from examples in the corresponding category node and all examples of

its subtrees, and a set of negative examples corresponding to all remaining examples.

The set of features selected for each category can be different. The classification

applies to all the classifiers (nodes) in parallel, using some pruning of unpromising

nodes. In particular, an example is passed down to a category only if the posterior

probability for that category is higher than a user-defined threshold. Contrary to

the previous work, examples can be assigned to any node of the hierarchy.

In the work by D’Alessio et al. [DMSK00] examples are associated only to leaf

categories of the hierarchy. Two sets of features are associated to each category, one

is positive (features extracted from exampless of the category) while the other is

negative (features extracted from examples of sibling categories in the hierarchy).

In addition to contributing to feature extraction, the training set is also used to

estimate feature weights and a set of thresholds, one for each category. Classification

in a given category is based on a weighted sum of feature occurrences that should

be greater than the category threshold. Both single and multiple classifications

are possible for each testing example. The classification of a example proceeds top-

down either through a single path (one-of-L classification) or through multiple-paths

(binary classification). An innovative contribution of this work is the possibility of

restructuring an initial hierarchy or building a new one from scratch.

Dumais and Chen [DC00] use the hierarchical structure for two purposes. First,

to train several Support Vector Machines (SVM’s), one for each intermediate node.

The sets of positive and negative examples are constructed from examples of cate-

gories at the same level, and different feature sets are built, one for each category.

Second, to classify examples by combining scores from SVM’s at different levels.

Several combination rules are compared, some requiring a category threshold to be

exceeded to pass a test example down to descendant categories. Multiple classifica-

tion of a examples is allowed for leaf categories, while the assignment of an example

to intermediate categories is not considered.

In the system CLASSI by Ng et al. [NGL97], the hierarchical classification

of examples is obtained by combining several linear classifiers according to a tree

structure (hierarchical classifier). The tree structure corresponds to the hierarchy

of categories, which means that a linear classifier is associated to each category.

The output of the classifier defines a degree of membership of an example to a

category. In the classification phase the hierarchical classifier receives an example

and checks whether it belongs to any of the first level nodes. If the tested example

activates any of the first level nodes, then the descendant categories of that node are

tested recursively. Multiple classifications of examples is allowed while classification

of examples in non-leaf categories seems not to be supported. Weights of each

linear classifier are determined by means of the perceptron learning algorithm. The

training set of each linear classifier includes all positive examples of the associated

category (i.e., no hierarchical training set) and some selected examples of other

categories.
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In the work by Ruiz and Srinivasan [RS02] a variant of the Hierarchical Mixture

of Experts (HME) model is used. A tree of backpropagation neural networks is

used. Neural networks are of two types: experts and gates. The former take the

feature-vector representation of an example as input and are trained to recognize

whether the example belongs to a specific category. There are as many experts at

the leaves of this tree-structured classifier as categories (leaves and non-leaves) in the

hierarchy. Gating networks are the internal nodes of the tree-structured classifier

and map the non-leaf categories of the hierarchy. They have two kinds of input:

the feature-vector representation of an example and the output of the expert/gating

networks below in the tree. Their role is that of restricting the number of experts to

be activated for a given example. Indeed, the classification of an example proceeds

top-down in the tree of neural networks, starting from the gate at the root towards

the experts at the leaves. Multiple classification is supported. The gates are trained

to recognize whether or not any of the categories of their descendants is present

in the example. The experts are trained to recognize the presence or absence of

particular categories. Therefore, the set of positive examples for an expert includes

examples of the uniquely associated category while the set of positive examples for

a gate includes all training examples of the set of associated categories. Some form

of filtering is used for negative examples, since unbalanced data sets may affect the

learning capability of backpropagation neural networks. Different feature sets are

selected for each expert and gating network. The proposed method is tested on

some MEDLINE records. Only categories with positive examples are selected, since

this method cannot work when intermediate categories have no positive examples.

A hierarchical classifier combining several neural networks is also proposed by

Weigend et al. [WWP99]. Neural networks at internal nodes are meta-topic clas-

sifier while those at the leaves are individual classifiers. The method has been

devised and tested only on two-levels hierarchies, although the extension to more

than two levels should be straightforward. The dimensionality reduction of the

original feature space is obtained by means of two statistical techniques: Latent Se-

mantic Indexing to transform the original feature set into a new set of features that

are a linear combination of the original features, and c2 statistics to select the most

discriminant features. Moreover, selected feature sets can either be specific for each

category or unique for all categories. The former resulted in better performance on

the Reuters dataset, thus empirically confirming Mitchell’s finding [Mit98] also for

classifiers based on neural networks.

Blockeel et al. [BBD+02] defined a specific decision tree induction algorithm for

the case of hierarchical multi-category classification. In particular, the authors use

Clus in order to build predictive clustering trees. They use a distance measure to

support a Top-Down construction of trees. Examples can be assigned only to the

leaves of the hierarchy.

Sun and Lim [SL01] have proposed the use of category-similarity measures and

distance-based measures to consider the degree of misclassification in measuring

the classification performance. Experiments were performed on the Reuters-22173

collection with a SVMlight Version 3.50 implemented by Joachims [Joa].
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2.5 Conclusions

In this chapter we formally defined the classification problem in data mining. We

focused the attention on the naive Bayesian classification that we deeply described.

Furthermore, we illustrate the classification problem when hierarchical relations be-

tween target categories are taken into account. We also propose a general framework

for hierarchical classification of examples. It can be applied to any classifier that

returns a degree of membership, such as probabilistic or distance-based classifier.



44 2.5 Conclusions



Chapter 3

Naive Bayesian

Multi-Relational Classification

In the previous chapter we considered a particular kind of “structure”, namely re-

lations between categories of the unit of analysis. In this chapter we consider a

different kind of “structure”, that is, the structure represented by the occurrence of

relations between the units of analysis and/or the units of observation. At this aim,

we resort to a new branch of data mining research, namely multi-relational data

mining.

3.1 Multi-relational Data Mining

Multi-relational data mining is a new branch of data mining research that can

deal with complex data where relations between units of analysis and/or the units

of observation are taken into account. In particular, looking at the problem in a

database prospective, multi-relational data mining overcomes the problem of single

table assumption [Wro01] that assumes that the training set can be represented as a

single relational table, where each row corresponds to an example and each column

to a predictor variable or to the target variable. This assumption is made in classical

data mining and seems quite restrictive in some data mining applications, where

data are stored in a database and are organized into several tables for reasons

of efficient storage and access. In this context, both predictor variables and the

target variable are represented as attributes of distinct tables (relations) eventually

related each other by means of foreign key constraints defining a structure in the

data. Relational Data mining looks for patterns that involve multiple relations in

a relational database. It does so directly, without transforming it in a single table

first and then looking for patterns in it.

For example, suppose we have a database storing information about the access

and the use of a website. It stores information about users, sessions, available

services and requested services. An example of a database schema is shown in

figure 3.1.

For analysis purposes, suppose we are interested in statistics concerning “ses-

45
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Figure 3.1: Simple schema of a database that stores information about the access and the use of

a website

sions”. This means that the “sessions” are our basic observable entities in this sta-

tistical study (Units of Analysis). The simplest approach takes into account data

stored in the table sessions. From such data, traditional data mining algorithm

can produce different kinds of knowledge: classifiers, association rules, clusters etc.

However, all extracted knowledge concerns only information stored in the sessions

table.

Suppose that, in this study, we are interested in taking into account other infor-

mation i.e. users and type of requested services. These entities are not the principal

entities in the study but are just collected useful information (units of observation).

In order to take into account such information, we can add to the sessions table

as many attributes as we want: we might add a column representing the user’s

country, we might add his sex and so on. Adding information about the user is

easy and straightforward (it is a simple JOIN operation), but the situation changes

when we add information about requested services. In this case, it is possible that,

in the same session, the user uses more than one service.

In this case, the single table assumption turns out to be a severe limitation and

two alternatives are possible. First, we could make one tuple for each requested

service in the sessions table. Thus, if a user requests two services in the same session,

the session will be represented by 2 tuples, each duplicating both session and user

information. Obviously, this “redundancy” of data leads to several disadvantages:

there is a waste of space and an error in training data is duplicated.

In addition, from a statistical point of view, we are moving our unit of analysis
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from “sessions” to “requests” because each individual represents a request and not

a session. Thus, our analysis will be about “requests”, not “sessions”, which is not

what we might want.

The second alternative avoids the problems with redundancy and multiple rows,

and thus allows analysis methods to operate properly. The method consists in

creating a summarizing table that contains information about sessions and users,

but also a simple summary of information about requested services (e.g. number

of requested services). Obviously, this alternative avoids problems of the first one

at the expense of information details. This approach is known in the literature

as “propositionalization” and formally consists in the construction of features that

capture relational properties of the learning examples [KLF01] [KRZ+03]. In the lit-

erature, propositionalization is often related to the problem of feature construction

and predicate invention (in Inductive Logic Programming, ILP) [Sta96]. However,

the output of a propositionalization algorithm is often a propositional table consist-

ing of a multitude of attributes that are often useless for learning. For this reason,

propositionalization is often followed by a feature selection process that aims to

significantly reduce the number of features on which the propositional learning al-

gorithm works [ACRF04].

An alternative to the combined use of propositionalization and feature selection

is represented by the Structural Approaches. Structural approaches take into ac-

count the structure of the original data and use the database schema as it originally

is, without transformations. Historically, structural approaches are not new in the

Machine Learning research and, in particular, ILP community has been working

for a number of years on a powerful representation that allows to represent such

information. In fact, ILP make use of first order logic representation formalism that

allows to represent both propositional and structure information. For example, a

possible pattern an ILP system can discover is:

session(SessionID,UserID,Connection_Time,Browser)←

Connection_Time > 3′,

user(UserID,Name, Surname, Sex,Birthday, Country),

Birthday>′01/01/1980′,

request(REQID,SessionID, PageID,Outcome),

Outcome =′ ok′.

ILP approaches typically work on a set of main-memory Prolog facts and facts

correspond to tuples stored on relational databases. In ILP systems, some pre-

processing is required in order to transform tuples into facts. However, this has some

disadvantages. First, only part of the original hypothesis space implicitly defined by

foreign key constraints can be represented after some pre-processing. Second, much

of the pre-processing may be unnecessary, since a part of the hypothesis described

by Prolog facts space may never be explored, perhaps because of early pruning.

Third, in applications where data can frequently change, pre-processing has to be

frequently repeated. Finally, database schemas provide the learning system free
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of charge with useful knowledge of data model that can help to guide the search

process. This is an alternative to asking the users to specify a language bias, such

as in ILP systems.

Typically, ILP methods are characterized by an approach which is purely logic-

based. Main issues investigated in the formulation of these methods are gener-

alization models, generalization/specialization operators, folding/unfolding logical

theories, etc. In recent years the research interests in ILP have moved towards

methods based on a statistical approach, where the way of dealing with uncertainty

is a key issue. The main focus of this chapter is on these statistical approaches

which can be considered an “upgrade” of statistical approaches in order to handle

relational data by means of first-order logic representation.

In the following section we report some statistical methods that are able to

handle multi-relational data and in the subsequent sections we propose two different

approaches representing an upgrade of statistical methods and, in particular, naive

Bayesian classification to the multi-relational setting.

3.2 Statistical approaches to multi-relational data

mining

In the literature, several approaches have been proposed that face the problem of

statistical classification in multi-relational data mining. They are mainly based on

the upgrade of standard statistical approaches such as, Bayesian networks, deci-

sion trees, naive Bayesian, Markov networks and logistic regression to the multi-

relational setting.

In this section we briefly review some of cardinal and well known approaches.

Probabilistic Relational Models (PRMs) [TSK01] [FGKP99b] extend the stan-

dard attribute-based Bayesian Network representation (see 2.1.7) to incorporate a

much richer relational structure. In particular, these models allow properties of

an entity to depend probabilistically on properties of other related entities. In the

learning task, like Bayesian Networks, PRMs have two variants: parameter esti-

mation and structure learning. In the parameter estimation task, the qualitative

dependency structure is assumed to be known, so the input consists of the schema

and the training database as well as a qualitative dependency structure. The para-

meter learning task consists in filling in the parameters that define the conditional

probability distributions of the attributes. In the structure learning task, the goal is

to extract an entire PRM from the training database alone. This learning problem

is at least as hard as Bayesian Networks, thus, to keep the computational complex-

ity under control, a heuristic search is used. The search is based on a Bayesian score

defined as the probability that the structure is adequate, given the data. The search

is structured so that it first explores dependencies within entities, then between en-

tities that are directly correlated, then between entities that are two links apart and

so on. An improved version of PRMs is represented by SRMs (Statistical Relational

Models) [Get01a]. Differently from PRMs, SRMs have a different semantics and are

able to capture tuple frequencies in the database.
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Taskar et al., in 2002 [TAK02] proposed Relational Markov networks (RMNs).

RMNs are a relational extension of discriminatively trained Markov networks. In

particular, RMNs compactly define a Markov network over a relational dataset. The

graphical structure of an RMN is based on the relational structure of the domain. In

this approach, the use of undirected graphical models avoids the difficulty of defin-

ing a coherent generative model for graph structures in directed models, increasing

in flexibility. The parameter estimation uses conjugate gradient combined with ap-

proximate probabilistic inference based on the belief propagation used in Bayesian

Networks. In RMNs, however, the structure of learning domain, determining which

direct interactions are explored, is prespecified by the relational template. This pre-

cludes the discovery of deeper and more complex regularities than other approaches.

Relational Bayesian Classifier (RBC) [NJG03] is a simple modification of the

naive Bayesian classifier that allows to deal with relational data. The approach

is based on the transformation of the original database schema in a single table

containing multisets (which is not in first normal form). The resulting table is used

in the classical naive Bayesian probability estimation. Multisets conditional proba-

bilities are estimated by simple approaches, namely “Average value”, “Independent

Value” and “Average Probability”. The “average value” estimator corresponds to

flattening the data by averaging. The “Independent Value” estimator provides to

duplicate instances assuming that each value of a multiset is independently drawn

from the same distribution. The “average probability” estimator uses probabilities

estimated with the previous estimator and computes the mean of the conditional

probabilities over the multiset. This approach, however, has a limited representation

power, in fact, it cannot represent more than two links apart.

Ngo and Haddawy proposed a language for representing context-sensitive proba-

bilistic knowledge and provided a declarative semantics for their Probabilistic Logic

Programs (PLPs) [NH97]. PLPs are a first order extension of Bayesian networks.

A similar approach has been proposed by Kersting and De Raedt who introduced

Bayesian logic programs [KD00]. Bayesian logic programs are a reformulation and a

simplification of probabilistic logic programs [NH97]. The added value in Bayesian

logic programs concernes the fact that they can serve as a kind of common kernel to

other approaches that combine first order logic with Bayesian networks (as PRMs

and PLPs) because they can essentially be used to represent the same knowledge.

Blockeel and De Raedt proposed the system TILDE (Top-Down induction of

first order decision trees) [BD98]. TILDE is an upgrade of a propositional decision

tree learner to first order logic. In particular, C4.5 [Qui86] for binary classification

is a special case of TILDE. TILDE is the result of a study that aimed to make use of

top down induction of decision trees in ILP. This study shows that first order logical

decision trees (induced by TILDE) are more expressive than the flat non-recursive

logic programs induced by typical ILP systems for classification tasks.

Neville and her colleagues proposed Relational Probability Trees (RPTs) [NJFH03].

RPTs extend standard probability estimation trees to a relational setting. The

proposed algorithm learns the structure and the parameters of an RPT by search-

ing over a space of relational features that use aggregate functions to dynamically

propositionalize relational data and create binary splits.
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Pompe and Kononenko [PK95] proposed a method based on a two-step process.

The first step uses the ILP-R system [PK94] to learn a hypothesis in the form of a

set of first-order rules and then, in the second step, the rules are probabilistically

analyzed. During the classification phase, the conditional probability distributions

of individual rules are combined naively according to the naïve Bayesian formula.

Flach and Lachiche proposed a similar two-step method, however, unlike the

previous one, there is no learning of first-order rules in the first step. Alternatively,

a set of patterns (first-order conditions) is generated that are used afterwards as

attributes in a classical attribute-value naive Bayesian classifier [FL04]. 1BC, the

system implementing this method, views individuals as structured objects and dis-

tinguishes between structural predicates referring to parts of individuals (e.g. atoms

within molecules), and properties applying to the individual or one or several of its

parts (e.g. a bond between two atoms). An elementary first-order feature consists

of zero or more structural predicates and one property.

An evolution of 1BC is represented by the system 1BC2 [FL04] [LF03a], where no

preliminary generation of first-order conditions is present. Predicates whose proba-

bilities have to be estimated are dynamically defined on the basis of the individual

to classify. Therefore, this is a form of lazy learning, which defers processing of its

inputs (i.e., the estimation of the posterior probability according to the Bayesian

statistical framework) until it receives requests for information (the class of the

individual). Computed probabilities are discarded at the end of the classification

process. Probability estimates are recursively computed.

Popescul et al. 2003 proposed Structural Logistic Regression. In partic-

ular, their approach integrates classical logistic regression (See section 2.1.3) with

feature generation from relational data. The feature generation process is defined

as the search in the space of relational database queries. The search is based on a

top-down approach that applies refinement operators. The search is performed by

means of a breadth-first algorithm and is guided by heuristics based on statistical

criteria. In refinements of queries, cyclic paths are not supported and aggregating

operators are also used. The approach has been used in link prediction. An in-

teresting aspect of such a method is that it provides a general framework in which

different continuous outcome methods can be included (For example, Poisson re-

gression, linear regression etc.).

In the literature several multi-relational data mining approaches for regression

tasks have also been proposed. Some examples are: FORS [Kar95] [KB97], FFOIL

[Qui96], SRT [Kra96], S-CART [Kra99] [KW01a] and TILDE-RT [Blo98] and finally,

our proposal Mr-SMOTI [ACM03]. However, it is out of the scope of this thesis to

describe these approaches in depth.

3.3 A Multi Relational approach for Naive Bayesian

Classification: Mr-SBC

In classical classification stetting, data are generated independently and with an

identical and unknown distribution P on some domain X and are associated with
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a value in some domain Y according to an unknown function g. The domain of g is

spanned by m independent (or predictor) random variables Xi (both numerical and

categorical), that is X = X1×X2× · · · ×Xm , the goal is to predict the dependent

(or response or targer) symbolic variable Y (Y = C1, C2, . . . , CL). An inductive

learning algorithm takes a training sample S = {(x, y) ∈ X × Y |y = g(x)} as input

and returns a function f which is hopefully close to g on the domain X.

According to section 2.2, a well-known solution to classification is represented

by the Naive Bayesian Classifiers, which aim to classify any x ∈ X is the class

maximizing the posterior probability P (Ci|x) that the observation x is of class Ci,

that is:

f(x) = argmaxi P (Y = Ci|X1 = x1, X2 = x2, ...Xm = xm)

i = 1..L

By applying the Bayes theorem, P (Ci|x) can be reformulated as follows:

P (Y = Ci|X1 = x1, X2 = x2, ...Xm = xm) =

P (X1 = x1, X2 = x2, ...Xm = xm|Y = Ci)P (Y = Ci)
∑L

j=1 P (X1 = x1, X2 = x2, ...Xm = xm|Y = Cj)P (Y = Cj)

where the term P (x|Ci) is in turn estimated by means of the naive Bayes as-

sumption:

P (X1 = x1, X2 = x2, ...Xm = xm|Y = Ci) =
m
∏

j=1

P (X1 = x1|Y = Ci) (3.1)

Thus, the discriminant function is:

f(x) = argmaxi P (Y = Ci)
m
∏

j=1

P (X1 = x1|Y = Ci) (3.2)

We already discussed this assumption in section 2.2.3 and, citing some seminal

works, we observed that, even in the case that the independence assumption is

violated by a wide margin, the naive Bayesian classifier can give good results [DP97].

In this chapter, we present a new approach to the problem of learning classifiers

from relational data. In particular, we intend to extend the naive Bayes classifier to

the case of relational data. Our proposal is based on the induction of a set of first-

order classification rules in the context of naive Bayesian classification. Studies

on first-order naive Bayes classifiers have already been reported in the literature

(see section 3.2). In particular, Pompe and Kononenko [PK95] proposed their own

method and Flach and Lachiche [FL04] proposed two methods: 1BC and 1BC2.

An important aspect of both Pompe and Kononenko’s approach and 1BC, is that

they keep the phases of first-order rules/conditions generation and of probability

estimation separate. In particular, Pompe and Kononenko use ILP-R to induce

first-order rules [PK94], while 1BC uses TERTIUS [FL00] to generate first order
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features. Then, the probabilities are computed for each first-order rule or feature.

In the classification phase, the two approaches are similar to a multiple classifier

because they combine the results of two algorithms. However, most first-order

features or rules share some literals and this approach takes into account the related

probabilities more than once. To overcome this problem it is necessary to rely on

an integrated approach, so that the computation of probabilities on shared literals

can be separated from the computation of probabilities on the remaining literals.

Systems implementing one of the three approaches above work on a set of main-

memory Prolog facts. In real-world applications, where facts correspond to tuples

stored on relational databases, some pre-processing is required in order to trans-

form tuples into facts. However, this has some disadvantages. First, only part of

the original hypothesis space implicitly defined by foreign key constraints can be

represented after some pre-processing. Second, much of the pre-processing may be

unnecessary, since a part of the hypothesis described by Prolog facts space may

never be explored, perhaps because of early pruning. Third, in applications where

data can frequently change, pre-processing has to be frequently repeated. Finally,

database schemas provide the learning system free of charge with useful knowledge

of data model that can help to guide the search process. This is an alternative to

asking the users to specify a language bias, such as in 1BC or 1BC2.

A different approach has been proposed by Getoor [Get01a] where the Statistical

Relational Models (SRM) (see section 3.2) are learned taking advantage of the

tight integration with a database. However, SRMs are models based on Bayesian

Networks. The main difference is that the input of a SRM learner is both the

relational schema of the database and the tuples of the tables in the relational

schema.

In this chapter the system Mr-SBC (Multi-Relational Structural Bayesian Clas-

sifier) [CAM03] is presented. It implements a new learning algorithm based on an

integrated approach of first-order classification rules with naive Bayesian classifica-

tion, in order to separate the computation of probabilities of shared literals from

the computation of probabilities for the remaining literals. Moreover, Mr-SBC is

tightly integrated with a relational database as in the work by Getoor, and handles

categorical as well as numerical data through a discretization method.

In the next subsection the problem is introduced and defined. The induction

of first-order classification rules is presented in the following subsection, afterwards

the discretization method is explained and the classification model is illustrated.

Finally, experimental results are reported in section 4.1, in the context of document

engineering and in section 5.1 in other application domains.

3.3.1 Formal Definition of the problem

In traditional classification systems that operate on a single relational table, an

observation (or individual) is represented as a tuple of the relational table. Con-

versely, in Mr-SBC, which induces first-order classifiers from data stored in a set

T = T0, T1, . . . , Th of tables of a relational database, an individual is a tuple t of a

target relation TR joined with all the tuples in T which are related to t following a
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Figure 3.2: An example of a relational representation of training data of the Mutagenesis database

foreign key path. Formally, a foreign key path is defined as follows:

Definition 3.1 A foreign key path is an ordered sequence of tables ϑ = (Ti1 , Ti2 , . . . , Tis
),

where

• ∀j = 1, ..., s, Tij
∈ T

• ∀j = 1, ..., s− 1, Tij+1
has a foreign key to the table Tij

In Figure 3.2 an example of foreign key paths is reported. In this case, S=

{MOLECULE, ATOM, BOND} and the foreign keys are: A_M_FK, B_M_FK,

A_A_FK1, A_A_FK2. If the target relation T is MOLECULE then five foreign

key paths exists. They are:

• (MOLECULE)

• (MOLECULE, ATOM)

• (MOLECULE, BOND)

• (MOLECULE, ATOM, BOND)

• (MOLECULE, ATOM, BOND)

The last two are equal because the bond table has two foreign keys referencing the

table atom.

A formal definition of the learning problem solved by MR-SBC is the following:

Given:

• A training set represented by means of h relational tables T = T0, T1, . . . , Th

of a relational database D.

• A set of primary key constraints on tables in T .

• A set of foreign key constraints on tables in T .

• A target relation TR(x1, . . . , xn) ∈ T
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• A target discrete attribute y in TR, different from the primary key of TR.

Find:

A naive Bayesian classifier which predicts the value of y for some individual

represented as a tuple in TR (with possibly UNKNOWN value for y) and related

tuples in T according to foreign key paths.

3.3.2 Generation of first-order rules

Let R′ be a set of first-order classification rules for the classes {C1, C2, . . . , CL}, and

I an individual to be classified and defined as above. The individual can be logically

represented as a set of ground facts, the only exception being the fact associated to

the target relation TR, where the argument corresponding to the target attribute

y is a variable Y . A rule Rj ∈ R′ covers I, if a substitution Θ exists, such that

RjΘ ⊆ IΘ. The application of the substitution to I is required to ground the only

variable Y in I to the same constant as that reported in Rj for the target attribute.

Let R be the subset of rules in R′ that cover I, that is R = {Rj ∈ R
′|Rj covers I}.

The first-order naive Bayes classifier for the individual I, f(I), is defined as follows:

f(I) = argmaxiP (Ci|R) = argmaxi
P (Ci)P (R|Ci)

P (R)
(3.3)

The value P (Ci) is the prior probability of the class Ci. Since P (R) is indepen-

dent of the class Ci, it does not affect f(I), that is,

f(I) = argmaxi P (Ci)P (R|Ci) (3.4)

The computation of P (R|Ci) depends on the structure of R. Therefore, it is

important to clarify how first-order rules are built in order to associate them with a

probability measure. As already pointed out, Pompe and Kononenko use the first-

order learning system ILP-R to induce the set of rules R′. This approach is very

expensive and does not take into account the bias automatically determined by the

constraints in the database. On the other hand, Flach and Lachiche use Tertius to

determine the structure of first-order features on the basis of the structure of the

individuals. The system Tertius deals with learning first-order logic rules from data

lacking an explicit classification predicate. Consequently, the learned rules are not

restricted to predicate definitions as in supervised inductive logic programming. Our

solution is similar to that proposed by Flach since the structure of classification rules

is determined on the basis of the structure of the individuals. The main difference,

in the construction of rules, is that the classification predicate is considered.

