
Windows* Sockets 2
Application Programming

Interface

An Interface for Transparent Network Programming
Under Microsoft WindowsTM

Revision 2.2.2
August 7, 1997

Subject to Change Without Notice

ii

Disclaimer and License

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE
ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE THIS SPECIFICATION, BUT
ONLY IN ITS ENTIRETY AND WITHOUT MODIFICATION. NO OTHER
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
OTHER INTELLECTUAL PROPERTY RIGHTS IS GRANTED HEREIN.

INTEL, MICROSOFT, STARDUST, AND THE OTHER COMPANIES WHOSE
CONTRIBUTIONS ARE ACKNOWLEDGED BELOW DISCLAIM ALL LIABILITY,
INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS,
RELATING TO IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION.
SAID COMPANIES DO NOT WARRANT OR REPRESENT THAT SUCH
IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

* Third-party trademarks are the property of their respective owners.

iii

Table of Contents

1. INTRODUCTION ..1

1.1. Intended Audience ...2
1.2. Document Organization...2
1.3. Status of This Specification ...2
1.4. Document Version Conventions ..3
1.5. New And/Or Different in Version 2.2.1...3
1.6. New And/Or Different in Version 2.2.2...3

2. SUMMARY OF NEW CONCEPTS, ADDITIONS AND CHANGES FOR WINSOCK 2................4

2.1. WinSock 2 Architecture...4
2.1.1. Simultaneous Access to Multiple Transport Protocols ...4
2.1.2. Backwards Compatibility For WinSock 1.1 Applications ..4

2.1.2.1. Source Code Compatibility...4
2.1.2.2. Binary Compatibility...5

2.2. Making Transport Protocols Available To WinSock...5
2.2.1. Layered Protocols and Protocol Chains..6
2.2.2. Using Multiple Protocols ..6
2.2.3. Multiple Provider Restrictions on select() ..7

2.3. Function Extension Mechanism...7
2.4. Debug and Trace Facilities ..8
2.5. Protocol Independent Name Resolution ..8
2.6. Overlapped I/O and Event Objects ..8

2.6.1. Event Objects..9
2.6.2. Receiving Completion Indications..10

2.6.2.1. Blocking and Waiting for Completion Indication...10
2.6.2.2. Polling for Completion Indication ..10
2.6.2.3. Using socket I/O completion routines...10
2.6.2.4. Summary of overlapped completion indication mechanisms ..10

2.6.3. WSAOVERLAPPED Details ...11
2.7. Asynchronous Notification Using Event Objects ..11
2.8. Quality of Service ..12

2.8.1. The QOS Structure ...13
2.8.2. QOS Templates...16
2.8.3. Default Values ..16

2.9. Socket Groups..16
2.10. Shared Sockets...17
2.11. Enhanced Functionality During Connection Setup and Teardown ..17
2.12. Extended Byte Order Conversion Routines ...18
2.13. Support for Scatter/Gather I/O...18
2.14. Protocol-Independent Multicast and Multipoint ..19
2.15. Summary of New Socket Options..19
2.16. Summary of New Socket Ioctl Opcodes ..20
2.17. Summary of New Functions...22

2.17.1. Generic Data Transport Functions ..22
2.17.2. Name Registration and Resolution Functions ...22

3. WINDOWS SOCKETS PROGRAMMING CONSIDERATIONS..24

3.1. Deviation from BSD Sockets...24
3.1.1. Socket Data Type..24
3.1.2. select() and FD_*..24
3.1.3. Error codes - errno, h_errno & WSAGetLastError() ..24
3.1.4. Pointers ...25

iv

3.1.5. Renamed functions..25
3.1.5.1. close() and closesocket() ...25
3.1.5.2. ioctl() and ioctlsocket()/WSAIoctl() ...25

3.1.6. Maximum number of sockets supported ...26
3.1.7. Include files ..26
3.1.8. Return values on function failure..26
3.1.9. Raw Sockets..26

3.2. Byte Ordering ..26
3.3. WinSock 1.1 Compatibility Issues...27

3.3.1. Default state for a socket’s overlapped attribute...27
3.3.2. Winsock 1.1 Blocking routines & EINPROGRESS ...27

3.4. Graceful shutdown, linger options and socket closure...29
3.5. Out-Of-Band data ..30

3.5.1. Protocol Independent OOB data ...30
3.5.2. OOB data in TCP..31

3.6. Summary of WinSock 2 Functions ..32
3.6.1. BSD Socket Functions ..32
3.6.2. Microsoft Windows-specific Extension Functions ...33

