YINYANG: Release Notes

Luigi Iannone

May 31, 2006



1 Scope

This documents illustrates the basic features of YINYANG system. The authors
as well as YINYANG developers are not responsible of any mistake in this
document and/or within YINYANG system



2 Requisites and running instructions

YINYANG has been tested on Java 1.5 both on MAC OS 10.4.6 and on Win-
dows XP /2000 systems. What you need is a JRE 1.5 and YINYANG binaries.
YINYANG can be started from command line. In Fig. 1 is the typical UNIX-like
command line (for Windows just substitute ’:” with ’;” in the classpath).

java -cp

yinyang.jar:rdf2kb. jar:abstraction. jar:kb. jar:learningProblem. jar:logger. jar:
digl.l-reasoners. jar:digl.l-xmlbeans. jar:jaxen-1.1-beta-2.jar:xbean. jar:
xbean_xpath. jar:

antlr-2.7.5.jar:commons-logging. jar:concurrent.jar:icu4j_3_4.jar:iri.jar:
jena.jar:json.jar:junit.jar:log4j-1.2.12. jar:xercesImpl. jar:xml-apis.jar:
it.uniba.di.dl.learningsystems.control.LearningController
<pathForTheLearningProblem> <pathForTheResultLogFile>

Figure 1: Command Line

It has two input parameters:

1. jpathForTheLearningProblem,: the path where the learning problem file
is (see Sect. 3 for further details on leanring problem specification)

2. jpathForTheResultLogFile;: the path where to log the system debug in-
formation (optional)

3 Learning Problem

A learning problem for YINYANG is an XML file in the format in Fig. 2.

<?xml version="1.0" encoding="UTF-8"7><LearningProblem
xmlns="http://www.di.uniba.it/learning"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://www.di.uniba.it/learning ../LearningProblem.xsd"
knowledgeBase="file:./basicFamily.owl"
positiveExampleSource="./basicFamilyBrotherPositives.txt"
negativeExampleSource="./basicFamilyBrotherNegatives.txt"
abstractionClass="it.uniba.di.dl.abstraction.KBoundMSCApproximatorRefinement"
learn="true" normalize="false" consistencyCheck="true"> <Experiments/>
<Namespaces> <Namespace
uri="http://www.csc.liv.ac.uk/"luigi/ontologies/basicFamily#"></Namespace>
</Namespaces> <Output
learnedConceptURI="http://www.csc.liv.ac.uk/"luigi/ontologies/basicFamily#Brother"
outputPath="./LearnedBrother.owl" showOnConsole="true"></Output>
</LearningProblem>

Figure 2: Example of Learninf problem)]

The Learning problem tag has the following attributes:



e knowledgeBase: The URL of the background knowledge that contains the
descriptions of the individuals (it has to be a reachable OWL ontology)

e positiveExampleSource: the path of a file containing the list of positive
examples URIs

e negativeExampleSource: the path of a file containing the list of negative
examples URIs

e normalize: if true asks the system to normalize the learnt concept

e consistencyCheck: if true asks the system to perform consistency check
on the training set (i.e.: checks whether the learnt concept actually covers
all the positives and no negative)

e learn: if false skips learning and performs the experiments (if any)

o reasonerURL: (optional) determines the URL of the DIG reasoner HTTP
service (default http://localhost:8080)

The Namespaces tag contains a list of Namespace children tags. Each of
them indicates one of the namespaces that should be taken into account in the
learning process (uri attribute). That means that if an OWL resource has a
namespace not appearing in that list, it will be dismissed by the learner.

Experiments tag contains a list of possible experiments that can be per-
formed. We have three kinds of experiments corresponding to the most common
experimental settings (we enumerate them using the corresponding tags):

1. SeventyThirty: It divides the data set according to the optional precentage
attribute (default is 70% for tranining and 30 % for validation)

2. kFoldCrossValidation: It divides the dataset in k folds (randomly) where k
is determined by the folds attribute (optional - default 10). It uses k-1 folds
for training and 1 for validation. It repeats the experiment rotating the
validation set across until all the folder have been used once for validation
and averages the results

3. LeaveOneOut: It uses just one randomly chosen example as validation and
all the rest for training. it rotates the validation until all the examples
have been used for validation. It averages the results.

Each of the above tags have (likewise Learning problem) the following at-
tributes:

e positiveExampleSource: the path of a file containing the list of positive
examples URIs

e negativeExampleSource: the path of a file containing the list of negative
examples URIs

The Output tag (optional) has the following attributes



e learnedConceptURI: the URI the learned concept will have

e outputPath: The path of the knowledge base enriched with the new
learned definition

e showOnConsole: if true shows the saved OWL enriched knowledge base
on the console as well (optional - default true)
4 Acknowledgement

Luigi Tannone wishes to thank in particular Mimmo Redavid for his patience
and his ideas that stimulated the development of this system.