All predicates in classification rules generated by Mr-SBC are binary and can

be of two different types.

Definition 3.2 A binary predicate p is a structural predicate associated to a

table Ti ∈ T if a foreign key FK in Ti exists that references a table Ti1 ∈ T .

The first argument of p represents the primary key of Ti1 and the second argument

represents the primary key of Ti.



Naive Bayesian Multi-Relational Classification 55

Definition 3.3 A binary predicate p is a property predicate associated to a table

Ti ∈ S, if the first argument of p represents the primary key of Ti and the second

argument represents another attribute in Ti which is neither the primary key of Ti

nor a foreign key in Ti.

Definition 3.4 A first order classification rule associated to the foreign key path ϑ

is a clause in the form:

p0(A1, y) : −p1(A1, A2), p2(A2, A3), . . . , ps−1(As−1, As), ps(As, c)

. where

1. p0 is a property predicate associated to the target table TR and to the target

attribute y.

2. ϑ = (Ti1 , Ti2 , ..., Tis
) is a foreign key path such that for each k = 1, ..., s − 1,

pk is a structural predicate associated to the table Tik

3. ps is a property predicate associated to the table Tis
.

An example of a first-order rule is the following:

molecule_Label(A, active) : −molecule_Atom(A,B), atom_Type(B,′ [22..27]′).

Mr-SBC searches all possible classification rules by means of a breadth-first

strategy and iterates over some refining steps. A refining step is biased by the

possible foreign key paths and consists of the addition of a new literal, the unification

of two variables and, in the case of a property predicate, in the instantiation of a

variable. The search strategy is biased by the structure of the database because

each refining step is made only if the generated first-order classification rule can be

associated to a foreign key path. However, the number of refinement steps is upper

bounded by a user-defined constant MAX_LEN_PATH.

3.3.3 Discretization

In Mr-SBC continuous attributes are handled through supervised discretization.

Supervised discretization methods utilize the information on the class labels of

individuals to partition a numerical interval into bins. The proposed algorithm

sorts the observed values of a continuous feature and attempts to greedily divide

the domain of the continuous variable into bins, such that each bin contains only

instances of one class. Since such a scheme could possibly lead to one bin for each

observed real value, the algorithm is constrained to merge bins in a second step.

Merging of two contiguous bins is performed when the increase of entropy is lower

than a user-defined threshold (MAX_GAIN). This method is a variant of the one-

step method 1RD by Holte [Hol93] for the induction of one-level decision trees, that

proved to work well with the Naive Bayes Classifier [DKS95]. It is also different

from the one-step method by Fayyad and Irani [FI94] that recursively splits the

initial interval according to the class information entropy measure until a stopping

criterion based on the Minimum Description Length (MDL) principle is verified.
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3.3.4 Computation of Probabilities

According to the naive Bayes assumption, the attributes are considered independent.

However, this assumption is clearly false for the attributes that are primary keys or

foreign keys. This means that the computation of P (R|Ci) in equation 3.4 depends

on the structures of rules in R. For instance, if R1 and R2 are two rules of class Ci,

that share the same structure and differ only for the property predicates in their

bodies

R1 : β1,0 : −β1,1, ..., β1,k1−1β1,k1

R2 : β2,0 : −β2,1, ..., β2,k1−1β2,k2

where

K1 = K2 and β1,1 = β2,1, β1,2 = β2,2, ..., β1,k1−1 = β2,k2−1

then

P (β1,K1
∩ β2,K2

|β1,0 ∩ (β1,1, ..., β1,K1−1) ∩ Ci) =

P (β1,K1
|β1,0∩ (β1,1, ..., β1,K1−1)∩Ci) ·P (β2,K2

|β1,0∩ (β1,1, ..., β1,K1−1)∩Ci)

According to this approach the conditional probability of the structure is com-

puted only once. This approach differs from that proposed in the works of Pompe

and Kononenko [PK95] and Flach and Lachiche [FL04] where the factorization

would multiply the structure probability twice.

By generalizing to a set of classification rules we have:

P (Ci)P (R|Ci) = P (Ci)P (structure)
∏

j

P (Rj |structure) (3.5)

where the term structure takes into account the class Ci and the structures of

the rules in R.

If the classification rule Rj ∈ R is in the form βj,0 : −βj,1, ..., βj,Kj−1, βj,Kj

where βj,0and βj,Kj
are property predicates and βj,1, βj,2, ..., βj,Kj−1 are structural

predicates, then:

P (Rj |structure) = P (βj,Kj
|βj,0, βj,1, ..., βj,Kj−1) = P (βj,Kj

|Ci, βj,1, ..., βj,Kj−1)

where Ci is the value of the target attribute in the head of the clause (βj,0). To

compute this probability, we use the Laplace estimation:

P (βj,Kj
|Ci, βj,1, ..., βi,Kj−1) =

#(βj,Kj
, Ci, βj,1, ..., βj,Kj−1) + 1

#(Ci, βj,1, ..., βj,Kj−1) + F

where F is the number of possible values of the attribute to which the βj,Kj
property

predicate is associated. Laplace’s estimate is used in order to avoid null probabilities

in the equation 3.5. In practice, the value at the nominator is the number of

individuals which satisfy that conjunction βj,Kj
, Ci, βj,1, ..., βj,Kj−1, in other words,
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the number of individuals covered by the rule βj,0 : −βj,1, ..., βj,Kj−1, βj,Kj
. It is

determined by a “select count (*)” SQL instruction. The value of the denominator

is the number of individuals covered by the rule βj,0 : −βj,1, ..., βj,Kj−1.

The term P(structure) in the equation 3.5 is computed as follows:

Let B={(βj,1,βj,2,. . . ,βj,t)| j=1..s and t=1, ...,Kj − 1} the set of all distinct se-

quences of structural predicates in the rules of R. Then

P (structure) =
∏

seq∈B

P (seq) (3.6)

To compute P(seq) it is necessary to introduce the definition of the probability

JP that a join query is satisfied [Get01a]. Let ϑ=(Ti1 , Ti2 ,. . . , Tis
) be a Foreign

Key Path, then:

JP(ϑ )=JP(Ti1 , ...,Tis
) =

|./(Ti1
×...×Tis )|

| Ti1
|×...×|Tis |

where . / (Ti1 × ...× Tis
) is the result of the join between the tables Ti1 , ...,Tis

.

We must remember that each sequence seq is associated to a foreign key path

ϑ. If seq=(βj,1,βj,2, . . . ,βj,t) there are two possibilities: either a prefix of seq is in

B or not. By denoting as Tjh
the table related to βj,h, h=1,. . . , t, the probability

P(seq) can be recursively defined as follows:

P (seq) =







JP(Tj1
, ...,Tjt

) if seq has no prefix in B
JP(T

j1
,...,Tjt

)

P (seq′) if seq′ is the longest prefix of seq in B

This formulation is necessary in order to compute the formula 3.6 considering

both dependent and independent events. Since P(structure) takes into account the

class, P(seq) is computed separately for each class.

3.3.5 Learning Complexity

In order to evaluate the time complexity of the proposed algorithm, we first define

some useful variables. Let

• k be the number of tables that are related to another by means of a foreign

key.

• h be the number of attributes per table.

• n be the number of tuples in a table

• q be the number of different values per attribute

For simplicity, in this analysis we suppose that k, h, n and q are constant and do

not depend on the table. We are aware that this is a strong assumption, but in the

worst case analysis we can take the values of that variables such that the resulting

cost complexity function is an upper bound of the real one (e.g. we can assume
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that k is the maximum number of tables that are related to another by means of a

foreign key).

In the computation of P (structure), if we consider the worst case, that is, when

the all intermediate tables have no attributes and structural intermediate proba-

bilities have not been already computed before, we have that the time complexity

is:

• 0 for the target table

• k × join_complexity for the tables at distance 1 from the target table.

• k2 × join_complexity for the tables at distance 2 from the target table.

• ...

• ki × join_complexity for the tables at distance i from the target table.

In the worst case, a join among p tables, is computed in time np, thus the time

complexity is:

MAX_LEN_PATH
∑

i=1

ki · ni+1

this means that the complexity of computing P (structure) is

O(kMAX_LEN_PATH · nMAX_LEN_PATH+1) (3.7)

In the computation of
∏

j P (Rj |structure) we have:

• h · q for the target table

• h · q · k for the for the tables at distance 1 from the target table.

• h · q · k2 for the for the tables at distance 2 from the target table.

• ...

• h · q · ki for the for the tables at distance i from the target table.

The complexity of the computation of
∏

j P (Rj |structure) is:

O(h · q · kMAX_LEN_PATH) (3.8)

By summarizing and combining the two components, we have that the complexity

is:

O(h · q · kMAX_LEN_PATH · nMAX_LEN_PATH+1) (3.9)

This means that the complexity strongly depends on the MAX_LEN_PATH

constant. When the maximum number of tables involved in a foreign key path is
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three, the complexity is O(h · q · k2 ·n3), that is, quadratic in the number of foreign

keys between tables and cubic in the number of tuples composing each table.

However, this is the most pessimistic case and, in general, the complexity mainly

derives from queries similar to:

select count(*) from table1, table2 where table1.id=table2.id1 and...

where in the join, at least a primary key is involved. Such queries are efficiently man-

aged by DBMSs that automatically create indexes based on hash tables. Therefore,

the use of a DBMS strongly increases efficiency of the learning algorithm.

In the next section we propose to substitute the breadth-first strategy with a

search biased by association rules in order to strongly reduce the beam of the search.

3.4 Associative Classification in Multi-relational Data

Mining

Another form of structural learning is represented by the possibility to take into

account both the structure in the attribute domains and the structure implicitly

defined by relations between units of analysis and units of observation.

This problem is particularly salient in a particular branch of data mining, namely

Spatial Data Mining. In Spatial Data Mining, training data consists of multi-

ple target spatial objects (units of analysis), possibly spatially-related with other

non-target spatial objects (units of observation). The goal is to learn the concept

associated with each class on the basis of the interaction of two or more spatially-

referenced objects or space-dependent attributes, according to a particular spacing

or set of arrangements [Kop99a].

Indeed, mining classification models in spatial data mining presents two main

sources of complexity, that is, the implicit definition of spatial relations and the

granularity of the spatial objects. The former is due to the fact that the geomet-

rical representation (e.g. point, line, and region in a 2D context) and the relative

positioning of spatial objects with respect to some reference system, define implic-

itly spatial relations of different nature, such as directional or topological. Mod-

eling these spatial relations is a key challenge in classification problems that arise

in spatial domains [SSV+02]. Indeed, both the attribute values of the object to

be classified and the attribute values of spatially related objects may be relevant

for assigning an object to a class from a given set of classes. The second source of

complexity refers to the fact that spatial objects can be described at multiple levels

of granularity. For instance, UK census data can be geo-referenced with respect to

the hierarchy of areal objects:

ED (enumeration district) → Ward → District → Country

based on the inside relationship between locations. Therefore, some kind of taxo-

nomic knowledge of task-relevant geographic layers may also be taken into account
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to obtain descriptions at different granularity levels (multiple-level classification).

In this session we propose a classification method [CAM04] based on a multi-

relational approach that takes spatial relations into account. It can perform the

classification at different levels of granularity and takes advantage from domain

specific knowledge expressed in form of rules to support qualitative spatial reason-

ing. In this way, the proposed method can deal with both sources of complexity

presented above.

Differently from the approach proposed in section 2.4, here we do not only con-

sider the hierarchical structure in the domain of categories of the units of analysis,

but also the hierarchical nature of domains in units of observation. Furthermore,

differently from Mr-SBC (see section 3.3), where classification rules are extracted

by means of a breadth first strategy, in this section we propose to generate classi-

fication rules by means of a spatial association rule discovery system characterized

by the capability of generating association rules at multiple levels of granularity. As

in Mr-SBC, classification is based on the extension of the naive Bayesian classifier

to multi-relational data.

3.4.1 Associative Classification for Spatial Data Mining

The problem of classifying spatial objects has been investigated by some researchers.

Ester et al. [EKJ97] proposed a neighbourhood graph based extension of decision

trees that considers both non-spatial attributes of the classified objects and rela-

tions with neighbouring objects. However, the proposed method does not take into

account hierarchical relations defined on spatial objects as well as non-spatial at-

tributes (e.g. number of residents) of neighbouring objects. In contrast, Kopersky

[Kop99b] described an efficient method that classifies spatial objects by considering

both spatial and hierarchical relations between spatial objects and takes into ac-

count non-spatial attributes for neighbouring objects. However this method suffers

from severe limitations due to the restrictive representation formalism known as

single-table assumption (see section 3.1). More specifically, it is assumed that data

to be mined are represented in a single table of a relational database, such that

each row (or tuple) represents an independent unit of the sample population and

columns correspond to properties of units. This requires that non-spatial properties

of neighboring objects be represented in aggregated form causing a consequent loss

of information and a change in the units of analysis.

In [MEL+03], the authors proposed to exploit the expressive power of predicate

logic to represent both spatial relations and background knowledge, such as spatial

hierarchies. In addition the logical notions of generality order and of downward

refinement operator on the space of patterns may be profitably used to define both

the search space and the search strategy. For this purpose, the ILP system ATRE

[Mal03] has been integrated in the data mining server of a prototypical Geographical

Information System (GIS), named INGENS, which allows, among other things, to

mine classification rules for geographical objects stored in an object-oriented data-

base. Training is based on a set of examples and counterexamples of geographic

concepts of interest to the user (e.g., ravine or steep slopes). The first-order logic
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representation of the training examples is automatically extracted from maps, al-

though it is still controlled by the user who can select a suitable level of abstraction

and/or aggregation of data by means of a data mining query language [MAC03].

Similarly, the discovery of spatial association rules, that is, spatial and a-spatial

relationships among spatial objects, has been investigated both in propositional and

multi-relational setting. A spatial association rule is a rule of the form P → Q (s, c)

such that both P (body) and Q (head) are sets of literals, some of which refer to

spatial properties, and P ∩Q = φ. P ∪Q is named pattern. The support s estimates

the probability p(P ∪Q), while the confidence c estimates the probability p(Q|P ).

Koperski and Han [KH95] implemented the module Geo-associator of the spatial

data mining system GeoMiner that mines rules from data represented in a single

relation (table) of a relational database. In contrast, in [LM04], the authors pro-

posed an ILP approach to spatial association rules discovery. The algorithm SPADA

(Spatial Pattern Discovery Algorithm) reported in their work, allows the extraction

of multi-level spatial association rules, that is, association rules involving spatial

objects at different granularity levels. SPADA has been implemented as a module

of the system ARES (Association Rules Extractor from Spatial data) [ACL+03],

which also supports users in the complex processes of extracting spatial objects

from the spatial database, specifying the background knowledge on the application

domain and defining a search bias.

Despite the fact that spatial association rule mining is a descriptive task, while

classification of spatial objects is a predictive task, recent studies in Data Mining

and Machine Learning have investigated the opportunity of combining association

rules discovery and classification, by taking advantage of employing association rules

for classification purpose [DZWL99b] [BG03b]. This approach is named associative

classification [LHM98] and several advantages are reported in the literature for this

approach. First, differently from most of classifiers as decision trees, association

rules consider the simultaneous correspondence of values of different attributes,

hence allowing to achieve better accuracy [BG03b]. Second, it makes association

rule mining techniques applicable to classification tasks. Third, the user can decide

to mine both association rules and a classification model in the same data min-

ing process [LHM98]. Fourth, the associative classification approach helps to solve

understandability problems [CM93b] [PMS97b] that may occur with some classifi-

cation methods. Indeed, many rules produced by standard classification systems are

difficult to understand because these systems often use only domain independent

biases and heuristics, which may not fulfil user’s expectation. With the associative

classification approach, the problem of finding understandable rules is reduced to

a post-processing task [LHM98]; filtering based on user-defined rule template may

help in extracting understandable rules.

Although associative classification methods present several interesting aspects,

they also suffer from some limitations. First, most of methods reported in the

literature work under the single-table assumption, which is a strong limitation in

those application domains characterized by a spatial dimension. Second, they have

a categorical output which convey no information on the potential uncertainty in

classification. Small changes in the attribute values of an object being classified
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may result in sudden and inappropriate changes to the assigned class. Missing or

imprecise information may prevent a new object from being classified at all. In

alternative, to overcome these deficiencies, we propose to use a statistical classi-

fier that returns, in addition to the result of the classification, the confidence of

the classification. This is an important aspect because of the increasing attention

on the ROC curve analysis [FF03] that defines an evaluation measure to take into

account the confidence of the classification. Third, reported methods require ad-

ditional heuristics to identify the most effective rule at classifying a new object.

Alternatively, in the proposed approach, the evaluation of the class is based on the

computation of probabilities taking into account all the rules.

3.4.2 Multi-level spatial association rules

In [ACL+03] the problem of mining spatial association rules has been formalized as

follows:

Given

• a spatial database (SDB),

• a set S of reference objects tagged with a class label cj ∈ C1, C2, ..., CL,

• some sets Rk, 1 ≤ k ≤ m, of task-relevant objects,

• a background knowledge BK including some spatial hierarchies Hk on objects

in Rk,

• M granularity levels in the descriptions (1 is the highest whileM is the lowest),

• a set of granularity assignments ψk which associate each object in Hk with a

granularity level,

• a couple of thresholds minsup[l] and minconf [l] for each granularity level,

• a language bias LB that constrains the search space;

Find strong multi-level spatial association rules, that is, association rules involving

spatial objects at different granularity levels.

The reference objects are the main subject of the description (units of analysis),

that is, the observation units, while the task relevant objects are spatial objects

that are relevant for the task in hand and are spatially related to the former (units

of oservation). The sets Rk typically correspond to layers of the spatial database,

while hierarchies Hk define is-a (i.e., taxonomical) relations of spatial objects in the

same layer (e.g. river is-a water body). Objects of each hierarchy are mapped to

one or more of the M user-defined description granularity levels in order to deal

uniformly with several hierarchies at once. Both frequency of patterns and strength

of rules depend on the granularity level l at which patterns/rules describe data.

Therefore, a pattern P (s%) at level l is frequent if s ≥ minsup[l] and all ancestors

of P with respect to Hk are frequent at their corresponding levels. An association

rule Q → R(s%, c%) at level l is strong if the pattern Q ∪ R (s%) is frequent and

c ≥ minconf [l].
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The problem above is solved by the algorithm SPADA [LM04] that operates in

three steps for each granularity level:

1. pattern generation;

2. pattern evaluation;

3. rule generation and evaluation.

SPADA takes advantage of statistics computed at granularity level l when com-

puting the supports of patterns at granularity level l + 1.

In the system ARES 1, SPADA has been loosely coupled with a spatial database,

since data stored in the SDB Oracle Spatial are pre-processed and then represented

in a deductive database (DDB). For instance, spatial intersection between two ob-

jects X and Y is represented by the extensional predicate crosses(X,Y). In this way,

the expressive power of first-order logic in databases is exploited to specify both the

background knowledge BK, such as spatial hierarchies and domain specific knowl-

edge, and the language bias LB. Spatial hierarchies allow to face with one of the

main issues of spatial data mining, that is, the representation and management of

spatial objects at different levels of granularity, while the domain specific knowl-

edge stored as a set of rules in the intensional part of the DDB supports qualitative

spatial reasoning. On the other hand, the LB is relevant to allow the user to spec-

ify his/her bias for interesting solutions, and then to exploit this bias to improve

both the efficiency of the mining process and the quality of the discovered rules. In

SPADA, the language bias is expressed as a set of constraint specifications for either

patterns or association rules. Pattern constrains allow to specify a literal or a set

of literals that should occur one or more times in discovered patterns. During the

rule generation phase, patterns that do not satisfy a pattern constraint are filtered

out. Similarly, rule constraints are used to specify literals that should occur in the

head or body of discovered rules.

In a more recent release of SPADA (3.1) a new rule constraint has been intro-

duced in order to specify the maximum number of literals that should occur in the

head of a rule. In this way users may define the head structure of a rule requiring

the presence of exactly a specific literal and nothing more. In the case this literal

describes the class label, multi-level spatial association rules discovered by ARES

may be used for classification purposed.

3.4.3 Multi-level spatial association rules mining

We denote the DDB in hand D(S) to mean that it is obtained by adding the data

extracted from SDB, regarding the set of reference objects S, to the previously

supplied BK. The ground facts2 in D(S) can be grouped into distinct subsets: each

group, uniquely identified by the corresponding reference object s ∈ S, is called

spatial observation and denoted O[s]. We define the set:

R(s) = {ri| ∃k : ri ∈ Rk and a ground fact α(s, ri) exists in D(S)}

1http://www.di.uniba.it/∼malerba/software/ARES/index.htm
2In this work we assume that ground facts concern either taxonomic “is_a” relationships or

binary spatial relationships α(s, r) or object properties.
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as the set of task-relevant objects spatially related to s. The set O[s] is given by

O[s] = O[s|R(s)] ∪
⋃

ri∈R[s]
O[ri|S],

where:

• O[s|R(s)] contains properties of s and spatial relations between s and ri

• O[ri|S] contains properties of ri and spatial relations between ri and some

s′ ∈ S.

In an extreme case, O[s] can coincide with D(S). This is the case in which s is

spatially related to all task-relevant objects. The unique reference object associated

to a spatial observation allows us to define the support and the confidence of a spatial

association rule (see the definition of spatial association rule below). Note that the

notion of spatial observation in SPADA adapts the notion of interpretation, which

is common to many relational data mining systems [DL01], to the case of spatial

databases.

Let A={a1, a2, . . . , at} be a set of Datalog atoms whose terms are either vari-

ables or constants [CGT89]. Predicate symbols used for A are all those permitted

by the user-specified declarative bias, while the constants are only those defined in

D(S). The atom denoting the reference objects is called key atom. Conjunctions

of atoms on A are called atomsets [DR97] like the itemsets in classical association

rules. In our framework, a language of patterns L[l] at the granularity level l is a set

of well-formed atomsets generated on A. Necessary conditions for an atomset P to

be in L[l] are the presence of the key atom, the presence of taxonomic “is_a” atoms

exclusively at the granularity level l, the linkedness [Hel87], and safety [CGT89].

In particular, the last property guarantees the correct evaluation of patterns when

the handling of negation is required. To a pattern P we assign an existentially

quantified conjunctive formula eqc(P ) obtained by turning P into a Datalog query.

Definition 3.5 A pattern P covers an observation O[s] if eqc(P ) is true in O[s]∪BK.

Definition 3.6 Let O be the set of spatial observations in D(S) and OP denote

the subset of O containing the spatial observations covered by the pattern P . The

support of P is defined as σ(P ) = |OP | / |O|.

Definition 3.7 A spatial association rule in D(S) at the granularity level l is an

implication of the form

P → Q (s%, c%)

where P ∪ Q ∈ L[l], P ∩ Q = ∅, P includes the key atom and at least one spatial

relationship is in P ∪ Q. The percentages s% and c% are respectively called the

support and the confidence of the rule, meaning that s% of spatial observations in

D(S) is covered by P ∪Q and c% of spatial observations in D(S) that is covered by

P is also covered by P ∪Q. The support and the confidence of a spatial association

rule P → Q are given by s = σ(P ∪Q) and c = ϕ(Q|P ) = σ(P ∪Q) / σ(P ).
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In multi-level association rule mining, an ancestor relation between two patterns

at different granularity levels P∈L[l] and P ′ ∈ L[l′], l<l′, exists if and only if P ′can

be obtained from P by replacing each spatial object h ∈ Hk at granularity level

l = ψk(h) with a spatial object h′ < h inHk, which is associated with the granularity

level l′ = ψk(h′).

The frequency of a pattern depends on the granularity level of task-relevant

spatial objects.

Definition 3.8 Let minsup[l] and minconf[l] be two thresholds setting the minimum

support and the minimum confidence respectively at granularity level l. A pattern P

is large (or frequent) at level l if σ(P ) ≥minsup[l] and all ancestors of P with respect

to the hierarchies Hk are large at their corresponding levels. The confidence of a

spatial association rule P → Q is high at level l if ϕ(Q|P ) ≥minconf[l]. A spatial

association rule P → Q is strong at level l if P ∪ Q is large and the confidence is

high at level l.

The definition of the strong spatial association rule given above suggests that the

generation of association rules at different granularity levels should proceed from

the most general towards the most specific granularity levels. This is the approach

followed in the ILP system SPADA, which has been developed for mining multi-level

association rules in spatial databases. In the following subsection we explain how

SPADA performs its search in the space of patterns at a given granularity level l,

that is, in the space of patterns defined by the language L[l] (intra-level search). In

the subsequent subsection we illustrates how SPADA takes advantage of statistics

computed at a level l when it searches in the ‘more specific’ space at level l+1

(inter-level search).

Intra-level search of the pattern space

Given a granularity level l and a pattern language L[l], the task of mining spatial

association rules can be split into two sub-subtasks:

1. Find large (or frequent) spatial patterns in the space defined by L[l];

2. Generate highly-confident spatial association rules at level l.

Algorithm design for frequent pattern discovery (step 1) has turned out to be

a popular topic in data mining. The blueprint for most algorithms proposed in

the literature is the levelwise method [MT97], which is based on a breadth-first

search in the lattice spanned by a generality order ≥ between patterns. Given two

patterns P1 and P2, we write P1 ≥ P2 to denote that P1 is more general than P2

or equivalently that P2 is more specific than P1. The space is searched one level at a

time, starting from the most general patterns and iterating between the candidate

generation and candidate evaluation phases. The intra-level search algorithm of

SPADA implements the afore-mentioned levelwise method (see Algorithm 3.1).