4. SOCKET LIBRARY REFERENCE...36

4.1. accept() ..36
4.2. bind() ...38
4.3. closesocket() ..40
4.4. connect() ..42
4.5. getpeername() ..46
4.6. getsockname()..47
4.7. getsockopt() ...49
4.8. htonl() ..54
4.9. htons()..55
4.10. ioctlsocket() ...56
4.11. listen()..58
4.12. ntohl() ..60
4.13. ntohs()..61
4.14. recv() ...62
4.15. recvfrom()..65
4.16. select() ...68
4.17. send() ...71
4.18. sendto() ..74
4.19. setsockopt()..78
4.20. shutdown() ...83
4.21. socket() ..85
4.22. WSAAccept() ..88
4.23. WSAAsyncSelect() ..92
4.24. WSACancelBlockingCall()..100
4.25. WSACleanup() ..102
4.26. WSACloseEvent() ...103
4.27. WSAConnect() ..104
4.28. WSACreateEvent() ..109
4.29. WSADuplicateSocket() ...110
4.30. WSAEnumNetworkEvents()..113
4.31. WSAEnumProtocols() ...116
4.32. WSAEventSelect()...121
4.33. WSAGetLastError()...127
4.34. WSAGetOverlappedResult() ...128
4.35. WSAGetQOSByName() ..130

v

4.36. WSAHtonl()...131
4.37. WSAHtons() ..132
4.38. WSAIoctl() ..133
4.39. WSAIsBlocking() ..143
4.40. WSAJoinLeaf()..144
4.41. WSANtohl()...149
4.42. WSANtohs() ..150
4.43. WSARecv() ...151
4.44. WSARecvDisconnect()..157
4.45. WSARecvFrom()...159
4.46. WSAResetEvent()..165
4.47. WSASend()..166
4.48. WSASendDisconnect()..171
4.49. WSASendTo() ...173
4.50. WSASetBlockingHook() ...179
4.51. WSASetEvent() ...181
4.52. WSASetLastError() ...182
4.53. WSASocket()...183
4.54. WSAStartup() ..187
4.55. WSAUnhookBlockingHook()..191
4.56. WSAWaitForMultipleEvents() ..192
4.57. WSAProviderConfigChange() ...194

5. NAME RESOLUTION AND REGISTRATION ...196

5.1. Protocol-Independent Name Resolution ..196
5.1.1. Name Resolution Model ...196

5.1.1.1. Types of Name Spaces ..196
5.1.1.2. Name Space Organization...197
5.1.1.3. Name Space Provider Architecture ...197

5.1.2. Summary of Name Resolution Functions..198
5.1.2.1. Service Installation..198
5.1.2.2. Client Query..199
5.1.2.3. Helper Functions...199

5.1.3. Name Resolution Data Structures ...200
5.1.3.1. Query-Related Data Structures..200
5.1.3.2. Service Class Data Structures ...201

5.2. Name Resolution Function Reference ...203
5.2.1. WSAAddressToString()...203
5.2.2. WSAEnumNameSpaceProviders() ..205
5.2.3. WSAGetServiceClassInfo...207
5.2.4. WSAGetServiceClassNameByClassId()..208
5.2.5. WSAInstallServiceClass() ...209
5.2.6. WSALookupServiceBegin() ..210
5.2.7. WSALookupServiceEnd() ...213
5.2.8. WSALookupServiceNext()..214
5.2.9. WSARemoveServiceClass() ..217
4.2.10. WSASetService()..218
5.2.10. WSAStringToAddress()...221

5.3. WinSock 1.1 Compatibile Name Resolution for TCP/IP...222
5.3.1. Introduction ..222
5.3.2. Basic Approach...222
5.3.3. getprotobyname and getprotobynumber..222
5.3.4. getservbyname() and getservbyport() ...223
5.3.5. gethostbyname()..223
5.3.6. gethostbyaddr() ...223

vi

5.3.7. gethostname() ...223
5.4. WinSock 1.1 Compatible Name Resolution Reference ...224

5.4.1. gethostbyaddr() ...224
5.4.2. gethostbyname()..226
5.4.3. gethostname() ...228
5.4.4. getprotobyname()..229
5.4.5. getprotobynumber() ..231
5.4.6. getservbyname()..232
5.4.7. getservbyport()..234
5.4.8. inet_addr() ..236
5.4.9. inet_ntoa()...237
5.4.10. WSAAsyncGetHostByAddr()...238
5.4.11. WSAAsyncGetHostByName() ...241
5.4.12. WSAAsyncGetProtoByName() ..244
5.4.13. WSAAsyncGetProtoByNumber()...247
5.4.14. WSAAsyncGetServByName()..250
5.4.15. WSAAsyncGetServByPort() ..253
5.4.16. WSACancelAsyncRequest() ...256

APPENDIX A. ERROR CODES AND HEADER FILES AND DATA TYPES258

A.1 Error Codes...258
A.1.1 Error Codes - Brief Description...258
A.1.2 Error Codes - Extended Description ..260

A.2 Header Files ..266
A.2.1 Berkeley Header Files..266
A.2.2 WinSock Header File - Winsock2.h...267
A.2.3 Sizes of Data Types ...268

APPENDIX B. MULTIPOINT AND MULTICAST SEMANTICS..269

B.1. Multipoint and Multicast Introduction ...269
B.2 Multipoint Taxonomy ...269
B.3 WinSock 2 Interface Elements for Multipoint and Multicast..270

B.3.1. Attributes in WSAPROTOCOL_INFO struct...270
B.3.2. Flag bits for WSASocket()..270
B.3.3. SIO_MULTIPOINT_LOOP command code for WSAIoctl() ...271
B.3.4. SIO_MULTICAST_SCOPE command code for WSAIoctl()...271
B.3.5. WSAJoinLeaf() ...271

B.4. Semantics for joining multipoint leaves ...271
B.4.1. Using WSAJoinLeaf()...272

B.5. Semantic differences between multipoint sockets and regular sockets...273
B.6. How existing multipoint protocols support these extensions ...273

B.6.1. IP multicast ...273
B.6.2. ATM Point to Multipoint ..274

APPENDIX C. THE LAME LIST ..275

APPENDIX D. FOR FURTHER REFERENCE..283

D.1 Networking books:..283
D.2 Windows Sockets programming books:..283

vii

Acknowledgments
Windows Sockets Version 2

Since The WinSock Group started the Version 2 specification process in May 1994, hundreds of people,
companies and organizations have cooperated and contributed to its design and specification. Several
meetings, many emails and telephone conversations later, it’s appropriate to acknowledge the part played by
everyone and certain contributors in particular.

Many individuals too numerous to mention have given time to the project and all of them are owed a debt of
thanks for the roles they played in creating the most comprehensive open transport API designed to date.
The commitment, dedication and energy of the following individuals and companies should be singled out
for special attention.

First, the design of WinSock 2 was based on the input of multiple “Functionality Groups” whose leaders
cajoled, steered, defined and refined each of their group’s technical proposals. Consequently, we’d like to
recognize the following individuals and their employers for the time and effort they have given. It’s
appropriate to thank Dave Andersen for the challenge he undertook, met and surpassed in defining the
generic API set and pulling together the contributions of all the various Functionality Groups.

Functionality Group Leader(s) Email Company
Generic API Dave Andersen andersen@ibeam.jf.intel.com Intel
Operating Framework Keith Moore keithmo@microsoft.com Microsoft
Specification
Clarifications

Bob Quinn rcq@sockets.com sockets.com

Vikas Garg vikas@distinct.com Distinct
Paul Brooks paul@turbosoft.com.au Turbosoft

Name Resolution Margaret Johnson
Cameron Ferroni
Paul Drews

margretj@microsoft.com
cameronf@microsoft.com
Paul_C_Drews@ccm.jf.intel.com

Microsoft
Microsoft
Intel

Connection-Oriented
Media

Charlie Tai Charlie_Tai@ccm.jf.intel.com Intel

Sanjay Agrawal
Kumar

kumar@fvc.com Microsoft

Wireless Dale Buchholz drbuchholz@mot.com Motorola
TCP/IP Michael Khalandovsky mlk@ftp.com FTP Software
IPX/SPX Tim Delaney tdelaney@novell.com Novell
DECnet Cathy Bence bence@ranger.enet.dec.com DEC
OSI Adrian Dawson ald@oasis.icl.co.uk ICL

The following individuals moderated the WinSock 2 effort as a whole and provided the framework,
technical guidance and administrative mechanisms for WinSock Version 2.

Moderator Email Company
Martin Hall martinh@stardust.com Stardust Technologies
Dave Treadwell davidtr@microsoft.com Microsoft
Mark Towfiq towfiq@east.sun.com SunSoft

Special thanks to Microsoft and Intel for the amount of time these companies gave to the specification and
especially to Dave Treadwell and Keith Moore at Microsoft and Dave Andersen and Charlie Tai at Intel for
their considerable editorial efforts on the WinSock 2 specifications.

The SDK for Windows NT and Windows 95 was a project in its own right and was brought about by a joint
effort between Microsoft and the Intel Architecture Labs. The Microsoft team included Dave Treadwell,

viii

Steve Firebaugh, Keith Moore, Arnold Miller, Francis X. Langlois, Mosin Ahmed, Chris Steck and Dave
Beaver. The Intel team included Dave Andersen, Dave Doerner, Paul Drews, Charlie Tai, Dirk Brandewie,
Dan Chou, Michael Grafton and Dan Ohlemacher.