Algorithm 3.1 Intra-level search implemented in SPADA

Find large 1-atomsets at level l
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Cycle on the depth (k > 1) of search in the pattern space

1. Generate candidate k-atomsets at level l from large (k-1)-atomsets by

applying the refinement operator ρ

2. Prune candidates that θ-subsume infrequent patterns

3. Prune candidates equivalent under θ-subsumption

4. Evaluate candidates and generate large

k-atomsets at level l from candidate k-atomsets

Until the user-defined maximum depth

The pattern space is structured according to the θ-subsumption [Plo70]. Many

ILP systems adopt θ-subsumption as the generality order for clause spaces. In this

context we need to adapt the framework to the case of atomsets. More precisely,

the restriction of θ-subsumption to Datalog queries (i.e. existentially quantified

conjunctions of Datalog atoms) is of particular interest.

Definition 3.9 Let Q1 and Q2 be two queries. Then Q1 θ-subsumes Q2 if and only

if there exists a substitution θ such that Q2θ ⊆ Q1.

We can now introduce the generality order adopted in SPADA.

Definition 3.10 Let P1 and P2 be two patterns. Then P1 is more general than P2

under θ -subsumption, denoted as P1 ≥θ P2, if and only if P2 θ-subsumes P1.

θ−subsumption is a quasi-ordering, since it satisfies the reflexivity and transitivity

property but not the anti-symmetric property. The quasi-ordered set spanned by

≥θ can be searched by a refinement operator, namely a function that computes a

set of refinements of a pattern.

Definition 3.11 Let 〈G, ≥θ〉 be a pattern space ordered according to ≥θ. A down-

ward refinement operator under θ-subsumption is a function ρ such that

ρ(P ) ⊆{Q | P ≥θ Q}.

In SPADA, the following operator ρ’ is used.

Definition 3.12 Let P be a pattern in L[l]. Then ρ’(P ) = { P ∧ ai | ai is an

atom in L[l] }.

It can be easily proven that ρ’(P ) is a downward refinement operator under θ-

subsumption, that is P ≥θ Q for all Q ∈ ρ′(P ). Indeed, Q = P ∧ai for an atom ai

in L[l]. By adopting the set notation we can also write Q= P∪{ai}. The inequality

P ≥θ P∪{ai} holds if P ∪{ai} θ-subsumes P , that is, a substitution θ exists

such that Pθ ⊆ P∪{ai}. Obviously, θ is the empty substitution. The refinement

operator ρ’(P ) allows the generation of k-atomsets, that is atomsets of k literals,

from (k-1)-atomsets.

It is noteworthy that ≥θ on patterns represented as Datalog queries is monotone

with respect to support.
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Property of θ-subsumption monotony Let 〈G, ≥θ〉 be a pattern space or-

dered according to ≥θ. For any two patterns P1 and P2 such that P1 ≥θ P2 we

have that σ(P1) ≥ σ(P2).

Therefore, the refinement operator ρ drives the search towards patterns with

decreasing support. If a pattern P is infrequent, all its refinements in ρ’(P ) are

also infrequent. This is the first-order counterpart of one of the properties holding

in the family of the Apriori-like algorithms [AS94], on which the pruning criterion

is based. Indeed, the generation of patterns obtained as refinements of infrequent

patterns can be avoided, since those patterns have certainly a support lower than

the user-defined threshold. This is what happens at step 1) in the algorithm 3.1.

Given a frequent pattern P of k-1 atoms, it may happen that some pattern

Q∈ ρ’(P ) θ-subsumes another infrequent pattern P ’ of k’ atoms, with k’<k. This

means that Q is certainly infrequent because of the above monotony property, and

its evaluation can be avoided (step 2 in the algorithm 3.1). Additional candidates

not worth being evaluated are those equivalent under θ-subsumption to some other

candidate (step 3 in the algorithm 3.1).

Finally, unpruned candidates are evaluated to check whether they are large

(i.e., frequent) or not (candidate evaluation phase, step 4). The evaluation of each

generated pattern P requires a θ-subsumption test against some spatial observations

O[s]. Indeed, if O[s]∪BK θ-subsumes P , then eqc(P ) is true in O[s]∪BK, that is

P covers O[s], according to the definition given in the previous section. Actually,

in SPADA the test of a pattern Q∈ ρ’(P ) is performed only against those spatial

observations covered by P , since, if a spatial observation O[s] is not covered by P , it

cannot be covered by Q without violating the transitive property of θ-subsumption.

Inter-level search of the pattern space

As specified in Section 3.4.3, to be able to define a pattern P as large (or frequent)

at level l two conditions must be satisfied, namely

i) σ(P)≥minsup[l] and

ii) all ancestors of P with respect to the hierarchies Hk are large at their corre-

sponding levels.

The second condition suggests an additional pruning strategy. Let P and Q be

two frequent patterns at levels l and l+1 respectively, such that P is an ancestor of

Q. Suppose that P has been refined into the infrequent pattern P ’ while searching

in the pattern space at level l. When the space of patterns at level l+1 is explored

and Q is refined, it is possible to generate a candidate pattern Q’ whose ancestor is

P ’. In this case, Q’ can be safely pruned, since it cannot be a large pattern without

violating condition ii). In order to support this additional pruning strategy, the

refinement operator implemented in SPADA uses a graph of backward pointers to

be updated while searching. Backward pointers keep track of both intra-space and

inter-space search stages. Fig. 3.3 gives an example of such a graph, where nodes,
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Figure 3.3: Graph of intra-space and inter-space backward pointers.

dotted edges and dashed edges represent patterns, intra-space generality and inter-

space parenthood, respectively. The effectiveness of this computational solution is

illustrated in [LM02].

From patterns to association rules

Once large patterns have been generated, it is possible to generate strong spatial

association rules. For each pattern P , SPADA generates antecedents suitable for

rules being derived from P . The consequent corresponding to an antecedent is

simply obtained as a complement of atoms in P and not in the antecedent. It

is noteworthy that the generation of “good” rule antecedents is crucial. A naïve

implementation would consist of a combinatorial computation step followed by a

pruning step. The former would output combinations of atoms occurring in P ,

while the latter would discard those that are not well-formed, e.g. without the key

atom in the antecedent or not respecting the constraints of linkedness and safety.

Backward pointers can also be exploited to speed up the generation of association

rules instead. In particular, SPADA recursively retrieves the predecessors of a

frequent pattern and returns only those yielding strong rules. Backward pointers

are profitably exploited in the pattern generation phase in order to prevent the

generation of some infrequent patterns [LM02]. In a more recent release of SPADA

(3.0), backward pointers are also exploited in the pattern evaluation phase. Indeed,

by associating each pattern with the list of support objects, it is possible to perform

the evaluation of each pattern only on the support objects of its intra-space parent

and not on the whole set S of reference objects. An additional caching technique

compensates the overhead in looking for the parent of each pattern, since it has a

cost which increases with the number of stored patterns.

Filtering patterns and association rules

The efficiency improvements reported above are all based on the monotonicity prop-

erty of the generality order defined for spatial patterns with respect to the support
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of the patterns themselves. This is a nice example of an “intelligent” exploitation of

general properties to prune the search space and to reduce the number of expensive

tests. However, this uninformative approach does not take into account user prefer-

ences and expectations. In real-world applications, such as the characterization of

the area crossed by a motorway [MLAS02], a large number of spatial patterns can

be generated even for a few hundred spatial objects, most of them proving useless

for the application at hand. Therefore, it is important to allow the user to specify

his/her bias for some solutions, and then to exploit this bias to improve both the

efficiency of the system and the quality of the discovered rules with respect to user’s

interests. In SPADA, the bias is expressed as a set of constraint specifications for

either patterns or association rules. Altogether, they define the language bias (LB)

reported in the formulation of the spatial association rule mining problem.

For patterns, the user can specify the constraint pattern_constraint(AtomList,

Min_occur) where AtomList is a list of atoms (for atomic constraints) or a list

of atom lists (for conjunctive constraints), while Min_occur is a positive number

which specifies the minimum number of constraints in the list that must be satisfied.

For instance, the following pattern constraint:

pattern_constraint([not_crossed_by_green_area(_,_),

crossed_by_urban_area(_,_)],1).

specifies that at least one of the (spatial) predicates not_crossed_by_green_area/2

and crossed_by_urban_area/2 must occur in the patterns filtered by SPADA, while

the following pattern constraint:

pattern_constraint([ [not_crossed_by_green_area(_,_),

crossed_by_urban_area(_,_)] , [crossed_only_by_road(_)] ], 1).

specifies that either the (spatial) predicates not_crossed_by_green_area/2 and

crossed_by_urban_area/2 or the predicate crossed_only_by_road/1 must occur

in the patterns filtered by SPADA. It is noteworthy that this simple specification

allows users to define both conjunctive and disjunctive constraints.

Patterns that do not satisfy a pattern constraint are filtered out during the

rule generation phase. This means that they are generated and evaluated any-

way. This late exploitation of the constraint is due to the fact that if a pat-

tern P does not satisfy a constraint (e.g. because of the lack of the predicate

not_crossed_by_green_area/2 ), it is still possible that descendants of P (i.e., more

specific patterns) do satisfy it. Therefore, pattern constraints do not prune the pat-

tern space but improve the efficiency of the mining process since they prevent the

generation of useless rules, and hence their evaluation.

A further pattern constraint takes into account the typing mechanism of the

variables to be included in the rules. A variable X is (un-)typed when it (does

not) appear as first argument of a is-a/2 atom in the rule. In some applications,

the occurrence of untyped variables in a rule is undesirable; therefore the user can

specify the constraint max_rules_untyped_vars(n), where n denotes the maximum
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number of un-typed variables in the rules being generated. As in the previous case

the specification of this constraint affects the rule generation phase.

For spatial association rules the user can define constraints either on the an-

tecedent or on the consequent by specifying one of the following facts in LB:

body_constraint(AtomList, Min_occur). head_constraint(AtomList, Min_occur).

where AtomList and Min_occur have the same meaning as in the pattern constraint.

For instance, the constraint head_constraint ([high_mortality(_)], 1) specifies that

the predicate high_mortality/1 must occur in the head of the rules to be discovered

by SPADA. Since association rules discovered by SPADA can have several conditions

in the head, additional predicates are also allowed in the head.

As for pattern constraints, head and body constraints do affect the rule gen-

eration phase. The main difference is that these constraints do not prevent the

generation of candidate rules but only the evaluation of their confidence.

Discretizing Numerical Features

Since SPADA, like many other association rule mining algorithms, cannot process

numerical data properly, it is necessary to perform a discretization of numerical

features with a relatively large domain. For this purpose we have implemented

the relative unsupervised discretization algorithm RUDE [LW00], which discretizes

an attribute of a relational database in the context defined by other attributes.

Formally, the problem can be stated as follows:

Given

• a database table T consisting of n tuples,

• a continuous attribute in T to be discretized (target attribute),

• a set of continuous attributes (source attributes) in T that define the context

for the discretization of the target attribute,

• a relative tolerance between split points (minimal difference) s

Find a set of split points that minimize loss of correlation between attributes.

The algorithm RUDE is based on two general procedures: a prediscretization

procedure, used to pre-process the source attributes, and a clustering procedure,

used to group target attribute values corresponding to some source attribute value

or interval. Therefore, several different “specializations” of the RUDE algorithm can

be generated by varying the two procedures. The implementation of RUDE in ARES

supports two prediscretization algorithms, namely equal width and equal frequency

and two clustering algorithms, namely EM [WF99] and AutoClass [CS96]. RUDE

proves to be suitable for dealing with numerical data in the context of association

rule mining. An experimental study not reported in this thesis showed that the best

performance can be obtained by using the equal width prediscretization procedure

and the Autoclass algorithm.
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3.4.4 Classification using Discovered association rules

Once a set of rules has been extracted for each level, the construction of the naive

Bayesian classifier mainly follows the Mr-SBC approach (see section 3.3), which aims

to classify any target object o∈S by maximizing the posterior probability P (Ci|o)

that o is of class Ci, that is:

class(o)= arg max iP (Ci|o)

By applying the Bayes theorem, P (Ci|o) can be reformulated as follows:

P (Ci|o) =
P (Ci)P (o|Ci)

P (o)
(3.10)

The term P(o|C i) is estimated by means of the naive Bayes assumption:

P(o|C i) = P (o1, o2,. . . ,om|C i) = P (oi|C i) ×P(o2|C i) ×. . .×P(om|C i)

where o1, o2,. . . ,om represent the set of the properties, different from the class, used

to describe the object.

In 3.10 the value P (Ci) is the prior probability of the class Ci. Since P (o)is

independent of the class Ci, it does not affect f(o), that is,

class(o)= arg maxi P (Ci)P (o|Ci) (3.11)

In order to take into account the relations of the target object, we consider the

set of rules to guide the computation of P(o|C i).

Given the object o∈S, we consider the subset of the extracted rules that can be

used to classify o. More formally, we consider the subset R of rules whose body is

satisfied by the object to be classified both in terms of the values of properties of

involved spatial objects and in terms of the spatial relations between objects. For

example, if S is the set of wards in a district, a ward w satisfies the rule:

mortality_rate(A, low) ← wards_relatedTo_waters(A, B),

waters_typewater(B, river), cars_per_person(A, high)

when w is spatially related (intersects) to a river and is characterized by a high

average number of cars per person.

We use R to estimate P(o|C i). In particular, we estimate P(o|C i)by means of

the probabilities associated to both spatial relations (e.g. wards_relatedTo_waters(A,B))

and properties (e.g. waters__typewater(B,RIVER), cars_per_person(A,high)) as-

sociated to each rule in R.

For instance, if R= {R1, R2}, where R1 and R2 are two association rules of class

Ci extracted by SPADA:

R1: β1,0 : −β1,1, β1,2 R2: β2,0 : −β2,1, β2,2



72 3.4 Associative Classification in Multi-relational Data Mining

where β1,1 and β2,1 are spatial relations,β1,2andβ2,2 are properties and β1,0 =

β2,0(class) then P ({R1, R2}|Ci) = P (β1,0 ∩ β1,1 ∩ β2,1 ∩ β1,2 ∩ β2,2|Ci)=

P (β1,0 ∩ β1,1 ∩ β2,1|Ci) · P (β1,2 ∩ β2,2|β1,0 ∩ β1,1 ∩ β2,1 ∩ Ci)

The first term takes into account the relations of the rules while the second term

refers to the conditional probability of satisfying the property predicates in the rules

given the relations. According to the the naive Bayes independence assumption, the

probabilities can be factorized as follows:

P (β1,0 ∩ β1,1 ∩ β2,1|Ci) = P (β1,1|Ci) · P (β2,1|Ci)

P (β1,2∩β2,2|β1,0∩β1,1∩β2,1∩Ci) = P (β1,2|β1,1∩β2,1∩Ci)·P (β2,2|β1,1∩β2,1∩Ci)

Since β1,2 and β2,2 do not depend from β2,1and β1,1 respectively, then:

P (β1,2 ∩ β2,2|β1,0 ∩ β1,1 ∩ β2,1 ∩ Ci) = P (β1,2|β1,1 ∩ Ci) · P (β2,2|β2,1 ∩ Ci)

By generalizing to a set of rules we have:

P (Ci)P (o|Ci) = P (Ci)
∏

k∈|R|

(P (relationsk|Ci)
∏

j

P (propertyk,j |relationsk, Ci))

(3.12)

where the term relationsk represents the event that the set of spatial relations

expressed in the k-th rule is satisfied, while the term propertyk,j represents the

event that the j-th property of the k-th rule is satisfied.

If relationsk= { relation(Set1,Set2)| Set1,Set2 ∈ {S}∪{Rk, 1≤ k ≤m}, Set1 6=

Set2 } is a set of binary relations between spatial objects (either task relevant or

reference) involved in the k-th rule, the probability P(relationsk|C i) is computed

by means of the naive Bayes assumption:

P (relationsk|Ci) =
∏

l∈|relationsk|

P (relation(Setl1 , Setl2)|Ci)

where:

P (relation(Setl1 , Setl2)|Ci) = P (relation(Set′l1 , Set
′
l2)) =

|relation(Set′l1 , Set
′
l2

)|

|Set′l1 | · |Set
′
l2
|

(3.13)

where Set’ l is a subset of objects in Set l that are related, by means of spatial

relations, with objects in S of class Ci, while |relation(Set′l1 , Set
′
l2

)| is the number

of relations between objects of Set′l1 and objects of Set′l2 .
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To compute the probability P (propertyk,j |relationsk, Ci) in (3), we use the

Laplace estimation:

P (propertyk,j |relationsk, Ci) =
|relationsk ∧ propertyk,j ∧ Ci|+ 1

|relationsk ∧ Ci|+ F
(3.14)

where F is the number of possible admissible values of the property. Laplace’s

estimate is used in order to avoid null probabilities in equation 3.11. In practice,

the value at the nominator is the number of target objects of class Ci that are

related to other spatial objects by means of spatial relations expressed in relationsk

and for which propertyk,j is satisfied. The value of the denominator is the number

of target objects of class Ci that are related to other spatial objects by means of

spatial relations expressed in relationsk plus F .

In order to avoid the problem that the same relation or the same property is

considered more than once in the computation of probabilities in formula 3.12, the

values computed in formula 3.13 and 3.14 are effectively determined and included

in formula 3.12 only if the values have not been computed before.

3.5 Conclusions

In this chapter we considered a different kind of “structure”, that is, the structure

represented by the occurrence of relations between the units of analysis and/or the

units observation. For this purpose, we resort to the multi-relational data mining.

We present two classifiers that work in the multi-relational setting. In particular,

we extend the naive Bayes classification to the case of relational data. The first

solution is represented by a multi-relational data mining system which is tightly

integrated with a relational DBMS. It is based on the induction of a set of first-

order classification rules in the context of naive Bayesian classification. It presents

several differences with respect to related works. First, it is based on an integrated

approach, so that the contribution of literals shared by several rules to the posterior

probability is computed only once. Second, it works both on discrete and continuous

attributes. Third, the generation of rules is based on the knowledge of a data model

embedded in the database schema. The proposed method has been implemented in

the new system Mr-SBC.

The second solution is inspired by recent studies on the usage of association rules

for classification purposes (Associative Classification). In particular, we have pre-

sented a spatial associative classifier that combines spatial association rule discovery

with naive Bayesian classification. Domain specific knowledge may be defined as

a set of rules that makes possible the qualitative spatial reasoning. In addition,

hierarchies on spatial objects are expressed by a collection of ground atoms and are

exploited to mine classification models at different granularity levels. For each gran-

ularity level, extracted rules concur in building the spatial classification model by

exploiting a multi-relational naive Bayesian classifier integrated with the Database.



74 3.5 Conclusions



Chapter 4

Applications of Naive Bayesian

Classification to Document

Engineering

In this chapter we show the application of proposed solutions to the field of Doc-

ument Engineering. Document Engineering is the computer science discipline that

investigates systems for documents in any form and in all media. Document engi-

neering is concerned with principles, tools and processes that improve our ability

to create, manage and maintain documents. It shares many concepts with Software

Engineering, which is concerned with the creation, management and maintenance

of a special kind of documents, the programs. However it also presents several

differences, due to the different semantics of documents, the diverse use of layout

and logical structures, the different emphasis given to graphical aspects as well as

the different design methods (or writing processes) [VQ90]. It might be debatable

that Document Engineering is a true engineering discipline, for the same reasons

that some researchers attributed at Software Engineering at the early ’90 [Sha90].

Nonetheless, computer-based systems for creating, distributing and analysing doc-

uments are one of the centerpieces of the new "Information Society" and it is very

likely that the meeting of economic and scientific interests will soon lead to the

development of a professional engineering.

The notion of document adopted in Document Engineering is quite extensive.

A document is a representation of information designed for reading by, or played-

back to, a person. It may be presented on paper, on a screen, or played through

a speaker and its underlying representation may be in any form and include data

from any medium. A document may be stored in final presentation form or it may

be generated on-the-fly, undergoing substantial transformations in the process. A

document may include extensive hyperlinks and be part of a large web of informa-

tion. Furthermore, apparently independent documents may be composed, so that

a web of information may itself be considered a document.

Among conceptual topics relevant to the field of Document Engineering are

75
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document structure and content analysis, document categorization and classifica-

tion, document storage, indexing, and retrieval, performance of document systems,

markup languages (e.g., XML), and optical character recognition (OCR). In this

chapter we are interested in both printed documents and text documents, and we

consider some conceptual topics reported above. More precisely, in the first part

of this chapter we show the application of the hierarchical classification framework

proposed in chapter 2 to the problem of text document categorization and classifica-

tion. Whereas, in the second part, we show the application of the multi-relational

naive Bayesian classifier Mr-SBC to the problem of document image understand-

ing (or interpretation), which is defined as the formal representation of the abstract

relationships indicated by the two-dimensional arrangement of the symbols [Nag00].

4.1 Hierarchical Text Classification

Text classification or text categorization is the process of automatically assigning

one or more predefined categories to text documents. A wide range of supervised

learning algorithms has been applied to this problem, using a training set of cate-

gorized documents to build a classifier that maps arbitrary documents to relevant

categories. Most of learning methods reported in the literature deal with classifying

text into a set of categories without structural relationships among them (flat clas-

sification). More recently, increasing attention has been given to hierarchical classi-

fication [KS97] [MRMN98] [Mla98b] [DMSK00] [DC00] [NGL97] [RS02] [WWP99],

where the pre-defined categories are organized in a hierarchical structure (tree-like

structure). Such a structure reflects relations between concepts in the application

domain covered by the classification. Indeed, as already specified, many popular

search engines and text databases arrange documents in topic hierarchies, such as

Yahoo, Google Directory, Medical Subject Headings (MeSH) in MEDLINE, Open

Directory Project (ODP)1 and Reuters Corpus Volume I (RCV1) [LYRL04]. This

hierarchical arrangement is essential when the number of categories is quite high,

since it supports a thematic search by browsing topics of interests.

The advantage of this hierarchical view of the classification process is that the

problem is partitioned into smaller subproblems, each of which can be effectively and

efficiently managed. Another motivation, strictly related to the problem in hand, is

given by the observation that both precision and recall decrease as the number of

categories increases [ADW94] [Yan96] due to the increasing effect of term polysemy

for large corpora.

As pointed out in chapter 2, taking into account the hierarchy poses additional

issues in the development of methods for automated document classification.

• documents can either be associated to the leaves of the hierarchy or to internal

nodes.

• the set of features selected to build a classifier can either be category specific

or the same for all categories (corpus-based).

1www.dmoz.org
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• the training set associated to each category may include or not training doc-

uments of subcategories.

• the classifier may take into account or not the hierarchical relation between

categories.

• some stopping criterion is required for hierarchical classification of new docu-

ments in non-leaf categories.

• new performance evaluation criteria are required to take into account the

different types of classification errors.

All these issues are systematically investigated in this chapter, which presents the

hierarchical classification framework proposed in chapter 2 in the text categorization

domain. The hierarchy of categories is used in all phases of text categorization,

namely feature extraction, learning, and classification of a new document.

In this chapter we use the naive Bayesian learner and compare it with two of

the most widely investigated methods for (flat) text classification, namely centroid-

based and support vector machines (SVM), and we investigate the performance of

these methods on three datasets (Yahoo, DMOZ, RCV1). These datasets present a

variety of situations in terms of hierarchical structure: documents can be assigned

to any node in the hierarchy, some nodes can have no associated documents and

internal nodes can have only one child. The baseline of the empirical evaluation

is the flat classification, so that it is possible to analyse the actual contribution of

the hierarchy in text classification performance. Another aspect considered in this

framework is the construction of feature sets, which can be performed by merg-

ing the dictionaries of all subcategories (hierarchical feature set) or by taking the

union of dictionaries of direct subcategories (proper feature set). Pros and cons of

hierarchical feature sets are discussed and interactions with learning methods are

empirically evaluated.

To test alternative hierarchical text classification methods, the system WebClas-

sIII has been implemented. This is a client-server application that has been designed

to support the search activity of a geographically distributed group of people with

common interests [MEC02]. It works as an intermediary when users browse the

Web through the system and classify documents into a hierarchy of categories by

means of one of the classification techniques available. Automated classification of

Web pages is performed on the basis of their textual content and may require a

preliminary training phase in which document classifiers are built on the basis of a

set of training examples.

4.1.1 Document Representation and Feature Selection

In WebClassIII, the feature set is unique for each internal category and is auto-

matically determined by means of a set of positive and negative training examples

(extracted from the Hierarchical training set, see section 2.4.1 and Figure 2.8). More

specifically, in WebClassIII, all training documents are initially tokenized, and the

set of tokens (words) is filtered in order to remove HTML tags, punctuation marks,
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numbers and tokens of less than three characters. Only relevant tokens are used

in the feature set. Before selecting relevant features, standard text pre-processing

methods are used to:

1. Remove stopwords, such as articles, adverbs, prepositions and other frequent

words taken from Glimpse2, a tool used to index files by means of words.

2. Determine equivalent stems (stemming), such as ’topolog’ in the words ’topol-

ogy’ and ’topological’, by means of Porter’s algorithm for English texts [Por97].

Despite these preprocessing steps reduce the number of extracted tokens, the

feature set can be still large even in the case of small document collections. In many

learning algorithms, reduction of the set of features is essential for both complexity

and accuracy issues. In particular, centroid-based methods compute the distance

of a document from a centroid on the basis of all features used to describe the

documents. If the attribution of a document to a category depends on only a few

of the many available features, than the documents that are truly “close” to the

centroid may well be a large distance apart. Galavotti et al. [GSS00] and Ruiz

and Srinivasan [RS02] have independently proved that the Rocchio classifier, which

is a particular centroid-based classifier, benefits from feature selection. Also for

naive Bayesian classifiers it has been proved that they benefit of irrelevant feature

removal [Mla98a]. The situation is different in the case of SVM classifiers, which

work well with high dimensional feature spaces and eliminate the need for feature

selection [Joa98]. In this work, where these three different learning methods are

considered, feature selection is always performed for the purpose of having a fair

comparison. The exploration of the effect of considering all features is postponed

for future research.

The problem of feature selection has been widely explored in machine learning.

Feature selection approaches may be categorised into wrapper, filter and embedded

approaches [JKP94] [BL97b]. The wrapper approach attempts to identify the best

feature subset to use with a particular algorithm, that is, the induction algorithm

that will be used to learn the final target concept is part of the evaluation function.

In the filter approach, the goal is to filter the irrelevant and/or redundant features

on the basis of the characteristics of the training data without involving any learn-

ing algorithm. Finally, in the embedded approaches the feature selection process is

done inside the learning algorithm, preferring some features to others, and possibly

not including all the available features in the final model induced by the learning

algorithm (a clear example is represented by decision trees). The wrapper approach

tends to produce better accuracy than the filtering approach, but this is possible

to the disadvantage of the computational complexity. Because of the abundance

of features (and documents) in automated text categorization, filtering approach

remains the most widely used. Moreover, it is very flexible, since any target learn-

ing algorithm can be used, while both the wrapper approach and the embedded

approach are strictly dependent on the learning algorithm.

2glimpse.cs.arizona.edu
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Most of filtering methods for information retrieval simply score words according

to some feature selection measure and select the best firsts. However, techniques

proposed for information retrieval purposes are not always appropriate for the task

of text categorization. Indeed, we are not interested in words characterizing each

single document, but we look for words that distinguish a document category from

other categories. Generally speaking, the set of words required for classification

purposes is much smaller than the set of words required for indexing purposes.

There are two distinct approaches to feature selection for text categorization:

a) local, for each category ci a set of features is chosen for classification of docu-

ments in ci;

b) global, a set of terms is chosen for classification under all categories [Seb02].

They are related to document representation [ADW94] by means of several spe-

cialized feature vectors for different categories or by a unique feature. No special

recommendation for local vs. global feature selection is reported in the literature.

Typically the approach adopted in a work depends on the type of classifier. Lo-

cal feature sets are used together with binary classifiers, which decide to assign a

document to a category ci or not, while global feature sets are used together with

multi-class classifier, which assign a document to one (single-category classification)

or more (multi-category classification) categories in {c1, c2, . . . , cL}.

Independently of the approach, several feature selection measures have been

reported in the literature. They can be classified on the basis of four dependency

tuples between a term w and a category ci [ZWS04]:

1. (w, ci): w and ci co-occurs,

2. (w, ¬ci): w occurs without ci;

3. (¬w, ci): ci occurs without w;

4. (¬w, ¬ci): neither w nor ci occur.

The first two tuples concern the presence of a term, while the last two are re-

lated to its absence. The first and the last tuples represent the positive dependency

between w and ci, while the other two represent the negative dependency. Although

all feature selection measures try to capture the intuition that the best terms for

ci are the ones that distributed most differently in the sets of positive and negative

examples of ci
3, they consider different dependency tuples. For instance, Correla-

tion Coefficient [NGL97] considers all the four tuples, Mutual Information [YP97]

considers the first three, while Odds ratio [Mla98b] is based only on the first two.

The variety of results reported in the literature does not allow us to make any

claim on what should be the dependencies to involve in the definition of a good fea-

ture selection measure. As observed by Mladenic and Grobelnik [MG99] “the most

important characteristics of a good feature scoring measure for text are: favoring

common features and considering domain and algorithm characteristics”.

3A notable exception is the frequency of a term in a document collection, where only positive

examples are considered.
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Following this indication, in this work we focus our interest on the global ap-

proach, which seems best suited for multi-class classifiers, as well as on the first

two tuples, since the classifiers that will be presented in the next sections increase

their confidence on classification on the basis of present terms rather than absent

terms. In the design of the feature selection measure reported in this work we do

take into account another important factor: the observation unit for all classifiers

is the document, hence the "common features" Mladenić and Grobelnik refers to,

should not only be “frequent for a category” but also shared by most of documents

of the same category. A term that occurs frequently in very few documents of a

category can be frequent for the category but can hardly be considered a common

feature. Surprisingly, a closer look at the feature selection measures reported in

the literature reveals that most of them consider a term (and not a document) as

observation unit. By looking at formulas of the most widely investigated feature

selection measure reported in [MG99] at Table 1, we find that the ingredients of

various formulas are:

1. P (w), the prior probability that the term w occurs

2. P (ci), the prior probability of the i-th class or category

3. P (ci|w), the conditional probability of the i-th class value given that w occurs

4. P (w|ci), the conditional probability of w given the i-th class value

5. TF (w), the term frequency.

None of them do actually refer to the document as observation unit. For in-

stance, the absolute frequency of a term in a document, TF (w, d), which is used

in the naive Bayes classifier (see Section 4.1.2), is not considered. In the centroid-

based classification, where it is important to select a set of features that increase the

intra-class document similarity and decrease the inter-class document similarity, the

distribution of a term across training documents of the same category is important,

but it does not appear in the list above.

For multi-class problems, as those considered in the framework proposed in this

chapter, Malerba et al. [MEC02] developed a feature selection procedure that do

take into account these observations. In this work, we develop an extension to the

case of hierarchical training sets.

Let c be a category and c′ one of its children in the hierarchy of categories, that is,

c′ ∈ DirectSubCategories(c). Let d be a training document (after the tokenizing,

filtering and stemming steps) from c′, w a feature extracted from d and TFd(w) the

relative frequency of w in d. Then, the following statistics can be computed:

• the maximum value of TFd(w) on all training documents d of category c′,

TFc′(w) = maxd∈Training(c′)TFd(w)

• the document frequency, that is, the percentage of documents of category c′

in which the feature w occurs,

DFc′(w) =
|{d ∈ Training(c′)| w occurs in d}|

|Training(c′)|
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• the category frequency CFc(w), that is, the number of subcategories c′′ ∈

DirectSubCategories(c) such that w occurs in a document d ∈ Training(c′′).

We observe that only documents considered as positive examples of c′ are used

to compute both TFc′(w) and DFc′(w), while the estimation of CFc(w) also takes

into account documents considered as negative examples of c′.

For each category c′, a list of pairs 〈wi, vi〉 is computed, such that wi is a term

extracted from some document d ∈ Training(c′) and

vi = TFc′(wi)×DF
2
c′(wi)×

1

CFc(wi)

By taking words that maximize the product maxTF ×DF 2× ICF , where ICF

stands for "inverse CF", we reward common words used in documents of category c′,

but we penalize words common to both c′ and its sibling categories. The category

dictionary of c′, Dictc′ , is the set of the best ndict terms with respect to vi, where

ndict is a user defined parameter.

The measure maxTF ×DF 2 × ICF scores high features that appear (possibly

frequently) in many relevant documents and in documents of few alternative cate-

gories. In contrast with correlation coefficient, it does not suffer from problems of

unreliability for low frequency terms, so we are not forced to remove rare features as

done by Ruiz and Srinivasan [RS02] in their study on hierarchical text categoriza-

tion. Moreover, it is not influenced by the marginal probability of terms as in the

case of mutual information [YP97], which makes score incomparable across terms

of widely differing frequency.

The feature set associated to a category c is defined on the basis of the dictionar-

ies of its subcategories4. More precisely, the proper feature set FeatSetc is defined

as the union of the dictionaries of all direct subcategories of c (see Figure 4.1):

FeatSetc =
⋃

c′∈DirectSubCategories(c)

Dictc′

It contains features that appear frequently in many documents of one of the sub-

categories but seldom occur in documents of the other subcategories (orthogonality

of category features). In other terms, selected features decrease the intra-category

dissimilarity and increase the inter-category dissimilarity. Therefore, they are useful

to classify a document (temporarily) assigned to c as belonging to a subcategory

of c itself. It is noteworthy that this approach returns a set of quite general fea-

tures (like "math" and "mathemat") for upper level categories, and a set of specific

features (like "topolog") for lower level categories.

An alternative proposal is the hierarchical feature set, which is defined as the

union of the dictionaries of all subcategories (similarly to Mladenic [Mla98b]) where,

in addition, weights are used to give less importance to subcategories that are further

down in the hierarchy):

4McCallum et al. [MRMN98] use the term hierarchical feature selection to denote the selection

of an equal number of features at each internal node of the tree, using the node’s immediate

children as the classes.
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Figure 4.1: Category dictionaries extracted by WebClassIII for all subcategories of "Mathematics"

in an experiment on Yahoo dataset (ndict = 5) and proper feature set selected for "Mathematics".

HierFeatSetc =
⋃

c′∈SubCategories(c)

Dictc′

The rationale behind the hierarchical feature set is that if classifiers at the top

level do take into account only general terms (such as "math" and "mathemat") typ-

ically extracted from documents of general topics (e.g., Mathematics), they might

have some difficulties to correctly route along the right path those documents be-

longing to leaf categories (e.g., Geometry), because of the rarer occurrence of gen-

eral terms. Once the set of features has been determined for an internal category

c, training documents in Training(c) can be represented as feature vectors, where

each feature value is the frequency of a word.

4.1.2 Learning algorithms

In the context of the hierarchical text categorization framework described in section

2.4.1, the definition of the same feature set to represent documents of a category c

and all its subcategories permits the application of a multi-class learning algorithm

to induce a classifier that categorizes a document (temporarily) assigned to c as

belonging to a subcategory c′ of c. In this work we consider the naive Bayes learning

approach [Mit97] modified in order to correctly handle documents of different length.

We compare this approach with other two learning approaches:
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• a centroid-based method [HK00], where each centroid (or class prototype) is

the center of cluster of documents of the same category;

• SMO, which is an optimized algorithm for training SVM on very large data

sets [Pla99].

Therefore, the classification of a new document to a category c′ is obtained as

follows:

1. By estimating the Bayesian posterior probability for that category (naive

Bayes).

2. By computing the similarity between the document and the centroid of that

category.

3. By estimating the posterior probability for that category according to an SVM

probabilistic classifier.

The three learning algorithms are briefly described in the next subsections.

Naive Bayesian classifier

Let d be a document temporarily assigned to a category c. We intend to classify d

into one of the subcategories of c. The Bayes optimal classification can be achieved

by assigning d to the category ci ∈ DirectSubCategories(c) that maximizes the

posterior probability Pc(ci|d).

In the literature, several Bayesian models have been proposed for text catego-

rization. The naive Bayes classifier is the simplest of these models, in that it assumes

that all the features used to describe the document are independent of each other

given the context of the class (class conditional feature independence). We discussed

this assumption in section 2.2.3 and, citing some seminal works, we deduced that,

even in the case that the independence assumption is violated by a wide margin

and the approximation of conditional probability is poor, the classification accuracy

remains high [DP97].

In the text categorization literature, two different models based on the naive

Bayes assumption have been proposed: the multivariate Bernoulli model and the

multinomial model [MN98]. The former specifies that a document be represented by

a vector of binary attributes indicating which terms occur and do not occur in the

document. The "event" is the document, and both the presence and the absence of

a term contribute to the estimation of the posterior probability, which is modelled

as multivariate Bernoulli. In the context of hierarchical text categorization it has

been used by Koller and Sahami [KS97]. The multinomial model specifies that a

document be represented by the set of term occurrences in the document. In this

case the "event" is the term and the number of occurrences of each term affects the

posterior probability, which is based on a multinomial model. In hierarchical text

categorization this model has been used by Mladenic [Mla98b]. A review of naive

Bayes classifiers and their usage in information retrieval is reported in [Lew98],

where the Bernoulli model is named binary independence model.



84 4.1 Hierarchical Text Classification

McCallum and Nigam [MN98] have shown that, over a number of different text

categorization problems, the multinomial model is capable of categorizing docu-

ments more accurately than the multivariate Bernoulli model. Eyheramendy and

his collegues [ELM03] have considered three alternatives to the multinomial model

that still incorporate term frequencies, and have empirically shown that the multino-

mial model often outperforms these alternatives. Therefore, in this work we consider

the naive Bayesian classifier based on multinomial model. This choice is also coher-

ent with the feature selection process where only the presence (and not the absence)

of a feature is considered, and the number of occurrences of a term is an important

factor in feature selection.

In its general formalization, the multinomial model accommodates very naturally

the document length. The posterior probability Pc(ci|d) can be defined as the sum

over posterior probabilities of documents of different length [Joa97]:

Pc(ci|d) =

∞
∑

l=1

Pc(ci|d, l)Pc(l|d) (4.1)

where Pc(l|d) = 1 for the length ld of document d and is zero otherwise. In other

terms, Pc(ci|d) = Pc(ci|d, ld). By applying Bayes’ theorem to Pc(ci|d) we have:

Pc(ci|d) =
Pc(d|ci, ld)Pc(ci|ld)

∑

cj∈DirectSubCategories(c)

Pc(d|cj , ld)Pc(cj |ld)
(4.2)

Pc(ci|ld) is the prior probability that a document of length ld is in class ci. By

assuming that the category of a document does not depend on its length, we can

write Pc(ci|ld) = Pc(ci). The prior probability Pc(ci) is estimated as the fraction of

training documents of c assigned to class ci:

pc(ci) =
|Training(ci)|

∑

c′∈DirectSubCategories(c)

|Training(c′)|
(4.3)

The estimation of the likelihood Pc(d|ci, ld) is based on the multinomial model:

Pc(d|ci, ld) =
ld!

∏

w∈FeatSetc

TF (w, d)!

∏

w∈FeatSet

Pc(w|ci, ld) (4.4)

where TF (w, d) denotes the absolute frequency of w in d.

The first term depends only on the document d and multiplies both the numer-

ator and the denominator of formula 4.2, hence it can be dropped. The subsequent

terms are the probabilities of observing a term w of the feature set in documents

of length ld and of class ci. Unfortunately, the estimation of this conditional prob-

ability is quite difficult, since we should consider only documents of length ld in

the training set. Therefore, a further simplifying assumption is usually made, that

the occurrence of a term is only dependent on the membership class of a document

[Joa97]. By combining this assumption with the original feature independence as-

sumption we have:
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Pc(d|ci, ld) ∝
∏

w∈FeatSet

Pc(w|ci)
TF (w,d) (4.5)

In conclusion, under the assumptions that each term in d occurs independently

of other terms, as well as independently of the text length, it is possible to estimate

the posterior probability as follows:

Pc(ci|d) =

Pc(ci)
∏

w∈FeatSet

Pc(w|ci)
TF (w,d)

∑

c′∈DirectSubCategories(c)

Pc(c′)
∏

w∈FeatSet

Pc(w|c′)TF (w,d)
(4.6)

To make our probability estimate of Pc(w|ci) more robust with respect to in-

frequently used terms, we use a smoothing method to modify the estimates that

would have been obtained by simple event counting. Smoothing, whose main effect

is that of assigning a small, non-null probability to unobserved events, is important

in naïve Bayes classifiers, since probability estimates are multiplied. If only one

of them were zero at numerator, the posterior probability in 4.6 would be zero,

independently of the values of the other estimates. In this work smoothing is based

on Laplace’s law of succession, that is:

Pc(w|ci) =
1 + PF (w, ci)

|FeatSetc|+
∑

w′∈FeatSetc

PF (w′, ci)
(4.7)

where PF (w, c) denotes the absolute frequency w in documents of category c. An

alternative to Laplace estimator is Witten-Bell smoothing, that has been used in

the work by Craven and his collegues on text categorization [CDF+00].

The main weakness of this naive Bayesian classifier is that it presents problems

when one wants to interpret the score for each class as an estimate of uncertainty.

If for some word w, the value of Pc(w|ci) differs by one order of magnitude between

different classes ci, then the final probabilities will differ by as many orders of

magnitude as there are words in the document. As a consequence, scores for the

winning class tend to be close to 1.0 while scores for the losing classes tend toward

0.0. For instance, Bennet [Ben00] shows this phenomenon on two classes (Earn

and Corn) of the well-known Reuters 21578 dataset. These extreme values are

an artefact of the independence assumption. Class-conditional word probabilities

would be much more similar across classes if word dependencies were taken into

account [CDF+00]. An additional problem in the above formalization is strictly

related to the probability estimation in formula 4, which regards all documents

belonging to ci as one huge document. In other words, this estimation method

does not take into account the fact that there may be important differences among

term occurrences from documents with different lengths [KRYL02] and estimation

could be affected by significant length discrepancy among documents belonging to

the same class [Seb02]. As observed by Eyheramendy et al. [ELM03], “directly

incorporating document length into the multinomial model has little effect due to
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the extreme probability estimates produced by the naive Bayes-type models. One

possibility would be to correct for the bias before introducing length”.

In our proposal we adopt a normalization of the value TF (w, d) in formula 4.6

in order to avoid these problems. In particular, we normalize TF according to the

following formula:

NormalizedTF (w, d) =
TF (w, d)

‖TF (•, d)‖2
(4.8)

where

‖TF (•, d)‖2 =

√

∑

w′ in d

TF (w′, d)2.

By substituting TF (w, d) with NormalizedTFc(w, d) in 4.7, we have:

Pc (ci|d) =

Pc (ci) ·
∏

w∈FeatSetc

Pc (w|ci)
NormalizedTF (w,d)

∑

c′∈DirectSubCategories(c)

Pc (c′) ·
∏

w∈FeatSetc

Pc (w|c′)NormalizedTF (w,d)

(4.9)

We observe that this normalization does not change the assignment of a doc-

ument to a class: it only contributes to smooth the values of the posterior prob-

abilities and to make the thresholding algorithm more effective, since choosing a

threshold when probability values are all 0 or 1 would not help in hierarchical text

classification. A similar normalization, but to L1-norm, has been proposed in [SJ03].

Centroid-Based classifier

Linear classifiers are a family of learning algorithms that learn a feature weight

vector (or prototype)

~ci =
〈

wi1, wi2, . . . , wi|FeatSetc|

〉

for every category ci. In our framework, where a document d temporarily assigned to

a category c has to be possibly assigned to a category ci ∈DirectSubCategories(c),

the dimensionality of the feature weight vector of ci corresponds to the size of

FeatSetc. The score returned by a linear classifier for a document d and a category

ci is the dot product between the feature vector describing d and ~ci(hence the

linearity of the classifier). Generally, the dot product (or equivalently, both the

document and the class vectors) is normalized to unit as follows:

~d · ~ci
∥

∥

∥

~d
∥

∥

∥

2
‖~ci‖2



Applications of Naive Bayesian Classification to Document Engineering 87

This normalization represents the cosine of the angle spanned by the two vectors

d and ~ci. It is a similarity measure (also known as cosine similarity), therefore, the

higher the value, the more similar the document d and the category prototype ~ci.

The most well-known linear classifier is an adaptation to text categorization

of Rocchio’s formula originally proposed for relevance feedback in the context of

information retrieval [Roc71]. The learning method, denoted as Rocchio method,

computes the weights of ~ci as follows:

wij = β
∑

d∈Training(ci)

dj

|Training(ci)|
− γ

∑

d∈Training(c/ci)

dj

|Training(c/ci)|

where dj denotes the j-th component of the document vector, Training(c i) is the

set of positive documents of category ci, and Training(c/ci) in our framework is the

set of negative examples for ci. The control parameters β and γ define the relative

impact of positive and negative examples in the definition of the class prototype.

Dumais et al. [DPHS98], Joachims [Joa97], Han and Karypis [HK00], Lertnattee

and Theeramunkong [LT04] set β to 1 and γ to 0, so that the prototype of a class

coincides with the centroid of its positive training examples. In this work we fol-

low this mainstream and compute the classification score as the cosine similarity

between the document vector and the centroid of a class. The main difference is

that document vectors contain the term frequencies, that is dj = TFd(wj), while

all mentioned works do operate on tfidf representations, that is, the weight associ-

ated to the j-th feature is the product of the term frequency of the term wj in d,

TFd(wj),and the logarithm of the inverse document frequency, IDF(w j). The doc-

ument frequency is defined as the percentage of documents in the collection where

the term wj occurs.5 The tfidf representation embodies the intuition that

• the more often a term occurs in a document, the more it is representative of

its content, and

• the more documents a term occurs in, the less discriminating it is [Seb02].

The second intuition is appropriate for document indexing, that is, the task of

information retrieval for which Salton and Buckley [SB88] defined the tfidf repre-

sentation. However, for text categorization tasks, the usage of the IDF factor seems

counterintuitive. In the feature selection phase, the most discriminant features are

selected, such that they correspond to terms that occur frequently in documents of

the same category. The IDF factor would penalize mainly the best discriminative

features, while it would weight more those terms that occur frequently in a single

document. A confirmation of our observation is indirectly given by Debole and

Sebastiani [DS03] who suggest replacing the IDF factor with the value taken by the

feature selection measure. Therefore, in this work the weight associated to the j-th

feature of a document is based exclusively on the TF factor. In this case, the value

associated to the feature w for the centroid of the category ci is defined as follows:

5The document frequency used in the tfidf representation should not be confused with DFc′ (w)

defined in Section 4, which depends on the category c′.
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P c (w, ci) =

∑

d∈Training(ci)

TFd (w)

|Training (ci)|
(4.10)

and the mathematical formulation of the cosine correlation is the following:

Simc (ci, d) =

∑

w∈FeatSetc

Pc (w, ci)× TFd (w)

√

∑

w∈FeatSetc

Pc (w, ci)
2 ×

∑

w∈FeatSetc

TFd (w)
2

(4.11)

It is noteworthy that the cosine correlation returns a particularly meaningful

value when vectors are highly dimensional and features define orthogonal directions.

As pointed out in Section 4.1.1 our feature selection algorithm guarantees a kind of

orthogonality property which applies to the group of features extracted from each

category dictionary rather than to the individual features. Therefore, the procedure

adopted for feature selection seems to be coherent with this classifier as well.

We conclude by highlighting another difference with respect to related papers

by Joachims [Joa97], [HK00] and [LT04] where all features6 are used in their ex-

periments. In this work, features are preliminarily filtered and only those deemed

most discriminant do actually contribute to the classification. This seems to im-

prove the accuracy of Rocchio classifiers [RS02] which can achieve quite competitive

performance if properly trained [SSS98].

SVM-probabilistic classifier

Recently, a new learning technique has emerged and become quite popular in text

categorization because of its good performance and its theoretical foundations in

the computational learning theory: support vector machines (SVMs), proposed by

Vapnik [Vap95]. Given a set of positive and negative examples (SVMs are defined

for two-classes problems)(See section 2.1.6){(~x1,y1), (~x2,y2), . . . , (~xN ,yN )}, where

~xi ∈R
m (~xiis a document vector) and yi ∈{-1,+1}, an SVM identifies the hyperplane

in Rm that linearly separates positive and negative examples with the maximum

margin (optimal separating hyperplane). In general, the hyperplane can be con-

structed as the linear combination of all training examples, however, only some

examples, called support vectors, do actually contribute to the optimal separating

hyperplane, which can be represented as:

f(x) =
N∗

∑

i=1

yiαi~x
∗
i · ~x+ b (4.12)

where ~x∗i , i=1,2, . . .N∗, are the support vectors. The coefficients αi and b are deter-

mined by solving a large-scale quadratic programming problem for which efficient

algorithms exist, which are guaranteed to find the global optimum.

6Joachims [Joa97] actually filters out all features that occur less then three times in the training

documents.
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SVMs are based on the Structural Risk Minimization principle: a function that

can classify training data accurately and which belongs to a set of functions with

the lowest capacity (particularly in the VC-dimension) [Vap95] will generalize best,

regardless of the dimensionality of the feature space m. Therefore, SVMs can gen-

eralize well even in large feature space, such as those used in text categorization. In

the case of the separating hyperplane, minimizing the VC-dimension corresponds

to maximizing the margin.

The linear separability appears to be a strong limitation, however, as experimen-

tally observed by Joachims [Joa98], most text categorization problems are linearly

separable. In any case, SVMs can be generalized to non-linearly separable training

data by mapping the data into another feature space F via a non-linear map:

Φ :Rm → F

and then performing the above linear algorithm in F . Generally the map introduce

new features that do take into account the p-order correlation between the input

features. Since the solution has the form:

f(x) =
N∗

∑

i=1

yiαiΦ(~x)∗i · Φ(~x) + b (4.13)

it is non linear in the original feature set. Yang and Liu [YL99] report that they

tested the linear and non-linear models offered by the SVMlight system [Joa][Joa98],

and obtained “a slightly better result with the linear SVM than with the non-linear

models”. Therefore, in our experiments we will use only linear models.

The SVM embedded in WebClassIII is a modified version of the Sequential Min-

imal Optimization classifier (SMO) [Pla98]. The method developed by Platt is very

fast and is based on the idea of breaking the large quadratic programming (QP)

problem down into a series of smaller QP problems that can be solved analyti-

cally. The same system has been used by Dumais et al. [DPHS98] in an empirical

comparison of five different learning algorithms for text categorization.

Modification of Platt’s original method is necessary in our framework, since

the classifier learned for each internal node of the hierarchy is of the kind one-

of-r (multi-class problem). More precisely, a binary classifier is learned for each

couple of classes and afterwards, the probability Pc(ci|d) is computed by means

of a probabilistic pair-wise coupling classification [HT98]. Once again, the decision

taken by the classifier for each training document is associated with a (probabilistic)

score, which is processed by the automated thresholding algorithm as explained in

Section 2.4.1.

Learning complexity

To evaluate the learning complexity of the learning algorithms, we have to consider

the analysis of complexity reported in section 2.4.3. In particular, we showed that

the complexity of the hierarchical framework is (Equation 2.19):

d
∑

i=1

kif(k,
n

ki
, a) (4.14)
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where d is the depth of the hierarchy, a is the number of features, f(number of

classes, number of training examples, number of features) is the learning complexity

of a generic classification algorithm, r is the total number of classes, n be the number

of training examples and k is the number of children of a generic internal node (we

suppose that k is constant).

In the case of both naive Bayes and centroid based classifiers, the complexity

of the learning phase is linear in the number of training documents, in the number

of features and in the number of classes [HK00], [Mit97]. In such a case the time

complexity of a flat classifier is O(n·a·r), while in the case of hierarchical framework,

it is:

O(
d

∑

i=1

ki · ((
n

ki
· k · a)) = O(

d
∑

i=1

(n · k · a)) = O(d · n · k · a)

Both are linear in the number of training examples and in the number of features.

The difference is that the complexity of a flat classifier is linear in the number of

classes, while the complexity of the hierarchical framework is linear in the product

of the number of children of each node and the depth of the tree. Under the assump-

tion of a balanced hierarchy with constant branching factor k, we have d=logkr.

Therefore the complexity of the hierarchical framework is O(n · a · logkr).

In the case of SVM classifier, the complexity is linear in the number of training

documents, features and classes [Pla98]. However, the SMO has been modified

to deal with multi-class problems and to estimate the probability Pc(ci|d). This

probability is computed by means of a probabilistic pair-wise coupling classification

[HT98]. This modification makes the algorithm linear in the number of examples

and cubic in the number of classes. Therefore the time complexity of a flat classifier

is O(n·a·r3), while in the case of hierarchical framework it is:

O(
d

∑

i=1

ki · ((
n

ki
· k3 · a)) = O(

d
∑

i=1

(n · k3 · a)) = O(d · n · k3 · a)

Under the same assumptions given for naive Bayes and centroid-based classifiers,

the complexity of the hierarchical framework is O(n · a · logkr).

This analysis can be refined by taking into account that the value of a (i.e.

number of features) may change level by level. More precisely:

• a = ndict · r in the flat classifier,

• a = ndict · k in the hierarchical framework with proper feature set,

• a < ndict · r in the hierarchical framework with hierarchical feature set.

Actually, in the case of hierarchical framework with hierarchical feature set, the

number of features depends on the level of the hierarchy to which the classifier is

associated. For the first level a = ndict · r, in the second level a = ndict · (r − k), in

the third level a = ndict· (r − k − k
2) and so on.
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4.1.3 Experimental Results

In this section we seek answers to the following questions with empirical evidence:

• Does the hierarchical classifier built with the proposed framework improve the

performance when compared to a flat classifier?

• Does the proposed framework minimize the (tree) distance between the correct

class and the returned one when the document is not correctly classified?

• Does the proposed framework actually improve the computational efficiency

of the learning algorithms?

• What feature selection strategy is the most promising for hierarchical catego-

rization?

• Which classifier has the best performance within the proposed framework?

Before describing results, we illustrate the three corpora used for this study and

the performance evaluation measures considered for performance evaluation.

Datasets

The three corpora chosen for this study are the recently published benchmark

dataset Reuters Corpus Volume I (RCV1) [LYRL04], and two collections of HTML

documents (WebClass is specifically designed to classify HTML pages) referenced

either in the Yahoo! Search Directory 7 or in a web directory developed in the Open

Directory Project (ODP) 8. The three corpora differ considerably in the training set

size, in the hierarchical structure of categories as well as in the procedure adopted

for the classification of documents. For the sake of completeness, a brief description

of the document collections is reported in the following.

Reuters Corpus Volume 1

Reuters Corpus Volume I (RCV1) is a benchmark dataset widely used in text cat-

egorization and in document retrieval. It consists of over 800,000 newswire stories,

collected by the Reuters news and information agency, that have been manually

coded using three orthogonal category sets. Therefore, category codes from three

sets (Topics, Industries, and Regions) are assigned to stories:

• Topic codes capture the major subject of a story.

• Industry codes are assigned on the basis of the types of business discussed in

the story.

• Region codes include both geographic locations and economic/political group-

ings.

7http://dir.yahoo.com/
8www.dmoz.org
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In our study, similarly to other authors [ZJYH03], we use topic codes for cate-

gorization.

The main characteristic that makes RCV1 particularly suitable in our study is

the adopted coding policy. In particular, topics are organized hierarchically. The

hierarchy of topics consists of a set of 104 categories organized in a 4-levels hierarchy.

We pre-processed documents as proposed by Lewis et al. and, in addition, we

considered only documents associated to a single category. This selection is due to

the fact that in this study we are interested in investigating single category assign-

ment (feature selection method, learning algorithms, categorization framework, and

performance evaluation functions are all based on the assumption that a document

can be assigned to one category at the most). The removal of documents associated

with multiple classes has been also adopted by other authors on different datasets

in the evaluation of single-label corpora [SS00].

We separate the training set and the testing set using the same split adopted by

Lewis et al. In particular, documents published form August 20, 1996 to August 31,

1996 (document IDs 2286 to 26150) are included in the training set while documents

published from September 1, 1996 to August 19, 1997 (document IDs 26151 to

810596) are considered for testing. The result is a split of the 804,414 documents

into 23,149 training documents and 781,265 test documents. After multiple-label

documents removal, we have 150,765 documents, (4,517 training documents and

146,248 testing documents).

Yahoo dataset

The second data set used in this experimental study is obtained from the documents

referenced in the Yahoo! Search Directory.9 We extracted all 907 actual Web docu-

ments referenced at the top three levels of the Web directory http://dir.yahoo.com/Science.

Empty documents and documents containing only scripts have been removed.

There are 6 categories at the first level, 27 categories at the second level and 35

categories at the third level. A document assigned to the root of the hierarchy is

considered “rejected” since its content is not related to any of the 68 subcategories.

The dataset is analyzed by means of a 5-fold cross-validation, that is, the dataset

is first divided into five folds of near-equal size, and then, for every fold, the learner

is trained on the remaining folds and tested on it. The system performance is

evaluated by averaging some performance measures (see below) on the five cross-

validation folds.

dmoz dataset

The third data set used in this experimental study is obtained from the documents

referenced by the Open Directory Project (ODP) (www.dmoz.org)10. We extracted

all actual Web documents referenced at the top five levels of the Web directory

9Documents have been downloaded on the 15th of July 2003. The dataset is electronically

available at http://lacam.di.uniba.it:8000/phd/micFiles/yahoo_science_docs.zip.
10Documents have been extracted in April 2004. The dataset is electronically available at

http://lacam.di.uniba.it:8000/phd/micFiles/dmoz_health_conditions_and_diseases_docs.zip.
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rooted in the branch Health\Conditions_and_Diseases\. Empty documents and

documents containing only scripts have been removed.

The dataset contains 5,612 documents in 221 categories organized in a five level

hierarchy as follows:

• In the first level there are 21 categories and 340 documents.

• In the second level there are 81 categories and 1,514 documents.

• In the third level there are 85 categories and 2604 documents.

• In the fourth level there are 32 categories and 1099 documents.

• In the fifth level there are 2 categories and 55 documents.

The dataset is analyzed by means of a 5-fold cross-validation. The system perfor-

mance is evaluated by averaging performance measures on the five cross-validation

folds.

Both yahoo and dmoz datasets have been used in order to evaluate the perfor-

mances of the system in presence of “noisy” documents and in presence of documents

with no clearly predefined structure. This is not the case of the corpus RCV1 whose

documents respect a well-defined XML structure.

Evaluation measures

Performances of the system have been evaluated on the basis of several measures.

The first measure is the standard accuracy defined in machine learning to evaluate

the performances of 1-of-r classifiers. It represents the number of testing documents

correctly classified over all testing documents. It is noteworthy that in the 1-of-

r classifiers context, this “narrowly” defined accuracy is indeed equivalent to the

standard recall and is not equivalent to the standard definition of accuracy in text

categorization literature that is given for classifiers based on binary decisions. In

this case it is the proportion of correct assignments among the binary decisions over

all category/document pairs. The standard text categorization accuracy measure is

well-defined for documents with multiple categories; the narrowly defined accuracy

is not. [YL99]. In our analysis, we use the narrowly defined accuracy because,

as observed by Sebastiani [Seb02], in single-label text categorization, precision and

recall are not independent of each other and in this case either precision or recall

(machine learning accuracy) can be used as a measure of effectiveness.

Furthermore, we define other four evaluation measures in order to provide a

more detailed evaluation of results. Intuitively, if a text categorization method mis-

classifies documents into categories similar to the correct categories, it is considered

better than another method that misclassifies the documents into totally unrelated

categories. Therefore, we define other four evaluation measures, namely:

1. the misclassification error, which computes the percentage of documents mis-

classified into a category not related to the correct category in the hierarchy.

2. the generalization error, which computes the percentage of documents mis-

classified into a supercategory of the correct category;
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3. the specialization error, which computes the percentage of documents misclas-

sified into a subcategory of the correct one;

4. the unknown ratio, that measures the percentage of rejected documents.

The sum of the accuracy, the generalization error, the specialization error, the

misclassification error and the unknown ratio equals one.

Flat vs Hierarchical classifiers

The first question we investigate is the effectiveness of the hierarchical categorization

framework with respect to flat classification. For a fair comparison, the thresholding

algorithm has been used both for hierarchical and flat classification. In this way,

both algorithms are able "reject" documents.

For evaluation purposes, several feature sets (proper or hierarchical) of different

size have been extracted for each internal category in order to investigate the effect

of this factor on the system performance. The feature set size ranges from 5 to 60

features per category in the case of RCV1 and Yahoo dataset, while it ranges from

5 to 40 in the case of dmoz dataset. Collected statistics concern the three classifiers.

Figure 4.2 shows the accuracy of different classifiers for the three datasets.

Among flat classifiers, SVM performs the best across the three datasets. It is also

noteworthy that in all datasets the SVM or centroid-based classifiers built accord-

ing to the flat approach are more accurate than the corresponding two hierarchical

classifiers built on proper or hierarchical feature sets. The situation is different for

NB classifiers, which do benefit of the hierarchical framework in all three datasets.

This is particularly evident for NB classifiers built from hierarchical feature sets. If

we consider that the naive Bayesian classifier is particularly accurate when the num-

ber of attributes is relatively small [DP97], we can explain that the naive Bayesian

classifier takes great advantage of the use of the Hierarchical framework.

Therefore, our second conclusion is that there is an interaction, in terms of

accuracy, between the hierarchical framework and the type of classifier.

From a closer analysis of the percentage of errors (reject, misclassification, gen-

eralization and specialization) performed by the various classifiers (see Figures 4.3,

4.4, 4.5), we observe that the flat classifiers commit more rejection and misclassifi-

cation errors (in percentage) than the corresponding hierarchical classifiers. There-

fore, with reference to the second question, we conclude that, even though SVM or

centroid-based flat classifiers are more accurate than the corresponding hierarchical

classifiers, they tend to commit “more serious” errors.

This difference in error type is particularly significant for NB classifiers. Figure

4.6 shows the distribution of misclassification, specialization and generalization er-

rors with respect to the (tree) distance of the wrong category from the correct one.

Statistics refer to the dmoz dataset, which is the most complex in terms of number

of categories and depth of the hierarchy. In general, errors are distributed quite

“close” to the correct category, also thanks to the automated threshold definition

algorithm that minimizes the sum of tree distances between the correct and the

predicted categories. Nevertheless, results are better for the hierarchical classifier,

since the distribution is more skewed towards low distance values.
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Figure 4.2: Accuracy for the three datasets: Flat vs Hierarchical with hierarchical feature set vs

Hierarchical with proper feature set. Experimental results for dmoz with SVM are available up to

20 features per category.
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Figure 4.3: Distribution of errors for Reuters dataset (ndict=60).
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Figure 4.4: Distribution of errors for Yahoo dataset (ndict=60).
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Figure 4.5: Distribution of errors for dmoz dataset (ndict=20).
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Figure 4.6: Distribution of errors. Percentage of misclassification, specialization and generaliza-
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are not shown. Results are obtained on the dmoz dataset, with Naive Bayes classifier, feature set

size = 20.



98 4.1 Hierarchical Text Classification

Centroids

0

2000

4000

6000

8000

5 10 15 20 25 30 40 50 60

Naive Bayes

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25 30 40 50 60

Figure 4.7: Learning running times on the RCV1 Dataset. Results are expressed in seconds

varying the number of selected features. Results show the comparison between the Flat technique,

hierarchical with a proper feature set and hierarchical with a hierarchical feature set. WebClassIII

has been executed on a Pentium 4 PC 1.4GHz running a Windows 2000 Operating System.

To answer the question on the actual improvement of the computational effi-

ciency of the learning algorithms, we collected statistics on the running time (see

Figure 4.7). Results are substantially in favor of the hierarchical framework. The

difference is particularly evident in the case of the SVM classifier. This confirms

the analysis of complexity reported in section 2.4.3 and in section 4.1.2

The results also show the better performances of the hierarchical framework

with a proper feature set, with respect to the hierarchical framework with a hier-

archical feature set. This also confirms the formal analysis of complexity reported

in section 4.1.2 and, in particular, the role of the number of features, which grows

proportionally to the total number of classes in the case of a hierarchical feature

set.

Comparing hierarchical classifiers

In the previous section we answered questions on the pros and cons of hierarchical

classifiers when compared to flat classifiers. In this section, we investigate aspects

specifically related to the hierarchical classifiers, namely, which is the best strategy

for feature selection and what is the best classifier to use in combination with the

hierarchical categorization framework

From the results shown in Figure 4.2 we observe that for smaller feature sets

the hierarchical approach performs better than the proper approach. However,

as the number of features increases, the classifier trained with a proper feature set

asymptotically tends to the performances of the classifier trained with a hierarchical

feature set. This can be explained by the observation that, with a limited number

of features, the lower categories are not represented and it is necessary to use a
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hierarchical feature set. By increasing the number of features, the deeper categories

are better represented and the benefits of a hierarchical approach vanish.

For the comparison of classifiers, we limit our study to proper feature sets. Once

again, several feature sets of different size have been extracted for each internal

category, in order to study the effect of this factor on the classifier performance.

Sizes range from 5 to 60 features per category in the case of the RCV1 and the

Yahoo dataset, while it ranges from 5 to 40 in the case of dmoz dataset. Collected

statistics concern centroid-based, naïve Bayes (NB) and SVM classifiers.

Figures 4.8, 4.9 and 4.10 show the performances of different classifiers for each

document collection and for different sizes of the proper feature sets. For the RCV1

and the dmoz datasets, which are characterized by a complex hierarchy (both in the

number of categories and in the depth of the tree structure), the best results in terms

of accuracy are obtained by the SVM classifier, while for the Yahoo dataset, the

naive Bayes classifier performs best for sufficiently large feature sets. The centroid-

based classifier shows the worst performance, particularly when the size of the

feature set increases.

Looking at the errors committed in detail, it is interesting to note that:

• NB and SVM show the same trend, which is different from the trend of cen-

troids. For example, while for SVM and NB the specialization error is low

and the generalization error tends to be quite high, the situation is reversed

for centroids.

• Increasing the number of the features, the percentage of misclassifications

for NB and SVM increases, while the percentage of "rejected" documents

(unknown error) decreases. This behavior is reversed for centroids.

The different behaviour can be explained by the fact that the thresholding al-

gorithm tends to be generally conservative (i.e. high thresholds and few documents

passed down) for SVM and NB, while in the case of centroids the thresholds become

more selective only for larger feature sets. Indeed, the scores computed by centroid-

based classifiers are unevenly distributed at the extremes of the unit interval when

only a few features determine the result of the classification. In this situation of

binary-like classification, the thresholding algorithm cannot work properly. On the

contrary, the scores are less extreme in large feature spaces and the thresholding

algorithm can work properly by reducing the high number of misclassifications, at

the cost of increasing the rejection rate.

Comparing NB and SVM it is noticeable that SVM has a higher misclassification

rate, while NB has a higher rejection rate. This means that even when they do not

perform best, NB classifiers can be a valid alternative to SVM in those application

contexts where a “commission error” is considered more serious than an “omission

error”.

4.1.4 Related work

Some of the related works have been presented in section 2.4.4 in the context of

hierarchical classification. Here, we integrate the description already reported fo-
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Figure 4.8: Classifier comparison on the RCV1 collection. Features are extracted using proper

feature sets.
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Figure 4.9: Classifier comparison on the RCV1 collection. Features are extracted using proper

feature sets.
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Figure 4.10: Classifier comparison on the dmoz dataset. Features are extracted using a proper

feature set.
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cusing on particular aspects of the task in hand, that is, text categorization. We

also investigate differences of our approach with respect to existing approaches both

in terms of the method and in terms of experimental results.

In the seminal work by Koller and Sahami [KS97] the hierarchy of categories is

used in every processing step. For the feature extraction step a category dictionary

is built for each node in the hierarchy. Feature extraction is based on an information

theoretic criterion that eliminates both irrelevant and redundant features. For the

learning step, two classifiers are used, namely the naive Bayes and KDB [Sah96].

McCallum et al. [MRMN98] proposed a method based on the naive Bayes

learner. A unique feature set is defined for all documents by taking the union of

all category vocabularies. Features for a given category are selected by means of

mutual information at each internal node of the tree, using the node’s immediate

children as classes.

In the work by D’Alessio et al. [DMSK00] documents are associated only to leaf

categories of the hierarchy. Two sets of features are associated to each category, one

is positive (features extracted from documents of the category), while the other is

negative (features extracted from documents of sibling categories in the hierarchy).

Dumais and Chen [DC00] use the hierarchical structure for two purposes. First,

to train several SVMs, one for each intermediate node. The sets of positive and

negative examples are constructed from documents of categories at the same level,

and different feature sets are built, one for each category. Second, to classify docu-

ments by combining scores from SVMs at different levels. An empirical comparison

based on a large heterogeneous collection of pages from LookSmart’s web directory

showed small advantages in accuracy for hierarchical models over flat models.

In the system CLASSI by Ng et al. [NGL97], the hierarchical classification of

documents is obtained by combining several linear classifiers according to a tree

structure (hierarchical classifier). Weights of each linear classifier are determined

by means of the perceptron learning algorithm. Two peculiarities of this work are

the use of WORDNET [Mil90] to replace each word with its morphological root form

and the use of the correlation coefficient to select the best subset of words. However,

F1-score values reported on the Reuters dataset are well below those reported by

Yang [Yan99] on the same dataset.

A summary of the referenced papers is reported in Table 4.1 and in Table 4.2.

We are aware that the list of related works summarized in the table is not exhaus-

tive, although it is representative of the most well-known contributions. For the sake

of completeness, we report a brief note on three additional works. Sun and Lim

[SL01] have proposed the use of category-similarity measures and distance-based

measures to consider the degree of misclassification in measuring the classification

performance. Experiments were performed on the Reuters-22173 collection with an

SVMlight Version 3.50 implemented by Joachims [Joa]. Chuang et al. [CTYG00]

have tested a Rocchio-based classifier on a collection of approximately 200 docu-

ments on professional baseball and basketball news. Finally, Tikk and Biró [TB03]

tested a centroid-based classifier on the WIPO-alpha (World Intellectual Property
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Organization, Geneva, Switzerland, 2002)11 English patent database that consists

of about 75000 XML documents distributed over 5000 categories in four levels. Un-

fortunately, studies on the WIPO-alpha collection are not publicly available because

of the strongly business sensitive nature of the research. As future work, we plan

to extend our experimental results to this dataset as well.

Comparison with related work: the method

Our work differs from previous studies in several respects. First, documents can

be associated to both internal and leaf nodes of the hierarchy. Surprisingly, this

aspect is explicitly considered and tested only in [Mla98b] and [RS02]. However,

unlike Mladenić’s work, we consider actual Web documents referenced in the Yahoo!

ontology, and not only the items which briefly describe them in the Yahoo! Web

directories. Other special conditions that are considered in this work are: 1) no

document for some internal nodes; 2) some internal nodes have only one child.

A second difference is in the feature selection process for each internal cate-

gory. In WebClassIII it is based on an upgrade of the technique implemented and

tested in [MEC02], named maxTF × DF 2 × ICF . Unlike other feature selection

methods proposed in the literature on hierarchical document categorization [MG99],

maxTF × DF 2 × ICF answers the demand for terms that are shared by most of

the documents of the same category and possibly no document of other categories.

Moreover, it considers the document (and not a term) as an observation unit.

A third difference is that we do not propose a specific method, but we inves-

tigate a framework for hierarchical text categorization that can be applied to any

classifier that returns a degree of membership (e.g. distance or probability based)

of a document to a category. We applied the framework to three classifiers, two of

which present some variants with respect to the original methods reported in the

literature.

The fourth difference is in the development of a technique for the automated

selection of thresholds for the degree of membership returned by the classifier. The

thresholds are used to determine whether a document has to be passed down to one

of the child categories during the top-down classification process.

Finally, we define new measures for the evaluation of the system performances

in order to capture some aspects related to the “semantic” closeness of the predicted

category to the actual one.

We conclude by observing that the main contribution of this work is the system-

atic investigation of the usage of information provided by the category hierarchy in

all aspects of text categorization, such as definition of training sets, feature sets,

classifiers, threshold-based document classification and evaluation measures.

Comparison with related work: experimental results

Previous studies on hierarchical text categorization have already contributed to

clarifying some aspects that have not been explored in this work. Koller and Sahami

[KS97] experimentally showed that there is a substantial improvement in accuracy

11http://www.wipo.int/
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when feature selection is aggressively employed versus the case where all domain

features are used. This improvement has been observed both in the hierarchical case

and in the flat case for Bayesian classifiers. McCallum et al. [MRMN98] show that

aggressive feature selection is not necessary if shrinkage is used to smooth parameter

estimates. Shrinkage helps especially when training data are sparse, which is the

case when small sets of documents are assigned to leaf categories. Mladenić [Mla98b]

compared six feature selection techniques for automatic document categorization,

based on text hierarchies and her conclusions were in favor of Odds ratio when

combined with a naive Bayes classifier. D’Alessio et al. [DMSK00] investigated

the possibility of restructuring a pre-existing hierarchy, and concluded that the

usage of a hierarchy, either modified or built from scratch, can significantly improve

both the speed and effectiveness of the categorization process. Dumais and Chen

[DC00] explored two ways to combine probabilities returned by the classifiers for

the first and second level of a two-level hierarchy. The multiplicative approach

assigns the document to a leaf if the product of both probabilities exceeds a given

threshold, which is unique for all categories. The Boolean approach assigns the

document to a leaf if the threshold is exceeded at every level. No difference between

the two approaches was observed in terms of F1 measure, hence leading to the

recommendation for the Boolean approach which is the most efficient. Ruiz and

Srinivasan [RS02] reported good results for the (flat) Rocchio classifier when both

training data and features are selected, and categories have a medium/high number

(≥ 15) of training examples. Results reported by Weigend et al. [WWP99], who

observed that the largest gains in average precision for the hierarchical classifier

concern "rare" (i.e., with few training examples) categories, are also consistent

with Ruiz and Srinivasan’s findings. The main difference between the two findings

is that in the work by Ruiz and Srinivasan, rare categories can occur at any node in

the hierarchy, while in the work by Weigend et al. they are always leaf categories.

As to the real advantages of the hierarchical vs. flat approach, no conclusive re-

sult has been reported for predictive accuracy. Koller and Sahami [KS97] observed

that the hierarchical approach appears to provide few benefits when attention is

restricted to simple classifiers, such as naïve Bayes. Dumais and Chen [DC00]

reported minor improvements for hierarchical models over flat models. Similarly,

Ruiz and Srinivasan [RS02] do not show a clear superiority of the HME with re-

spect to Rocchio. On the contrary, McCallum et al. [MRMN98] demonstrate that

shrinkage with a class hierarchy significantly reduces the classification error, Ng et

al. [NGL97] report accuracy improvements of the hierarchical method with respect

to the flat method, and Weigend et al [WWP99] attribute a statistically signifi-

cant overall improvement of 5% for averaged precision to the hierarchical approach.

This confirms our experimental observation that there is an interaction, in terms of

accuracy, between the hierarchical framework and the type of classifier.

All related works examined here show the clear computational advantage of

the hierarchical approach. We have confirmed this conclusion both analytically

and experimentally. This work, however, presents additional empirical findings not

reported elsewhere. They are summarized in the following points:
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1. Among flat classifiers, SVM performs the best across the three datasets.

2. Even though SVM or centroid-based flat classifiers are more accurate than

the corresponding hierarchical classifiers, they tend to commit "more serious"

errors ("severity" is based on a tree-distance measure).

3. As the number of features increases, the classifier trained with a proper feature

set asymptotically tends to the performances of the classifier trained with a

hierarchical feature set.

4. Errors committed by NB and SMV show the same trend, which is different

from the trend of centroids.

5. Increasing the number of the features, the percentage of misclassifications

for NB and SVM increases, while the percentage of "rejected" documents

(unknown error) decreases. This behavior is reversed for centroids.

All these results, which extend those reported in a previous work [CM03] [CMLE03],

are obtained by extensive experimentation on three datasets with category hierar-

chies of different complexity.

4.1.5 Conclusions

Most of the research on text categorization has focused on classifying text documents

into a set of categories with no structural relationships among them. However, in

this case it is difficult to browse or search documents in a large number of categories.

Hierarchies are often used to make large collections of document categories more

manageable, since they permit the application of the well-known principle of divide-

and-conquer. The hierarchical structure is employed in many Internet directories

(e.g. Yahoo and Google Directory) and in text databases (e.g., MEDLINE and

patent databases), as well as in other document management tools (e.g. Netscape

Bookmark). Therefore, whether and how to exploit the additional information on

the hierarchical structure among categories in text categorization is an important

issue that demands systematic investigation.

Our research adds to a growing body of work exploring how hierarchical struc-

tures can be used to improve the efficiency and efficacy of text classification. We

have presented and evaluated a hierarchical text categorization framework that in-

volves the hierarchy of categories in all phases of text categorization, namely feature

extraction, learning, and classification of a new document. Our conclusion is that

for large collections of documents organized in complex hierarchies, the hierarchical

approach can offer two main advantages: efficiency gain and reduction of severity of

classification errors. The former is particularly important when the hierarchy of cat-

egories is subject to changes, since in the flat approach changes affect all classifiers,

while in the hierarchical approach they are all localized. The latter advantage is

quite important if a trained user cannot supervise decisions taken by the document

classifier.

Although we observed good results for the flat SVM across all three datasets used

in our experimental validation of the framework, in the hierarchical approach the
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Work Hierarchy Feature

Sets

Feature

selection

Learning Training

set

Classification

Koller &

Sahami

[KS97]

Doc.s

only at

the leaves

A sepa-

rate fea-

ture set

for each

category

Probabilistic

approach

Naive Bayes

& KDB. A 1-

of-r classifier

for each inter-

nal node

One hierar-

chical train-

ing set per

category

Greedy search

of a single clas-

sification path.

Single category

assignment

McCallum

et al.

[MRMN98]

Doc.s

only at

the leaves

A unique

feature

set built

from

category

vocabu-

laries

Mutual in-

formation

Shrinkage

+ 1-of-r

naive Bayes

classifier.

Parameters

estimated

for each

category.

Single set Both greedy

and extensive

search of classi-

fication paths.

Single category

assignment.

Mladenić

[Mla98b]

Doc.s at

any node

A sepa-

rate fea-

ture set

for each

category

Several

measures

tested

1-of-r naive

Bayes classi-

fier

One hierar-

chical train-

ing set per

category

Extensive

search with

pruning.

Single class

assignment

D’Alessio

et al.

[DMSK00]

Doc.s

only at

the leaves

A posi-

tive and

negative

feature

set per

category

A variant

of the AC-

TION al-

gorithm

Feature

weight esti-

mation.Both

binary and 1-

of-r classifier

One set per

category.

Pos.: docs

of the cat-

egoryNeg.:

docs of

the parent

category

Both greedy

and exten-

sive search

with pruning.

Single or mul-

tiple category

assignment

Dumais

& Chen

[DC00]

Doc.s

only at

the leaves

A sepa-

rate fea-

ture set

for each

category.

Mutual in-

formation

Binary SVM

classifier

One set per

hierarchy

level, with

docs of all

categories

at the same

level

Extensive

search with

pruning. Mul-

tiple category

assignment

Ng et al.

[NGL97]

Doc.s

only at

the leaves

A sepa-

rate fea-

ture set

for each

category

Correlation

coefficient

Binary

Perceptron-

based classi-

fier

One set per

category.

Pos.: docs

of the cat-

egoryNeg.:

some se-

lected docs

Extensive

search. Mul-

tiple category

assignment

Table 4.1: Classification of previous works (1 of 2)
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Work Hierarchy Feature

Sets

Feature

selection

Learning Training

set

Classification

Ruiz &

Srini-

vasan

[RS02]

Doc.s at

any node

A sepa-

rate fea-

ture set

for each

category

Correlation

coefficient,

Mutual in-

formation,

Odds ratio

Neural

Networks

for binary

classification

One set per

category.

Pos.: docs

of the cat-

egoryNeg.:

some se-

lected docs

Extensive

search. Mul-

tiple category

assignment

Weigend

et al.

[WWP99]

Doc.s

only at

the leaves

Both

separate

and

unique

feature

set

LSI and χ2 Neural

Networks

for binary

classification

One hierar-

chical train-

ing set per

category

Extensive

search. Mul-

tiple category

assignment

This

work

Web-

ClassIII

Doc.s at

any node.

Internal

nodes

without

docs and

single-

child are

allowed

A sep-

arate

fea-

ture set

(hierar-

chical or

proper)

for each

internal

category

maxTF ×

DF 2
× IC

1-of-r naive

Bayes,

centroid-

based and

SVM-based

classifiers.

Automatic

threshold

definition

One hierar-

chical train-

ing set per

category

Greedy search

of a single clas-

sification path.

Single category

assignment

Table 4.2: Classification of previous works (2 of 2)
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naive Bayes classifiers, built with proper feature sets, seem to be a valid alternative

to SVM, especially in those application contexts where a "commission error" is

considered more serious than an "omission error".

In this work we have not investigated the possibility of restructuring the original

category hierarchy. Vinokourov and Girolami [VG02] proposed a probabilistic mix-

ture model for the hierarchic partition organization of a collection of documents.

Sona et al. [SVAP04] address the problem of document clustering where documents

are assigned both to the leaves and to internal nodes. An alternative to building

the hierarchy from scratch is restructuring a given hierarchy on the basis of some

training examples. It can be realized by means of a greedy procedure that adds or

removes categories until no further improvements can be made. Hierarchy restruc-

turing can substantially improve the accuracy of the hierarchical approach, which

can eventually give better performance than the flat approach.

Another limitation of this work is the consideration of a single-category assign-

ment rather than the more general case of a multi-category assignment. However,

the multi-category assignment occurs either when the hierarchy appears to be ill-

structured with respect to documents collected over time, or when the same doc-

uments can be actually classified along several dimensions. In the former case,

the single-category assignment can be kept if the hierarchy is restructured. In the

latter case, it would be better to consider a multi-dimensional framework, as that

investigated by Theeramunkong and Lertnattee [TL02]. In the future, we intend to

extend this work by considering the integration of both the multi-dimensional and

the hierarchical frameworks, in order to support WebClass users with OLAP-like

roll-up, drill-down and pivoting operations in an information retrieval context.

4.2 Document Image Analysis

The large and increasing amount of paper documents to be processed daily demands

for new document management systems with abilities to catalog and organize these

documents automatically on the basis of their contents semantics. Personal doc-

ument processing systems that can provide functional capabilities of classifying,

storing, retrieving, and reproducing documents, as well as extracting, browsing,

retrieving and synthesizing information from a variety of documents are in ever-

growing demand [FSN99]. However, they operate on electronic documents and not

on the more common paper documents. This issue is considered in the area of

Document Image Analysis (DIA), which investigates the theory and practice of

recovering the symbol structure of digital images scanned from paper or produced

by computer.

The representation of extracted information into some common data format

is a key issue. Some general data formats (e.g. DAFS [wis95]) and many ad-

hoc formats have been developed for this purpose, but none of them is extensible

and general enough to hold for all different situations. This variety of formats

prevents the easy exchange of data between different environments. A solution to

this problem can come from the XML technology. XML has been proposed as a
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data representation format in general, but it was originally developed to represent

(semi-) structured documents, therefore it is a natural choice for the representation

of the output of DIA systems. XML is also an Internet language, a characteristic

that can be profitably exploited to make information present on paper more quickly

web-accessible and retrievable than distributing the bitmaps of document images

on a web server. Moreover, it is possible to define some hypertext structures which

improve document reading [WS99]. Finally, in the XML document, additional

information on the semantics of the text can be stored in order to improve the

effectiveness of the retrieving. This is a way to reduce the so-called semantic gap in

the document retrieving [ZG02], which corresponds to the mismatch between user’s

request and the way automated search engines try to satisfy these requests.

Commercial OCR systems are still far from supporting the XML format gener-

ation satisfactorily. Most of them can save scanned documents in HTML format,

but generally their appearance on the browser is not similar to the original docu-

ments. Rendering problems, such as missing graphical components, wrong reading

ordering in two-columned papers, missing indentation and broken text lines, are

basically due to poor layout information extracted from the scanned document. In

addition, no information on the semantics of some content portions is associated to

documents saved in HTML format. The extraction of semantics from the document

image requires knowledge technologies, which offer various solutions to the knowl-

edge representation problem and automated reasoning, as well as to the knowledge

acquisition problem by means of machine learning techniques. The importance of

knowledge technologies has led some distinguished researchers to claim that docu-

ment image analysis and understanding belongs to a branch of artificial intelligence

[TYS94], despite most of the contributions fall within the area of pattern recogni-

tion [Nag00]. In this chapter we present the multi-page DIA system WISDOM++12

[MCB03] (whose architecture is knowledge-based and supports all processing steps

required for semantic indexing and storing in XML format [AEM01] and we show

the application of the multi-relational naive Bayesian classifier Mr-SBC in Docu-

ment Understanding tasks.

4.2.1 Processing Documents

The transformation process performed by WISDOM++ (Figure 4.11) consists of the

preprocessing of the raster image of a scanned paper document, the segmentation

of the preprocessed raster image into basic layout components, the classification of

basic layout components according to the type of content (e.g., text, graphics, etc.),

the identification of a more abstract representation of the document layout (layout

analysis), the classification of the document on the ground of its layout and content,

the identification of semantically relevant layout components, the application of

OCR only to those textual components of interest and the storing in XML format

providing additional information on the semantic of the text.

Five of these processing steps are knowledge-based (see Figure 4.12), namely:

1. Classification of basic-blocks

12http://www.di.uniba.it/∼malerba/wisdom++/
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Figure 4.11: WISDOM++ steps
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Figure 4.12: Layout Analysis, Document Classification and Document Understanding

2. Layout analysis

3. Automatic global layout analysis correction

4. Semantic indexing - document image classification

5. Semantic indexing - document image understanding

In this section we briefly describe the WISDOM++ principal steps.

Preprocessing

Document preprocessing consists in the evaluation of the skew angle, the rotation

of the document, as well as the computation of a spread factor. The skew angle of a

document image I is the orientation angle θ of its text baselines. It is positive when

the image is rotated anti-clockwise, otherwise it is negative. The evaluation of the

skew angle is essential, since for the subsequent step of document segmentation, we

use a top-down method, which is quite fast, but generally ineffective when applied

to skewed documents. Once the skew angle has been estimated the document image

can be corrected by means of an inverse rotation operator.

The estimation θ̂ of the actual skew angle θ is obtained as the composition of

two functions: S(I), which returns a sample region R of the document image I, and

E(R), which returns the estimation of the skew angle in the sample region R. The

selection of a sample region is peculiar to WISDOM++ and has the advantage of

reducing the computational cost of the estimation step, while its main disadvantage

is the possibility of errors in the estimation of the dominant (i.e., the most frequent)

skew in documents with many local skews for text lines.

In order to select the sample region WISDOM++ computes both the horizontal

projection profile H of the document image and the average number of pixels per

row (avpx ). Then it extracts a set of regions from H: A region Ri is a sequence of

adjacent rows in H, whose height is greater than avpx/4. In this way, only regions

with prominent peaks will be considered, since E(Ri) is more likely to be close to

the true skew angle θ. Each region is classified as horizontal line, text, or image as
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specified in [AEM99]. Since the focus is on the estimation of the skew angle of text

regions, the system selects, if any, the text region Ri with the maximum average

density of black pixels per row. Otherwise, the system returns the region, classified

as horizontal line or image, satisfying the following conditions: its base is smaller

than 310 pixels and it has the maximum average density of black pixels per row.13

Once the sample region R has been selected, E(R)is computed. Let Hθ be

the horizontal projection profile of R after a virtual rotation of an angle θ. The

histogram Hθ shows sharply rising peaks with a base equal to the character height

when text lines span horizontally, while it presents smooth slopes and lower peaks

when the skew angle is large. This observation is mathematically captured by a

real-valued function, A(θ) =
∑

j∈R

H2
θ (j), which has a global maximum at the correct

skew angle. Thus, finding the actual skew angle means locating the global maximum

value of A(θ). Since this measure is not smooth enough for the application of

gradient techniques, the system adopts some peak-finding heuristics. Details of

these heuristics are reported in [AEM01].

In the preprocessing phase the spread factor of the document image is also

computed. It is defined as the ratio of the average distance between the regions

Ri (avdist) and the average height of the same regions (avheight). In quite simple

documents with few sparse regions this ratio is greater than 1.0, while in complex

documents with closely written text regions the ratio is lower than the unit. The

spread factor is used to define some parameters of the segmentation algorithm.

Separation of text from graphics

Wherever the primary goal of the document analysis process is interpretation of text

data, graphic data present within the digitized document must be first separated

from the text so that subsequent processing stages may operate exclusively on the

textual information. The separation of text from graphics is performed into two

steps: image segmentation and block classification. The former is the identification

of rectangular blocks enclosing content portions while the latter aims at discrimi-

nating blocks enclosing text from blocks enclosing graphics (pictures, drawings and

horizontal/vertical lines).

WISDOM++ segments the reduced document image into rectangular blocks

by means of an efficient variant of the Run Length Smoothing Algorithm (RLSA)

[WCW82]. The RLSA applies four operators to the document image:

1. horizontal smoothing with a threshold Ch;

2. vertical smoothing with a threshold Cv;

3. logical AND of the two smoothed images;

4. additional horizontal smoothing with another threshold Ca.

Although it is conceptually simple, this algorithm requires scanning the image

four times. WISDOM++ implements a variant that scans the image only twice,

13When no full region satisfying these conditions exists, a sub-region of exactly 310 pixel is

selected.
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Figure 4.13: Adaptive threshold definition depending on the spread factor.

with no additional cost [SC96]. Furthermore, the smoothing parameters Cv and Ca

are adaptively defined depending on the spread factor computed during the skew

evaluation process, while Ch is set to one tenth of the number of columns in the

reduced bitmap (See Figure 4.13).

The segmentation algorithm returns blocks that may contain either textual or

graphical information. In order to facilitate subsequent document processing steps,

it is important to classify these blocks according to the type of content: text block,

horizontal line, vertical line, picture (i.e., halftone images) and graphics (e.g., line

drawings). The classification of blocks is performed by means of a decision tree

automatically built from a set of training examples (blocks) of the five classes. The

choice of a "treebased" method is due to its inherent flexibility, since decision trees

can handle complicated interactions among features and give results that can be

easily interpreted.

The numerical features used by the system to describe each block are the fol-

lowing:

• height : height of the reduced image block;

• length: length of the reduced image block;

• area: area of the reduced image block (height*length);

• eccen: eccentricity of the reduced image block (length/height);

• blackpix : total number of black pixels in the reduced image block;

• bw_trans: total number of black-white transitions in all rows of the reduced

image block;
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• pblack : percentage of black pixels in the reduced image block (blackpix/area);

• mean_tr : average number of black pixels per black-white transition (black-

pix/bw_trans);

• F1: short run emphasis;

• F2: long run emphasis;

• F3: extra long run emphasis.14

Given a block description consisting of the above eleven features, the tree-based

classification system performs a sequence of tests which result in the determination

of the type of the block. The sequence of tests can vary from block to block, and

the number of different sequences equals the number of leaves in the decision tree.

For purposes, the learning algorithm ITI 2.0 [Utg94] is integrated in WISDOM++.

Layout Analysis

The result of the segmentation process is a list of classified blocks, corresponding

to printed areas in the page image. Each block is described by a pair of coordi-

nates, namely top left-hand corner and bottom right-hand corner, and the type.

The number of blocks is generally less than a hundred; thus, a segmented page is

certainly easier to manage than the original bitmap. However, this new page repre-

sentation is still too detailed for learning rules used in document classification and

understanding. The perceptual organization process that aims to detect structures

among blocks is called the layout analysis. The result is a hierarchy of abstract

representations of the document image, the geometric (or layout) structure. The

leaves of the layout tree (lowest level of the abstraction hierarchy) are the blocks,

while the root represents the whole document.

In multi-page documents, the root represents a set of pages. A page may group

together several layout components, called frames, which are rectangular areas of

interest in the document page image. An ideal layout analysis should produce a set

of frames, each of which can be associated with a distinct logical component, such

as title and author of a scientific paper. In practice, however, a suboptimal layout

structure, in which it is still possible to distinguish the logical meaning of distinct

frames, should be considered a good output of the layout analyzer.

The various approaches to the extraction of the layout structure can be classified

in two distinct dimensions: 1) direction of construction of the layout tree (top-down

or bottom-up), and 2) amount of explicit knowledge used during the layout analysis.

As to the second dimension, Nagy and his colleagues [NKK+88] distinguish three

levels of knowledge in the layout structure of a document:

• Generic knowledge (e.g., type base lines of a word are collinear).

• Class-specific knowledge (e.g., no text line is lateral to a graphical object).

• Publication-specific knowledge (e.g., maximum type size is 22 points).

14Computed using the following thresholds: T1=10 and T2=20 [WS89].
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They observe that knowledge used in bottom-up layout analysis is necessarily

different from that used for top-down processing: it is much less document specific.

In addition, we note that knowledge used in top-down approaches is typically derived

from the relations between the geometric and the logical structures of specific classes

of documents.

In Wisdom++, the applied page decomposition method is hybrid, since it com-

bines a variant of the RLSA to segment the document image and a bottom-up layout

analysis method to assemble basic blocks into larger components called frames.

More precisely, the layout analysis is done in two steps:

1. A global analysis of the document image in order to determine possible ar-

eas containing paragraphs, sections, columns, figures and tables. This step is

based on an iterative process, in which the vertical and horizontal histograms

of text blocks are alternatively analyzed in order to detect columns and sec-

tions/paragraphs, respectively.

2. A local analysis of the document to group together blocks which possibly fall

within the same area. Three perceptual criteria are considered in this step:

proximity (e.g. adjacent components belonging to the same column/area are

equally spaced), continuity (e.g. overlapping components) and similarity (e.g.

components of the same type, with an almost equal height).

Pairs of layout components that satisfy some of these criteria may be grouped

together. Each layout component is associated with one of the following types: text,

horizontal line, vertical line, picture, graphic and mixed. When the constituent

blocks of a logical component are homogeneous, the same type is inherited by the

logical component; otherwise, the associated type is set to mixed. The layout

structure extracted by WISDOM++ is a hierarchy with six levels: basic blocks,

lines, set of lines, frame1, frame2, pages.

Experimental results proved the effectiveness of this knowledge-based approach

on images of the first page of papers published in conference proceedings and jour-

nals [AEM01]. However, performance degenerates when the system is tested on

intermediate pages of multi-page articles, where the structure is much more vari-

able, due to the presence of formulae, images, and drawings that can stretch over

more than one column, or are quite close. The majority of errors made by the

layout analysis module were in the global analysis step, while the local analysis step

performed satisfactorily when the result of the global analysis was correct.

To avoid this problem, WISDOM++ supports the user during the correction of

the results of the global analysis. This is done by allowing the user to correct the

results of the global analysis and then by learning rules for layout correction from

his/her sequence of actions [BCEM03] [MEA+03]

Global analysis aims to determine the general layout structure of a page and

operates on a tree-based representation of nested columns and sections. The levels

of columns and sections are alternated 4.14, which means that a column contains

sections, while a section contains columns. At the end of the global analysis, the

user can only see the sections and columns that have been considered atomic, that
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Figure 4.14: Layout tree. Columns and sections are alternated.

is, not subject to further decomposition. The user can correct this result by means

of three different operations:

• Horizontal splitting: a column/section is cut horizontally.

• Vertical splitting: a column/section is cut vertically.

• Grouping: two sections/columns are merged together.

After each splitting/grouping operation, WISDOM++ recomputes the result of

the local analysis process, so that the user can immediately perceive the final effect

of the requested correction and can decide whether to confirm the correction or not.

Rules for the automated correction of the layout analysis can be automatically

learned by means of the learning system ATRE [Mal03]. The learning problem

solved by ATRE can be formulated as follows:

Given

• a set of concepts C1, C2, .., Cr to be learned,

• a set of training observations O described in a language LO,

• a user’s preference criterion PC,

Find a (possibly recursive) logical theory T for the concepts C1, C2, . . . , Cr such

that T is complete and consistent with respect to O and satisfies the preference

criterion PC. In the context of the global analysis correction, the set of concepts to

be learned are split(X)=horizontal, split(X)=vertical, group(X,Y)=true, since we

are interested to find rules predicting both when to split horizontally/vertically a

columns/section and when to group two columns/section. No rule is generated for

the case split(X)=no_split and group(X)=false. The preference criterion PC is a
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set of conditions used to discard some solutions and favor others. In particular,

we prefer short rules that explain a high number of positive examples and a low

number of negative examples.

In practice ATRE learns operations that are expressed as a set of “production”

rules in the form of an antecedent and a consequent, where the antecedent expresses

the precondition to the application of the rule and the consequent expresses the

action to be performed in order to modify the layout structure.

Document Classification

After having detected the layout structure, the logical components of the document,

such as title, authors, sections of a paper, can be identified. The logical components

can be arranged in another hierarchical structure, which is called logical structure.

The logical structure is the result of repeatedly dividing the content of a document

into increasingly smaller parts, on the basis of the human-perceptible meaning of

the content. The leaves of the logical structure are the basic logical components,

such as authors and title. The heading of an article encompasses the title and

the author and is therefore an example of composite logical component. Composite

logical components are internal nodes of the logical structure. The root of the logical

structure is the document class (e.g. “scientific paper”, “letter” or “censorship card”).

WISDOM++ supports two-level logical structures, where the document class is the

only composite logical component.

The problem of finding the logical structure of a document can be cast as the

problem of associating some layout components with a correspondent logical com-

ponent. In WISDOM++ this mapping is limited to the association of a page with

a document class (document classification) [EMS+90] and the association of second

frames with basic logical components (document understanding) [TA90].

Classification of multi-page documents is performed by matching the layout

structure of the first page against models of classes of documents. These models

capture the invariant properties of the images/layout structures of documents be-

longing to the same class. They are rules expressed in a first-order logic language,

so that the document classification problem can be reformulated as a matching test

between a logic formula that describes a model and another logic formula that rep-

resents the image/layout properties of the first page. The choice of a first-order logic

language answers to the requirement of flexibility and generality. In this language

unary function symbols, called attributes, are used to describe properties of a single

layout component (e.g. height and length), while binary predicate and function

symbols, called relations, are used to express spatial relationships between layout

components. A complete list of attributes and relations is reported in Table 4.3. A

partial description of the page layout of the document in Figure 4.15 follows:

image_lenght(1)=3468, image_width(1)=2418,

part_of(1,2)=true, part_of(1,3)=true, ..., part_of(1,25)=true,

width(2)=15, width(3)=20, ..., width(25)=429,

height(2)=239, height(3)=4, ..., height(25)=24,
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Figure 4.15: Example of layout components at the Frame 2 level

type_of(2)=text, type_of(3)=text, ..., type_of(25)=text,

x_pos_centre(2)=20, x_pos_centre(3)=398, ..., x_pos_centre(25)=334,

y_pos_centre(2)=420, y_pos_centre(3)=28, ..., y_pos_centre(25)=558,

on_top(3,9)=true, on_top(9,8)=true, ..., on_top(19,20)=true,

to_right(2,11)=true, to_right(2,15)=true, ..., to_right(25,5)=true,

alignment(3,13)=only_right_col, alignment(9,12)=only_right_col, ...,

alignment(7,8)=only_upper_row.

The constant 1 denotes the whole page, while the constants 2, 3, . . . , 25 denote the

layout components at the frame2 level. Indeed, in order to reduce the computational

complexity of the classification problem, WISDOM++ restricts the description of

the document to the properties of the frame2 layout components alone. The de-

scription is a logical conjunction of literals of the form:

f(t1, ..., tn) = V alue

where f is an n-ary function symbol, that is an attribute or relation, ti’s are constant

terms, and Value is one of the possible values of f ’s domain.

An example of model defined by a single rule is the following:

class(X1)=dif_cen_decision

part_of(X1,X2)=true,

y_pos_centre(X2) ∈ [754 .. 841],

alignment(X2,X3)=only_left_col.
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Attribute/relation

name

Extracted

from

Definition

image_length(doc) Image Integer domain: (1 .. 5000)

image_width(doc) Image Integer domain : (1 .. 4000)

width(block) Page layout Integer domain: (1..640)

height(block) Page layout Integer domain: (1..890)

x_pos_centre(block) Page layout Integer domain: (1..640)

y_pos_centre(block) Page layout Integer domain: (1..875)

type_of(block) Page layout Nominal domain: text, hor_line, im-

age, ver_line, graphic, mixed

part_of(page,block) Page layout Boolean domain: true if page con-

tains block

on_top(block1,block2) Page layout Boolean domain: true if block1 is

above block2

to_right(block1,block2) Page layout Boolean domain: true if block2 is to

the right of block1

alignment(block1,block2) Page layout Nominal domain:

only_left_col, only_right_col,

only_middle_col, both_columns,

only_upper_row, only_lower_row,

only_middle_row, both_rows

Table 4.3: Attributes and relations used to describe both the models and the documents to be

classified
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where X1 is a variable denoting the whole page, while the remaining variables X2

and X3 denote two layout components at the frame2 level.

The learning system embedded in WISDOM++ for document classification is

ATRE [Mal03]. The learning problem solved by ATRE can be formulated as follows:

Given

• a set of concepts C1, C2, . . . , C r to be learned,

• a set of observations O described in a language LO,

• a background knowledge BK described in a language LBK ,

• a language of hypotheses LH ,

• a generalization model Γ over the space of hypotheses,

• a user’s preference criterion PC,

Find a (possibly recursive) logical theory T for the concepts C1, C2, . . . , C r,

such that T is complete and consistent with respect to O and satisfies the preference

criterion PC.

As to the representation languages, the basic component is the literal in the two

distinct forms:

f(t1, . . . , tn) = Value (simple literal) f(t1, . . . , tn) ∈ Range (set literal),

where f and g are function symbols called descriptors, ti’s and si’s are terms, and

Range is a closed interval of possible values taken by f . Some examples of literals are

the following: color(X 1)=red, height(X 1) ∈ [1.1 .. 1.2], and on_top(X, Y)=true.

Document Image Understanding

In document image understanding, layout components are associated with logical

components. This association can theoretically affect layout components at any

level in the layout hierarchy. However, in WISDOM++ only frame2 components

are associated with some component of the logical hierarchy. Moreover, only layout

information is used in document image understanding. This approach differs from

that proposed by other authors [KDK00] which additionally make use of textual

information (e.g. text pattern), font information (e.g. style, size, boldness, etc.)

and universal attributes (e.g. number of lines) given by the OCR. This diversity

is due to a different conviction on when an OCR should be applied. We believe

that only some layout components of interest for the application should be subject

to OCR (e.g., title and authors, but not figures and tables of a scientific paper),

hence document understanding should precede text reading and cannot be based

on textual features. Two basic assumptions are made:

1. Documents belonging to the same class have a set of relevant and invariant

layout characteristics (page layout signature).

2. It is possible to identify logical components by using only layout information.

In section 4.2.3 we will explain how we integrate WISDOM++ with Mr-SBC to

solve the document Understanding problem.
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Generating a document in XML format

Data concerning the result of document processing can be stored in XML format so

that the resulting XML document, which includes semantic information extracted

in the document analysis and understanding processes, is accessible via web through

queries at a high level of abstraction.

The simplest transformation consists in attaching document images to XML

pages, after having converted bitmaps into a format supported by most browsers

(e.g. GIF or JPEG). Nevertheless, this approach presents at least four disadvan-

tages. First, compressed raster images are still quite large and their transfer can

be unacceptably slow. Second, the original document can only be viewed and not

edited. Third, in the case of multi-page documents, pages can be presented only

in a sequential order, thus missing the advantages a hypertext structure which

supports document browsing. Fourth, additional information about the semantics

of the content cannot be represented, hence no semantics-based retrieval facility

can be supported. Therefore, it is important to transform document images into

XML format by integrating textual, graphical, layout and semantic information ex-

tracted in the document analysis and understanding processes. Moreover, the XML

specification includes a facility for physically isolating and separately storing any

part of a document, for example, storing data without contamination of formatting

information.

A DTD is associated to each document class and the XML document refers to

the appropriate DTD. In the following, an example of a DTD generated by WIS-

DOM++ for the class “tpami” is reported.

<!– standard DTD file for tpami class –>

<!ELEMENT tpami (logic-structure?, geometric-structure)>

<!ELEMENT logic-structure (undefined |affiliation |page-number |figure |caption

|index-term |running-head |author|title |abstract |biografy|references |paragraph |section-

title |subsection-title)*>

<!ELEMENT undefined (paragraph)*>

<!ATTLIST undefined ID NMTOKEN #IMPLIED>

<!ELEMENT affiliation (paragraph)*>

<!ATTLIST affiliation ID NMTOKEN #IMPLIED>

<!ELEMENT page-number (paragraph)*>

<!ATTLIST page-number ID NMTOKEN #IMPLIED>

<!ELEMENT figure (paragraph)*>

<!ATTLIST figure ID NMTOKEN #IMPLIED>

<!ELEMENT caption (paragraph)*>

<!ATTLIST caption ID NMTOKEN #IMPLIED>

<!ELEMENT index-term (paragraph)*>

<!ATTLIST index-term ID NMTOKEN #IMPLIED>

<!ELEMENT running-head (paragraph)*>

<!ATTLIST running-head ID NMTOKEN #IMPLIED>

<!ELEMENT author (paragraph)*>
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<!ATTLIST author ID NMTOKEN #IMPLIED>

<!ELEMENT title (paragraph)*>

<!ATTLIST title ID NMTOKEN #IMPLIED>

<!ELEMENT abstract (paragraph)*>

<!ATTLIST abstract ID NMTOKEN #IMPLIED>

<!ELEMENT biografy (paragraph)*>

<!ATTLIST biografy ID NMTOKEN #IMPLIED>

<!ELEMENT references (paragraph)*>

<!ATTLIST references ID NMTOKEN #IMPLIED>

<!ELEMENT paragraph (paragraph)*>

<!ATTLIST paragraph ID NMTOKEN #IMPLIED>

<!ELEMENT section-title (paragraph)*>

<!ATTLIST section-title ID NMTOKEN #IMPLIED>

<!ELEMENT subsection-title (paragraph)*>

<!ATTLIST subsection-title ID NMTOKEN #IMPLIED>

<!ELEMENT paragraph (#PCDATA|TAB)*>

<!ELEMENT TAB EMPTY>

<!ELEMENT geometric-structure (image, blocklevels)>

<!ELEMENT image EMPTY>

<!ATTLIST image urlimage CDATA #REQUIRED

length NMTOKEN #REQUIRED

width NMTOKEN #REQUIRED

formatimage NMTOKEN #REQUIRED

resolution NMTOKEN #REQUIRED>

<!ELEMENT blocklevels (basic-block, line, setofline, frame1, frame2)>

<!ELEMENT basic-block (block+)>

<!ELEMENT line (block+)>

<!ELEMENT setofline (block+)>

<!ELEMENT frame1 (block+)>

<!ELEMENT frame2 (block+)>

<!ATTLIST basic-block numBB NMTOKEN #REQUIRED>

<!ATTLIST line numL NMTOKEN #REQUIRED>

<!ATTLIST setofline numSL NMTOKEN #REQUIRED>

<!ATTLIST frame1 numF1 NMTOKEN #REQUIRED>

<!ATTLIST frame2 numF2 NMTOKEN #REQUIRED>

<!ELEMENT block EMPTY>

<!ATTLIST block indexblock NMTOKEN #REQUIRED

top NMTOKEN #REQUIRED

bottom NMTOKEN #REQUIRED

left NMTOKEN #REQUIRED

right NMTOKEN #REQUIRED

physical-type NMTOKEN #REQUIRED

subblockslist CDATA #IMPLIED
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label (undefined|affiliation |page-number |figure |caption |index-term |running-

head |author |title |abstract |biografy |references |paragraph |section-title |subsection-

title) "undefined" >

The keyword ELEMENT introduces an element declaration which represents

the information on the semantics of the content (e.g. affiliation, page-number, fig-

ure, caption, index-term, running-head, author, title, abstract, biografy, references,

paragraph, section-title, subsection-title, undefined15). An element may have no

content at all, may have a content of only text, of only child element, or of a

mixture of elements and text. For example, in the DTD presented the content of

the element tpami is a child element, which is structured. An attribute may be

associated with a particular element in order to provide refined information on an

element. Examples of attributes are the URL, the height, the width, the format and

the resolution of a document image. All the attributes are declared separately from

the element, but are usually declared together, in the attribute list declaration. It

is also noteworthy that the DTD generated by WISDOM++ distinguishes the logi-

cal structure (logic-structure) from the layout structure (geometric-structure). The

layout structure is used for storing purposes, in particular it is used to build XSL

specifications in order to render the document similar in appearance to the original

document, since XML language is not concerned with visualization aspects.

The XML document generated can be stored in an XML-based Content Man-

agement System (XMLCM), which is the back-end of WISDOM++. XMLCM uses

the XML language to represent/manage documents, structured data and metadata

(DTD or XML Schema) and to exchange them over Internet. Because Internet-

based applications deal with complex, heterogeneous and worldwide information,

the XMLCM is based on basic open communication standards for information

processing, such as HTTP, XML and SOAP.

4.2.2 Wisdom++ architecture

The general architecture of WISDOM++, shown in 4.16, integrates several compo-

nents to perform all the steps reported in the previous section.

The System Manager manages the system by allowing user interaction and by

coordinating the activity of all other components. It interfaces the system with the

data base module in order to store intermediate information. The System Manager

is also able to invoke the OCR on textual layout blocks which are relevant for the

specific application (e.g., title or authors).

The Image Processing Module is in charge of the image preprocessing facilities

and is able to perform a series of image-to-image transformations. The Layout

Analysis Module is in charge of the separation of text from graphics and the layout

analysis. It interfaces the ITI decision tree learner for basic block classification.

The Production System for Layout Correction Module is able to use production

rules extracted by ATRE, it operates with a forward-chaining control structure.

15The element undefined refers to all those logical components of no specific interest for the

application.
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Figure 4.16: WISDOM++ architecture
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The production system is implemented with a theorem prover, using resolution to

do forward chaining over a full first-order knowledge base. The system maintains

a knowledge base (the working memory) of ground literals describing the layout

tree. Ground literals are automatically generated by WISDOM++ after the execu-

tion of an operation. In each cycle, the system computes the subset of rules whose

condition part is satisfied by the current contents of the working memory (match

phase). Conflicts are solved by selecting the first rule in the subset. The Production

System for Layout Correction Module returns a hierarchy of abstract representa-

tions of the document image, the geometric (or layout) structure, which can be

modeled by a layout tree. The Document Classification Module is in charge of the

document classification. It interfaces the system ATRE for the learning phase. The

Document understanding Module is in charge of the document understanding phase

and interfaces the system Mr-SBC that is able to induce a statistical classification

model on the basis of the document descriptions. Mr-SBC aims at automatically

associating some layout components with components of a logical hierarchy. Af-

ter document classification and understanding, WISDOM++ actually replaces the

low-level image feature space (based on geometrical and textural features) with a

higher-level semantic space. Query formulation can then be performed using these

higher level semantics, which are much more comprehensible to the user than the

low level image features [Bra00]. Finally, the XML Generator Module is used to

save the document in XML format. It transforms document images into XML for-

mat by integrating textual, graphical, layout and logical information extracted in

the document analysis and understanding processes.

4.2.3 Naive Bayes Multi-relational Classification in Docu-

ment Image Understanding

In the proposed framework, WISDOM++ makes use of Mr-SBC for the Document

Image Understanding process in order to recognize and classify significant logical

components in the processed documents.

Mr-SBC fits well for the task in hand for three important reasons: First, the

preprocessing step is straightforward and simply consists in creating a Database

schema by isolating and transforming interesting relational tables that are already

stored in the WISDOM++ database. This is performed by means of SQL views.

The preprocessing would be much more complicate in the case of systems that work

on a set of main-memory Prolog facts. In fact, facts correspond to tuples stored on

relational databases, some pre-processing is required in order to transform tuples

into facts. Anyway, this has some disadvantages. First, only part of the original

hypothesis space implicitly defined by foreign key constraints can be represented

after some pre-processing. Second, much of the pre-processing may be unnecessary,

since a part of the hypothesis described by Prolog facts space may never be explored,

perhaps because of early pruning. Third, in applications where data can frequently

change, pre-processing has to be frequently repeated. Finally, database schemas

provide the learning system free of charge with useful knowledge of data model that

can help to guide the search process. This is an alternative to asking the users to
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specify a language bias.

Second, in the Document Image Understanding problem, the spatial location of

layout components should be taken into account. This because the model should

capture some invariant aspects related to both spatial properties of layout compo-

nents and spatial relations among components (directional and topological). These

aspects are implicitly defined by the relative positioning of spatial objects with re-

spect to some reference system. Modeling these spatial relations is a key challenge

in classification problems that arise in spatial domains [SSV+02] and Mr-SBC is

able to deal with such relations.

Third, we use a statistical classifier that returns, in addition to the prediction,

the confidence of the classification. On the contrary, in some ILP systems the result

is a categorical output which convey no information on the potential uncertainty

in classification. Small changes in the attribute values of an object being classified

may result in sudden and inappropriate changes to the assigned class. Missing

or imprecise information may prevent a new object from being classified at all.

This is an important aspect in Document Image Understanding, where data often

present irregularities and noise due to the scanning procedure, to the format of the

document, to ink specks and so on.

Mr-SBC for Document Understanding

Although Mr-SBC can be used to solve the Document Understanding problem,

some modifications are necessary. In particular, it is necessary to modify the search

strategy in order to allow acyclic paths. As observed by Taskar and his colleagues

[TAK02], the acyclicity constraint hinders representation of many important rela-

tional dependencies, so decreasing in flexibility. This is particularly true in the task

in hand, where a relation between two logical components is modeled by means

of a relational table that expresses the existence of the topological relation. For

example, suppose we need to model the relation on_top between two blocks, in

a database point of view, this is realized by means of the table block and a table

on_top containing two foreign keys to the table block (see figure 4.17). The refer-

enced blocks are considered one on top the other. In the original formulation of the

problem solved by Mr-SBC, it is not possible to meet the same table in a foreign

key path (see section 3.3.1) so, it is not possible to take into account the topological

relation. To avoid this problem, we modified the definition of foreign key path,

allowing cyclic paths:

Definition 4.1 A foreign key path is an ordered sequence of tables ϑ = (Ti1 , Ti2 , . . . , Tis
),

where

• ∀j = 1, ..., s, Tij
∈ T

• ∀j = 1, ..., s − 1, Tij+1
has a foreign key to the table Tij

or Tij
has a foreign

key to the table Tij+1

where T is the set of tables of a relational database.
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Figure 4.17: Modeling a topological relation

The second problem concerns the concepts to be learned. In Document Under-

standing, it is possible that the same layout component is associated to two different

logical labels. For example, suppose that the layout analysis is not able to separate

the page number and the running head of a scientific paper. In this case we have

a single layout component that contains two logical components: the page number

and the running head. In this case the classifier should associate that component

with two labels. For this reason, it is necessary to resort to a multi-classification

problem. In particular, we adopted the following solution: we learned a binary

classifier for each class, each classifier is able to identify examples belonging to that

class and examples that do not belong to it. This solution is usually adopted in text

Categorization when the problem is to establish if a document belongs to a particu-

lar class or not [Seb02]. It is noteworthy that in the learning step we independently

train one classifier at a time because Mr-SBC is not able to learn multiple concepts

in parallel.

The use of multiple classification leads to another problem: the unbalanced

datasets. In fact, data can be characterized by a predominant number of negative

examples with respect to the number of positive examples. Several approaches that

face the problem of the unbalanced datasets have been proposed in the literature.

Some of them are based on a sampling of examples in order to have a balanced

dataset [MG99]. Other approaches are based on a different idea: given the class,

a ranking of all the examples in the test set from the most probable member to

the least probable member is computed and then, a correctly calibrated estimate
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of the true probability that each test example is a member of the class of inter-

est is computed [ZE01]. In other words, a probability threshold that delimitates

the membership and the non-membership of a given test example to the class is

computed. In our approach, we exploit the consideration that the naive Bayesian

classifier for two-class problems tends to rank examples well (even if the classifier

does not return a correct probability estimation)[ZE01](section 2.2.3). Our thresh-

old is determined by maximizing the AUC (Area Under the ROC Curve) [PF01]

[LF03b]. The ROC curve is defined in the ROC space that denotes the coordinate

system used for visualizing classifier performance. In ROC space, TP (True Positive

rate) is represented on the Y axis and FP (False Positive Rate) is represented on

the X axis. Each classifier is represented by the point in ROC space corresponding

to its (FP; TP) pair. For models that produce a continuous output, e.g., posterior

probabilities, (such as naive Bayesian) TP and FP vary together as a threshold on

the output is varied between its extremes (each threshold defines a classifier); the

resulting curve is called the ROC curve.

The expected cost of applying the classifier represented by a point (FP,TP) in

ROC space is:

cost = P (Ci) · (1− TP ) · c(¬Ci;Ci) + P (¬Ci) · FP · c(Ci;¬Ci) (4.15)

where P (Ci) is the a-priori probability that an example belongs to the class Ci,

P (¬Ci) is the a-priori probability that an example does not belong to the class Ci,

c(¬Ci;Ci) is the cost of classifying a positive example as negative (for the class Ci)

and c(Ci;¬Ci) is the cost of classifying a negative example as positive. We denote

as CostRatio the value:

CostRatio =
c(Ci;¬Ci)

c(¬Ci;Ci)
(4.16)

Use and integration

WISDOM++ allows users, in the training phase, to manually label layout compo-

nents by means of a user interface. The user can assign one or more label to a frame2

component, user’s labels are automatically stored in the WISDOM++ Database.

In figure 4.18, a system interface snapshot is shown. In particular, it represents

the processing phase of the first page of a paper appeared in IEEE Transactions on

Pattern Analysis and Machine Intelligence. The document has been acquired by a

scanner and has been processed as specified in section 4.2.1.

Once the manual labeling has been completed, the user can run the learner. Mr-

SBC is activated by WISDOM++ and operates on data stored in the WISDOM++

Database. When Mr-SBC completes the learning, the classification model is stored

in the filesystem and WISDOM++ can use it to automatically recognize layout

components of a new testing document.

The Mr-SBC database input schema (see figure 4.19) represents the logical struc-

ture of a document image. In particular, we represent both locational features,

geometrical features, topological features and aspatial features:
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Figure 4.18: Training the system
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Figure 4.19: Mr-SBC Database input schema

• Locational features identify the position of the component with respect to a

coordinate system. They are: x_pos_center and y_pos_center and represent

the coordinates of the centroid along x/y axis of a logical component.

• Geometrical features are width and height and represent the dimensions of a

logical component.

• Topological features represent relations between two components. They are:

on_top and to_right, that define locational relations; in addition we use:

only_right_col, only_middle_row, only_lower_row, only_middle_col, only_left_col

and only_upper_row that define the alignment of components.

• We also use the aspatial feature type_of that specifies the content type of a

logical component (e.g. image, text, horizontal line).
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4.2.4 Experimental Results

Input Data Description

To investigate the applicability of Mr-SBC in Document Understanding, we consid-

ered twenty-one papers, published as either regular or short, in the IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, in the January and February

issues of 1996. Each paper is a multi-page document; therefore, we processed 197

document images in all. For 197 document images the user manually labeled layout

components.

The total number of labeled components is 2436, that is, in average, 116 compo-

nents per document, 12.37 per page. About 74% of frame2 layout components have

been labeled. The remaining components are considered as “irrelevant” for the task

in hand or are considered as “noise”. They are automatically considered undefined.

A description of the dataset is reported in table 4.4.

The performance of the learning task is evaluated by means of a 5-fold cross-

validation, that is, the set of twenty-one documents is first divided into five blocks

(or folds) 4.4, and then, for every block, Mr-SBC is trained on the remaining blocks

and tested on the hold-out block. For each fold, Mr-SBC is trained 16 times, i.e.

one for each concept to be learned.

In table 4.5, the set of concepts is reported. The table also reports the aver-

age number of positive examples and negative examples for each learning problem.

The unbalanced nature of datasets confirms the need of a thresholding procedure

(described in section 4.2.3).

The dataset is analyzed by varying the CostRatio value in the set of values

{1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. Mr-SBC has been executed with the following

parameters: MAX_LEN_PATH=4 and MAX_GAIN= 0.1.

Results

For each trial, several measures have been recorded: accuracy, precision and recall,

and the number of omission and commission errors. .

The first measure is the standard accuracy defined in machine learning to eval-

uate the performances of 1-of-r classifiers.

The precision for a category Ci, denoted as precision(Ci), measures the per-

centage of correct assignments among all the documents assigned to Ci, while the

measure recall(Ci) gives the percentage of correct assignments in Ci among all

the documents that should be assigned to Ci. For the whole category space, say

C1, . . . , CL, the µ − AV G (micro average) of precision and recall are defined as

follows:

µAV G− precision =

L
∑

i=1

TP (Ci)

L
∑

i=1

(TP (Ci) + FP (Ci)

(4.17)
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Name

of the

multi-page

document

No. of

pages

No. of la-

beled com-

ponents

Tot No.

of compo-

nents

Fold No. 1

TPAMI1 13

476 597
TPAMI13 3

TPAMI14 10

TPAMI16 14

Total 40

Fold No. 2

TPAMI8 5

519 684
TPAMI15 15

TPAMI18 10

TPAMI24 6

Total 36

Fold No. 3

TPAMI3 15

481 697
TPAMI7 6

TPAMI12 6

TPAMI20 14

Total 41

Fold No. 4

TPAMI9 5

541 774
TPAMI11 6

TPAMI119 20

TPAMI21 11

Total 42

Fold No. 5

TPAMI4 14

419 549

TPAMI6 1

TPAMI10 3

TPAMI17 13

TPAMI23 7

Total 38

Total 21 docs 197 2436 3301

Table 4.4: Dataset description: Distribution of pages and examples per document grouped by 5

folds.
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Positive Examples

Fold1 Fold2 Fold3 Fold4 Fold5 Avg

Pos

Avg

Neg

Abstract 4 4 4 4 5 4.2 656

Affiliation 4 5 5 4 4 4.4 655.8

Author 5 4 6 4 6 5 655.2

Biography 9 3 2 4 3 4.2 656

Caption 38 16 49 42 38 36.6 623.6

Figure 52 41 76 98 68 67 593.2

Formulae 50 118 61 62 36 65.4 594.8

Index Term 3 2 2 1 3 2.2 658

Reference 9 7 8 9 7 8 652.2

Table 9 10 15 6 6 9.2 651

Page Number 33 35 35 41 36 36 624.2

Paragraph 181 207 159 207 158 182.4 477.8

Running Head 45 37 41 42 38 40.6 619.6

Section Title 18 17 12 10 5 12.4 647.8

Subsection Title 11 9 1 3 1 5 655.2

Title 5 4 5 4 5 4.6 655.6

Total 476 519 481 541 419

Table 4.5: Dataset description: concepts and distribution of examples

µAV G− recall =

L
∑

i=1

TP (Ci)

L
∑

i=1

(TP (Ci) + FN(Ci)

(4.18)

where TP (Ci) is the number of True Positive examples for a category Ci, FP (Ci)

is the number of False Positive examples for a category Ci and FN(Ci) is the number

of False Negative examples for a category Ci (see Table 4.6).

category Ci Expert Judgment

YES NO

Classifier Judgment YES TP (Ci) FP (Ci)

NO FN(Ci) TN(Ci)

Table 4.6: Contingency Table for Ci

Omission errors occur when a layout component is excluded from a category

when it truly does belong to that category, while Commission errors occur when

a layout component is included into a category when it does not belong to that

category.

In table 4.7 the accuracy is reported. The results are obtained by averaging

the accuracy over the 5 folds and then, by averaging the obtained values varying
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CostRatio in the set of values {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. Results show that

the accuracy of the decision taken strongly depends on the concept to be learned.

For example Mr-SBC gives better results for the concepts “Running Head” and

“Page Number” than “Figures” and “Paragraphs”. This can be explained by the

intrinsic simplicity of identifying a component rather than another in a document

page taking into account its layout properties.

On the other hand, if we compare this results with the results obtained by the

trivial classifier that returns the most probable class (i.e. False for each concept),

we note that, in terms of accuracy, it is often better to assign the “undefined” class

to each logical components. This is not true in the case of frequent concepts (e.g.

“paragraph”), where the trivial classifier would return a lower accuracy (in the case

of “paragraph” is 0.618250314), but when the concept is characterized by a very

low number of examples, the situation is different and, in such case, it is important

to assign a higher cost to omission errors rather than commission errors increasing

CostRatio. This explains the choice of the interval {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

for the parameter CostRatio.

CostRatio AVG Standard

Dev

Abstract 0.791 0.001

Affiliation 0.746 0.000

Author 0.734 0.000

Biography 0.737 0.000

Caption 0.742 0.007

Figure 0.721 0.002

Formulae 0.886 0.013

Index Term 0.778 0.000

Reference 0.788 0.004

Table 0.931 0.005

Page Number 0.976 0.002

Paragraph 0.729 0.006

Running Head 0.957 0.002

Section Title 0.729 0.000

Subsection Title 0.728 0.000

Title 0.751 0.000

Table 4.7: Average accuracy and Standard Deviation obtained varying CostRatio in the set of

values {1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

Different considerations can be drawn from Table 4.8 and Figures 4.20 and

4.21, where µAV G precision and recall are reported. We note that increasing the

CostRatio, the precision decreases and the recall increases. This means that, as we

expected, increasing CostRatio, we consider more significant omission errors rather

than commission errors.

A different statistic in given in table 4.9 and figure 4.22 for omission errors and

table 4.10 and figure 4.23 for commission errors. From such results we can draw two
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CostRatio micro Average Precision Micro Average Recall

1 0.536802324 0.277008624

2 0.513988325 0.293561325

4 0.489784326 0.304663007

6 0.456410213 0.318248714

8 0.447274755 0.322534845

10 0.438241967 0.32457377

12 0.422210621 0.32523431

14 0.415346301 0.326047397

16 0.413492075 0.326898026

18 0.413492075 0.327688796

20 0.407589085 0.328159719

Table 4.8: Micro averaged precision and recall

Figure 4.20: Micro averaged precision

Figure 4.21: Micro averaged recall
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main conclusions. First, if we compare omission errors with commission errors, we

note that the percentage of commission errors is much lower than the percentage of

omission errors. This means that the learned models are generally specific. Second,

we note the different behavior of the system depending on the concept to be learned.

For example, for some concepts (e.g. “Index term”, “Page Number”, “Title”) we have

relatively low omission and commission errors (e.g. for “Index Term”, we have a

27.3% of Omission errors and 22.2% of commission errors). For other tasks, such

as “Table”, we have complete different results (from 89% to 80.0% of commission

errors and from 0.5% to 0.6% of commission errors). This different behaviour can

be explained by the inherent complexity of some learning tasks in relation to the

used descriptors.

CostRatio 1 2 4 6 8 10 12 14 16 18 20

Abstract 0.810 0.810 0.810 0.810 0.810 0.810 0.810 0.810 0.810 0.810 0.810

Affiliation 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773 0.773

Author 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

Biography 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571 0.571

Caption 0.754 0.754 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.727 0.727

Figure 0.642 0.636 0.621 0.621 0.621 0.618 0.618 0.612 0.612 0.612 0.612

Formulae 0.807 0.709 0.670 0.606 0.584 0.572 0.566 0.566 0.563 0.563 0.563

Index Term 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273 0.273

Reference 0.650 0.650 0.625 0.625 0.600 0.600 0.600 0.600 0.575 0.575 0.575

Table 0.891 0.891 0.891 0.826 0.826 0.826 0.826 0.804 0.804 0.804 0.804

Page Num-

ber

0.333 0.278 0.278 0.272 0.261 0.256 0.256 0.256 0.256 0.256 0.256

Paragraph 0.899 0.898 0.895 0.893 0.893 0.893 0.893 0.893 0.893 0.893 0.891

Running

Head

0.601 0.596 0.591 0.557 0.557 0.552 0.552 0.552 0.552 0.552 0.552

Section Title 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484 0.484

Subsection

Title

0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720 0.720

Title 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391 0.391

Table 4.9: AVG #Omission Errors/ AVG #Positive Examples

4.2.5 Conclusions

In this section we proposed a practical application of the multi-relational statistical

classifier Mr-SBC to the Document Understanding problem. Document understand-

ing is defined as the formal representation of the abstract relationships indicated

by the two-dimensional arrangement of the symbols [Nag00].

We described the system WISDOM++ and its complex processing steps. In

particular, we focused our attention on the description of the layout structure of a

document page that is used as input to the Document Understanding step.

The application of Mr-SBC in a benchmark dataset of twenty-one multi-page



138 4.2 Document Image Analysis

Figure 4.22: AVG #Omission Errors/ AVG #Positive Examples

CostRatio 1 2 4 6 8 10 12 14 16 18 20

Abstract 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.209 0.211 0.211 0.211

Affiliation 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251

Author 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265 0.265

Biography 0.259 0.259 0.259 0.259 0.259 0.259 0.259 0.259 0.259 0.259 0.259

Caption 0.221 0.221 0.228 0.232 0.232 0.233 0.233 0.233 0.233 0.242 0.242

Figure 0.229 0.230 0.232 0.233 0.233 0.233 0.233 0.239 0.239 0.239 0.239

Formulae 0.014 0.028 0.040 0.055 0.062 0.068 0.074 0.075 0.081 0.081 0.081

Index Term 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222 0.222

Reference 0.199 0.199 0.201 0.201 0.206 0.206 0.206 0.206 0.210 0.210 0.210

Table 0.051 0.051 0.056 0.059 0.059 0.060 0.060 0.063 0.063 0.066 0.066

Page Num-

ber

0.004 0.005 0.007 0.009 0.011 0.012 0.012 0.013 0.013 0.013 0.013

Paragraph 0.019 0.020 0.022 0.028 0.031 0.032 0.039 0.039 0.039 0.039 0.045

Running

Head

0.001 0.004 0.008 0.009 0.009 0.011 0.011 0.011 0.011 0.011 0.011

Section Title 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266 0.266

Subsection

Title

0.268 0.268 0.268 0.268 0.268 0.268 0.268 0.268 0.268 0.268 0.268

Title 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247

Table 4.10: AVG #Commission Errors/ AVG #Negative Examples
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Figure 4.23: AVG #Commission Errors/ AVG #Negative Examples

articles published in IEEE Transactions on Pattern Analysis and Machine Intelli-

gence in the January and February issues of 1996, showed that the percentage of

commission errors is very low with respect to the percentage of omission errors. This

means that the learned models are generally specific. The second conclusion con-

cerns the different behavior of the system depending on the concept to be learned.

The system shows relatively good performances on concepts such as “Index term”,

“Page Number” and “Title” and does not show good results for concepts such as

“Table”. This different behaviour can be explained by the inherent complexity of

some learning tasks in relation to the used descriptors.

For future developments we intend to enrich the description of the layout struc-

ture by adding other information both on the physical description of the block (e.g.

density of color pixels) and on the textual content of the block. Indeed, the idea of

combining layout and textual information is not novel and in the work by Kovace-

vic and his colleagues [KDGM04] [KDGM02] this idea has been applied in HTML

web-page classification.

We also intend to compare the performances of Mr-SBC with an ILP system.

Indeed, early results showed that the ILP system ATRE [Mal03] has good perfor-

mances if applied to the Document Understanding problem [VBM04]. Although the

experimental results reported in [VBM04] has been obtained on the same dataset

we used, only the first pages have been taken into account and, in addition, the most

complex concept (i.e. “paragraph”) has not been included in the set of concepts to

be learned.

4.3 Conclusions

In this chapter we proposed the application of algorithms presented in Chapter 2

and Chapter 3 in the filed of Document Engineering. Results are reported and
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conclusions are drawn.



Chapter 5

Classification in

Multi-Relational Data Mining:

other applications

In this chapter we show the application of the system Mr-SBC (described in sec-

tion 3.3) and the associative classification system (described in section 3.4) in other

application domains. In particular, we propose the application of Mr-SBC in pre-

dicting the class of biological structured data and the application of the associative

classification system in predicting the class of geo-referenced census data.

5.1 Naive Bayes Structural Classification: Predict-

ing the class of complex data

In this section we show the application of Mr-SBC to two well-known benchmark

datasets, namely the Mutagenesis dataset and the Biodegradability dataset.

5.1.1 Experiments on Mutagenesis

These datasets, taken from the MLNET repository 1, concern the problem of iden-

tifying the mutagenic compounds [MBHMM89] and have been extensively used to

test both inductive logic programming (ILP) systems and (multi-)relational mining

systems. We considered, analogously to related experiments in the literature, the

“regression friendly” dataset of 188 elements.

A recent study on this database [SKM99] recognizes five levels of background

knowledge for mutagenesis which can provide richer descriptions of the examples.

In this study we used only the first three levels of background knowledge in order

to compare the performance of Mr-SBC with other methods for which experimental

results are available in the literature. Table 5.1 shows the first three sets of back-

ground knowledge used in our experiments, where BKi ⊆ BKi+1 for i = 0, . . . , 2.

1http://www.mlnet.org/cgi-bin/mlnetois.pl/?File=datasets.html&OrderBy=15+DESC
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data

Figure 5.1: The Mutagenesis database schema

The greater the BK, the more complex the learning problem.

Background Description

BK0 Consists of those data obtained with the molecular modelling package

QUANTA. For each compound it obtains the atoms, bonds, bond

types, atom types, and partial charges on atoms.

BK1 Consists of Definitions inB0 plus indicators ind1, and inda in molecule

table.

BK2 Variables (attributes) logp, and lumo are added to definitions in BK1.

Table 5.1: Background knowledge for Mutagenesis dataset.

The dataset is analyzed by means of a 10-fold cross-validation, that is, the target

table is first divided into ten blocks of near-equal size and distribution of class values,

and then, for every block, a subset of tuples related to the tuples in the target table

block are extracted. In this way, ten databases are created. Mr-SBC is trained on

nine databases and tested on the hold-out database. Mr-SBC has been executed

with the following parameters: MAX_LEN_PATH=4 and MAX_GAIN= 0.5. The

schema of a single database is shown in figure 5.1.

Experimental results on predictive accuracy are reported in Table 5.2 for in-

creasing complexity of the models. A comparison to other results reported in the

literature is also made. Mr-SBC has the best performance (together with 1BC and

1BC2) for the most complex task (BK2) with an accuracy of almost 90%, while it

performance is comparable with other systems for the simplest task. Interestingly,
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the predictive accuracy increases with the complexity of the background knowledge,

which means that the variables added in BK1 and BK2 are meaningful and Mr-SBC

takes advantages of that.

System Accuracy(%)

BK0 BK1 BK2

Progol_1 79 86 86

Progol_2 76 81 86

Foil 61 61 83

Tilde 75 79 85

MRDTL 67 87 88

1BC2 82.4 83 89.9

1BC 79.3 85.1 89.9

Mr-SBC 77.8 83.7 89.9

Table 5.2: Accuracy comparison on the set of 188 regression friendly elements of Mutagenesis.

Results for Progol2, Foil, Tilde are taken from [Blo98]. Results for Progol_1 are taken from

[SKM99]. The results for 1BC and 1BC2 are taken from [FL04]. Results for MRDTL are taken

from [Lei02]. The values are the results of 10-fold cross-validation.

As regards execution time (see Table 5.3). The time required by Mr-SBC in-

creases with the complexity of the background knowledge. Mr-SBC is generally

considerably faster than competing systems, such as Progol, Foil and Tilde, that

do not operate on data stored in a database. Moreover, except for the task BK0,

Mr-SBC performs better that MRDTL which works on a database. In general, the

trade-off between accuracy and complexity is in favour of Mr-SBC.

The average number of extracted rules for each fold is quite high (55.9 for BK0,

59.9 for BK1, and 64.8 for BK2). Some rules are either redundant or cover very few

individuals. Therefore, some additional stopping criteria are required to avoid the

generation of these rules and to reduce further the cost complexity of the algorithm.

System Time(Secs)

BK0 BK1 BK2

Progol_1 8695 4627 4974

Progol_2 117000 64000 42000

Foil 4950 9138 0.5

Tilde 41 170 142

MRDTL 0.85 170 142

1BC2 – – –

1BC – – –

MR-SBC 36 42 48

Table 5.3: Time comparison of the set of 188 regression friendly elements of Mutagenesis. Results

for Progol2, Foil, Tilde are taken from [Blo98]. Results for Progol_1 are taken from [SKM99].

Results for MRDTL are taken from [Lei02]. The results of MR-SBC are taken on a PIII WIN2k

platform.
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Figure 5.2: The Biodegradability database schema

5.1.2 Experiments on Biodegradability

The Biodegradability dataset has already been used in the literature for both re-

gression and classification tasks [DBK+99]. It consists of 328 structural chemical

molecules described in terms of atom and bond. The target variable for machine

learning systems is the natural logarithm of the arithmetic mean of the low and

high estimate of the HTL (Half-Life Time) for acqueous biodegradation in aerobic

conditions, measured in hours. We use a discretized version in order to apply clas-

sification systems to the problem. As in [DBK+99], four classes have been defined:

chemicals degrade fast, moderately, slowly or are resistant.

The dataset is analyzed by means of a 10-fold cross-validation. For each data-

base Mr-SBC and Tilde are trained on nine databases and tested on the hold-out

database. The database schema is shown in Figure 5.2. Mr-SBC has been executed

with the following parameters: MAX_LEN_PATH=4 and MAX_GAIN= 0.5. Ex-

perimental results on predictive accuracy are reported in Table 5.4. They are in

favour of Mr-SBC on the average of accuracy varying the fold.

5.1.3 Conclusions

In this section, the multi-relational data mining system Mr-SBC has been empir-

ically evaluated on biological datasets. In particular, Mr-SBC has been tested on

four benchmark tasks. Results on predictive accuracy are in favour of our system

for the most complex tasks. Mr-SBC also proved to be efficient and this is mainly

due to the tight integration with a relational DBMS.
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Fold Mr-SBC Tilde Pruned

0 0.90909 0.69697

1 0.87878 0.81818

2 0.84848 0.90909

3 0.87878 0.87879

4 0.78788 0.69697

5 0.84848 0.90909

6 0.90625 0.90625

7 0.87879 0.81818

8 0.87500 0.93750

9 0.93939 0.72727

Average 0.87509 0.82983

Table 5.4: Accuracy comparison on the set of 328 chemical molecules of Biodegradability. Results

for Mr-SBC and Tilde are reported.

As future work, we plan to extend the comparison of Mr-SBC to other multi-

relational data mining systems on a larger set of benchmark datasets. Moreover,

we intend to frame the proposed method in a transduction inference setting, where

both labelled and unlabelled data are available for training. Although this setting

is well-studied for Support Vector Machines [GAV98], it has been recently extended

to other learning models [KK02] and, in particular, to the Bayesian Framework

[GHO99].

5.2 Naive Bayes associative Classification: A Spa-

tial Data Mining Application

In this section we evaluate the naive Bayesian associative Classification framework

proposed and described in section 3.4.

In oder to evaluate the proposed method, the integration of multi-level spatial

association rules discovery with naive Bayesian classification has been implemented.

In particular, it has been realized in a spatial associative classification system based

on a client-server model (see Figure 5.3).

Both the spatial association rule miner SPADA and the multi-relational naive

Bayes classifier are on the server side, so that several data mining tasks can be run

concurrently by multiple users. For each granularity level, extracted rules concur

in building the spatial classification model by exploiting a multi-relational naive

Bayesian classifier integrated with the SDB.

On the client side, the framework includes a Graphical User Interface (GUI),

which provides users with facilities for controlling all parameters of the mining

process.

SPADA, like many other association rule mining algorithms, cannot process

numerical data properly, so it is necessary to perform a discretization of numerical

features with a relatively large domain. For this purpose, the framework includes in
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Figure 5.3: Spatial associative classification system

the client side the module RUDE (relative unsupervised discretization algorithm)

which discretizes a numerical attribute of a relational database in the context defined

by other attributes [LW00].

The SDB (Oracle Spatial) can run on a third computation unit. Many spatial

features (relations and attributes) can be extracted from spatial objects stored in the

SDB. Feature extraction requires complex data transformation processes to make

spatial relations explicit and representable as ground Prolog atoms. Therefore, a

middle layer module, named FEATEX (Feature Extractor), is required to make

possible a loose coupling between SPADA and the SDB by generating features of

spatial objects (points, lines, or regions). The module is implemented as an Oracle

package of procedures and functions, each of which computes a different feature

[ACL+03]. Transformed data are also stored in SDB tables.

5.2.1 The Application: Mining North West England Census

Data

In this section we present a real-world application concerning the mining of both

spatial association rules and classification models for geo-referenced census data

interpretation. We consider both census and digital map data provided in the

context of the European project SPIN! (Spatial Mining for Data of Public Interest)

[May00]. They concern Greater Manchester, one of the five counties of North West

England (NWE). Greater Manchester is divided into ten metropolitan districts, each

of which is decomposed into censual sections or wards, for a total of two hundreds

and fourteen wards. Spatial analysis is enabled by the availability of vectorized

boundaries of the 1998 census wards as well as by other Ordnance Survey digital

maps of NWE, where several interesting layers are found, namely road net, rail net,

water net, urban area and green area (see Table 5.5).

Census data are available at ward level. They provide socio-economic statistics

(e.g. mortality rate, that is, the percentage of deaths with respect to the number

of inhabitants) as well as some measures describing the deprivation level. Indeed,
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Layer name Geometry Objects

Road net

A-road Line 3882

B-road Line 4368

Motorway Line 494

Primary road Line 3945

Rail net Railway Line 4231

Urban area
Large urban area Line 384

Small urban area Line 2235

Green area
Wood Line 859

Park Line 11

Water net

Water Line 438

River Line 12103

Canal Line 968

Greater Manchester Ward Ward Region 214

Table 5.5: Geographic layers

the material deprivation of an area may be estimated according to information pro-

vided by Census combined into single index scores [AA00]. Over the years different

indices have been developed for different applications: the Jarman Underprivileged

Area Score was designed to measure the need for primary care, the indices devel-

oped by Townsend and Carstairs have been used in health-related analyses, while

the Department of the Environment’s Index (DoE) has been used in targeting ur-

ban regeneration funds. Thereby, we have considered the values of Jarman index,

Townsend index, Carstairs index and DoE index. The higher the index value the

more deprived a ward is. Both index values as well as mortality rate are all nu-

meric and have been discretized by means of RUDE. More precisely, Jarman index,

Townsend index, DoE index and Mortality rate have been automatically discretized

in (low, high), while Carstairs index has been discretized in (low, medium, high).

For this application, we have considered Greater Manchester wards as refer-

ence (target) objects. In particular, three different experimental settings have been

analysed by varying the target property among mortality rate, Jarman index and

DoE index. We have chosen Jarman and DoE indices because they are defined on

the basis of different social factors. For each setting, we have focused our atten-

tion on investigating dependencies between the target property and socio-economic

factors represented in census data as well as geographical factors represented in

linked topographic maps. These dependencies are detected in form of spatial asso-

ciation rules having only the target property in the head. Rules in this form may

be employed for spatial subgroup mining, that is, discovery of interesting groups of

spatial objects with respect to a certain property of interest [KM02] as well as for

classification purpose.

For this analysis, we have formulated queries involving the FEATEX relate func-

tion to compute topological relationships between reference objects and task rele-

vant objects. For instance, a relationship extracted by FEATEX is crosses(ward_135,

urbareaL_151), where ward_# denotes a specific Greater Manchester ward, while
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Figure 5.4: DB schema in North West England Census Data

urbanareaL# refers to a large urban area crossing the interested ward. The topolog-

ical relationship crosses is computed according to the 9-intersection model [EF91].

The number of computed relationships is 784,107. Extracted relationships are au-

tomatically stored in the Database as relational tables. The database schema is

reported in Figure 5.4

To support a spatial qualitative reasoning, a domain specific knowledge (BK)

has been expressed in form of a set of rules. Some of these rules are:

crossed_by_urbanarea(X,Y) :- connects(X,Y), is_a(Y, urban_area). . . .

crossed_by_urbanarea(X,Y) :- inside(X,Y), is_a(Y, urban_area).

Here the use of the predicate is_a hides the fact that a hierarchy has been

defined for spatial objects which belong to the urban area layer. In detail, five

different hierarchies have been defined to describe the following layers:

• road net

• rail net

• water net

• urban area

• green area
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Figure 5.5: Road Network hierarchy

Figure 5.6: Water Network hierarchy

The hierarchies are shown in Figures 5.5, 5.6, 5.7, 5.8 and 5.9 , they have depth

three and are straightforwardly mapped into three granularity levels. They are also

part of the BK.

Finally, we have specified a language bias (LB) both to constrain the search space

and to filter out uninteresting spatial association rules. In particular, we have ruled

out all spatial relations (e.g. crosses, inside, and so on) directly extracted by FEA-

TEX and asked for rules containing topological predicates defined by means of BK.

Moreover, by combining the rule filters head_constraint([mortality_rate(_),1,1)

and rule_head_length(1,1) we have asked for rules containing only mortality rate

in the head. Similar considerations apply to the classification tasks concerning the

Jarman and the DoE indices. In addition, we have specified the maximum number

K of refinement steps (i.e. number of literals in the body of rules).

For each setting, a ten-fold cross validation has been performed and results are

evaluated. For instance, by analyzing spatial association rules extracted with para-

meters minsup = 0.1, minconf = 0.6 we discover the following rule:

mortality_rate(A, high) ← is_a(A, ward), crossed_by_urbanarea(A, B),

Figure 5.7: Rail Network hierarchy



150
5.2 Naive Bayes associative Classification: A Spatial Data Mining

Application

Figure 5.8: Urban Area hierarchy

Figure 5.9: Green Area hierarchy

is_a(B, urban_area), townsendidx_rate(A, high) (40.72%, 72.47%)

which states that a high mortality rate is observed in a ward A that includes an

urban area B and has a high value of Townsend index. The support (40.72%) and

the high confidence (72.47%) confirm a meaningful association between a geograph-

ical factor, such as living in deprived urban areas, and a social factor, such as the

mortality rate. It is noteworthy that SPADA generates the following rule:

mortality_rate(A, high) ← is_a(A,ward), crossed_by_urbanarea(A,B),

is_a(B, urban_area) (56.7%, 60.77%)

which has a greater support and a lower confidence. These two association rules

show together an unexpected association between Townsend index and urban areas.

Apparently, this means that this deprivation index is unsuitable for rural areas.

At a granularity level 2, SPADA specializes the task relevant object B by gen-

erating the following rule which preserves both support and confidence:

mortality_rate(A, high)← is_a(A, ward), crossed_by_urbanarea(A, B), is_a(B,

urban_areaL), townsendidx_rate(A,high) (40.72%, 72.47%)

this rule clarifies that the urban area B is large.

The average predictive accuracy of mined multi-level spatial classification model

is evaluated by varying minsup, minconf and K for each setting,. Results are

reported in Tables 5.6, 5.7 and 5.8. In the first setting, results show that, predictive

accuracy of the Bayesian classifier is slightly better than the accuracy (0.567) of

the trivial classifier that returns the most probable class. We explain this result

with the inherent complexity of the task. Different conclusions can be drawn from
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both Jarman and DoE results, where the Bayesian classifiers significantly improve

the trivial classifiers (acc. 0.542 and 0.625, respectively). Another consideration is

that the average predictive accuracies of classification models discovered at higher

granularity levels (i.e. level=2) are always better or equal to the corresponding

accuracies at lowest levels. This means that the classification model takes advantage

of the use of the hierarchies defined on spatial objects. Furthermore, results show

that by decreasing the number of extracted rules (higher support and confidence) we

have lower accuracy. This means that there are several rules that strongly influence

classification results and often such rules are not characterized by high values of

support and confidence. Finally, we observe that, generally, the higher the number

of refinement steps, the better the model.

MORTALITY Avg. Accuracy K = 4 K = 5 K = 6 K = 7

minsup=0.1 minconf=0.6
Level=1 0.5932 0.5915 0.5932 0.628

Level=2 0.5932 0.596 0.5932 0.628

minsup=0.2 minconf=0.65
Level=1 0.5932 0.602 0.5932 0.623

Level=2 0.5932 0.602 0.5932 0.623

Table 5.6: Mortality Rate average accuracy

JARMAN Avg. Accuracy K = 4 K = 5 K = 6 K = 7

minsup=0.1 minconf=0.6
Level=1 0.8176 0.8176 0.8176 0.8176

Level=2 0.8176 0.8176 0.8176 0.8176

minsup=0.2 minconf=0.8
Level=1 0.528 0.528 0.528 0.528

Level=2 0.528 0.528 0.6272 0.6705

Table 5.7: Jarman average accuracy

DoE Avg. Accuracy K = 4 K = 5 K = 6 K = 7

minsup=0.1, minconf=0.6
Level=1 0.912 0.912 0.912 0.912

Level=2 0.912 0.912 0.912 0.912

minsup=0.2, minconf=0.8
Level=1 0.875 0.875 0.875 0.821

Level=2 0.875 0.9028 0.883 0.874

Table 5.8: DoE average accuracy

5.2.2 Conclusions

In this section we empirically evaluated the Naive Bayesian associative classification

framework. The application concerns the mining of both spatial association rules

and classification models for geo-referenced census data. We considered both census

and digital map data provided in the context of the European project SPIN! (Spatial

Mining for Data of Public Interest) [May00]. They concern Greater Manchester, one

of the five counties of North West England (NWE). Greater Manchester is divided

into ten metropolitan districts, each of which is decomposed into censual sections or
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wards, for a total of two hundreds and fourteen wards. Spatial analysis is enabled

by the availability of vectorized boundaries of the 1998 census wards as well as by

other Ordnance Survey digital maps of NWE, where several interesting layers are

found, namely road net, rail net, water net, urban area and green area.

Experiments show that the use of different levels of granularity generally in-

creases the accuracy of the mined classification model. As future work, we intend

to frame the work within the context of hierarchical Bayesian classifiers, in order to

exploit the multi-level nature of extracted association rules.
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Conclusions

In this final chapter, we summarize the contributions of this thesis and discuss a

number of promising areas for future work.

6.1 Summary

In this thesis we face the problem of mining Naive Bayes statistical classifiers in

presence of structured data taking into account different aspects related to both

theoretical and applicative problems.

Among different types of structure in the data, we investigate two cases. The first

case concerns the presence of a taxonomical relation on the categories of the units

of analysis (categorization structure) and the second case concerns the presence of

relationships between objects composing the units of analysis (unit structure). The

former is investigated in the context of propositional learning, while to represent

the unit structure, we resort to the multi-relational data mining setting.

In order to investigate the classification in presence of taxonomical relation on

the categories of the units of analysis, we proposed a method, that has been imple-

mented in the system WebClassIII, that is able to classify examples in a hierarchy of

categories. The hierarchical arrangement is essential when the number of categories

is quite high and the use of a non-hierarchical classifier (flat classifier) would lead to

a fragmentation of the class, producing many classes with few instances per class.

Furthermore, the hierarchical classification arranges examples hierarchically, thus

supporting a thematic search by browsing topics of interests.

The advantage of this hierarchical view in the classification process is that the

problem is partitioned into smaller subproblems, each of which can be effectively

and efficiently managed. Another advantage is given by the observation that at

different levels of the hierarchy the same example can be represented in a different

way. In particular, it is possible to use different abstractions of the same object

varying the level of the hierarchy (e.g. it is possible to emphasize some features

rather than others at different levels of the hierarchy). WebClassIII includes a tree

distance-based thresholding algorithm for the classification of examples in internal

categories of the hierarchy. It can be applied to any classifier, such as naive Bayes,

153
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that returns a degree of membership (e.g. probabilistic or distance based) of an

example to a category. In our experiments, we applied our algorithm to naive

Bayesian classifier and compared obtained results with a centroid-based classifier

and with SVMs. We evaluated the performances of the system on three different

text categorization datasets and we found that, although the flat SVM is the most

accurate classifier, hierarchical naive Bayesian classifier takes great advantage of the

use of the hierarchy and seem to be a valid alternative to SVM.

As regards the classification in presence of relationships between objects com-

posing the units of analysis, we proposed two different solutions. In both cases we

extend the naive Bayes classification to the multi-relational data mining setting.

The first solution is based on the use of a set of first-order classification rules in the

context of naive Bayesian classification and has been implemented in the system

Mr-SBC. The second solution is inspired by recent studies on the usage of associa-

tion rules for classification purposes (Associative Classification). In particular, we

have presented a spatial associative classifier that combines spatial association rule

discovery with naive Bayesian classification. Domain specific knowledge may be de-

fined as a set of rules that makes possible the qualitative reasoning. In addition, it

is possible to define hierarchies on the domain of units of observations. Objects are

expressed by a collection of ground atoms and are exploited to mine classification

models at different granularity levels.

Applications mainly concern the field of Document Engineering. Document

Engineering is the computer science discipline that investigates systems for doc-

uments in any form and in all media. It is concerned with principles, tools and

processes that improve our ability to create, manage, and maintain documents. As

for the hierarchical classification we evaluated WebClassIII in a particular field of

Document Engineering, namely in the context of text categorization. As for the

multi-relational classification, we evaluated a opportunely modified version of Mr-

SBC in the context of Document Understanding that is, the Document Engineering

field that is concerned with semantic analysis of (paper) documents to extract hu-

man understandable information and codify it into machine-readable form. Results

showed that, although the problem is intrinsically complex, the system presents

good performances for most of concepts to be learned.

Other applications concern other domains where the concept of “structure” is

particularly relevant, namely data mining from biological data and spatial data min-

ing. In particular, in the last field, we evaluated the spatial associative classification

framework. In this way we take into account two types of “structure” namely, the

intrinsic relational structure of spatial data implicitly defined by the spatial location

of objects with respect to others and the taxonomical nature in the domain of units

of observations in spatial domain.

6.2 Future Work

We consider two possible directions for future work: methodological and applicative.

For the methodological direction, we plan to extend the approach implemented
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in WebClassIII by considering the integration of both the multi-dimensional [TL02]

and the hierarchical frameworks, in order to support WebClassIII users with OLAP-

like roll-up, drill-down and pivoting operations in an information retrieval context.

Furthermore, we intend to investigate the possibility of restructuring the original

category hierarchy on the basis of some training examples [VG02] [SVAP04]. It can

be realized by means of a greedy procedure that adds or removes categories until

no further improvements can be made. Hierarchy restructuring can substantially

improve the accuracy of the hierarchical approach.

Concerning the approach implemented in Mr-SBC, we plan to frame the pro-

posed method in a transductive setting, where both labelled and unlabelled data

are available for training [GAV98] [KK02] [GHO99]. Differently from an inductive

approach where the learner tries to induce a model which has low error rate on the

whole distribution of examples for the particular learning task, in the trasductive

approach we do not care about the particular decision model, but rather that we

classify a given set of examples (i.e. the test set) with as few errors as possible.

The trusductive approach is particularly useful when there is a little training data,

but a very large test set [Joa99b]. This is particularly relevant in the case of Doc-

ument Engineering and, in particular, in both document understanding and text

categorization where the user has often to manually label thousands of examples.

As regards the applicative direction, we intend to strengthen our results for

the field of document image understanding by enriching the logical description of

the page layout with information on both the color and the textual content. The

information on the color would be useful in order to effectively reduce the presence

and the effect of noise. Concerning the use of textual information, indeed this idea is

not new and has already been proposed by Kovacevic et al. [KDGM02] for HTML

web-page classification. The application to document images, however, presents

some additional issues such as the identification of the correct reading order of the

text [AMTW02].

6.3 Conclusion

This thesis has described our attempt to marring two fundamental concepts: on

one side there is the concept of “structured data” and on the other side there is the

concept of statistical approaches for learning classification models.

Our hope is twofold. First we hope that the proposed methods will be a valid

alternative to existing methods in terms of the trade-off between accuracy and

complexity and second that the proposed approaches will be useful to particular

applicative research areas, especially in the field of Document Engineering.
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