This version would not, of course, have been possible without the effort of the contributors to WinSock
Version 1.1 and the numerous products that implement and use it. Of special significance to the success of
WinSock are the hundreds of shareware and freeware applications that have been developed and continue to
emerge. The authors of these packages are some of WinSock’s unsung heroes. It’s fitting to recognize, at
least, the role of and contribution made by Peter Tattam’s “Trumpet” WinSock implementation.

We’d like to thank Interop for hosting the kick-off meeting for WinSock Version 2, and Novell for kindly
providing the facilities for the meeting that marked the consolidation effort which brought together the work
of different groups into a coordinated API and SPI definition.

Sincerely,

Martin Hall
Stardust Technologies

Introduction 1

1. Introduction
This document specifies the Windows Sockets 2 programming interface. Windows Sockets 2 utilizes the
sockets paradigm as first popularized in BSD UNIX1 and as adapted for Microsoft Windows in the
Windows Sockets 1.1 specification. While historically sockets programming in general and Windows
Sockets programming in particular has been TCP/IP-centric, this is no longer the case. Consequently, it is
important to realize that Windows Sockets 2 is an interface and not a protocol. As an interface it is used to
discover and utilize the communications capabilities of any number of underlying transport protocols.
Because it is not a protocol, it does not in any way affect the “bits on the wire”, and does not need to be
utilized on both ends of a communications link.

The motivation in creating version 2 of Windows Sockets was primarily to provide a protocol-independent
transport interface that is fully capable of supporting emerging networking capabilities including real-time
multimedia communications. Thus Windows Sockets 2 is a true superset of the widely deployed Windows
Sockets 1.1 interface. While maintaining full backwards compatibility it extends the Windows Sockets
interface in a number of areas including

• Access to protocols other than TCP/IP: WinSock 2 allows an application to use the familiar socket
interface to achieve simultaneous access to any number of installed transport protocols.

• Protocol-independent name resolution facilities: WinSock 2 includes a standardized set of APIs for
querying and working with the myriad of name resolution domains that exist today (e.g. DNS, SAP,
X.500, etc.)

• Overlapped I/O with scatter/gather: following the model established in Win32 environments, WinSock
2 incorporates the overlapped paradigm for socket I/O and incorporates scatter/gather capabilities as
well.

• Quality of service: WinSock 2 establishes conventions for applications to negotiate required service
levels for parameters such as bandwidth and latency. Other QOS-related enhancements include socket
grouping and prioritization, and mechanisms for network-specific QOS extensions.

• Protocol-independent multicast and multipoint: applications can discover what type of multipoint or
multicast capabilities a transport provides and use these facilities in a generic manner.

• Other frequently requested extensions: shared sockets, conditional acceptance, exchange of user data at
connection setup/teardown time, protocol-specific extension mechanisms.

It is almost always the case that adding more capability and functionality also increases the level of
complexity, and Windows Sockets 2 is no exception. We have attempted to mitigate this as much as
possible by extending the familiar sockets interface as opposed to starting from scratch. While this
approach offers significant benefit to experienced socket programmers, it may occasionally vex them as
well since certain widely held assumptions are no longer valid. For example, many sockets programmers
assume that all connectionless protocols use SOCK_DGRAM sockets and all connection-oriented protocols
use SOCK_STREAM sockets. In WinSock 2 SOCK_DGRAM and SOCK_STREAM are only two of
many possible socket types, and programmers should no longer rely on socket type to describe all of the
essential attributes of a transport protocol.

With its vastly larger scope, Windows Sockets 2 takes the socket paradigm considerably beyond what it’s
original designers contemplated. As a consequence, a number of new functions have been added, all of
which are assigned names that are prefixed with “WSA”. In all but a few instances these new functions are
expanded versions of an existing function from BSD sockets. The need to retain backwards compatibility
mandates that we retain both the “just plain” BSD functions and the new “WSA” versions, which in turn
amplifies the perception of WinSock 2 as being large and complex. This stretching of the sockets paradigm
also requires us to occasionally dance around areas where the original sockets architecture is on shaky

1 UNIX is a trademark of UNIX Systems Laboratories, Inc.

2 Introduction

ground. A telling example of this is the unfortunate, but now irrevocable, decision to combine the notions
of address family and protocol family.

1.1. Intended Audience
This document is targeted at persons who are familiar with the sockets network programming paradigm in
general and, to a lesser degree, the Windows Sockets version 1.1 interface in particular. For an introduction
to WinSock programming please refer to one or more of the excellent references cited in Appendix D. For
Further Reference..

Persons who are interested in developing applications that will take advantage of WinSock 2’s capabilities
will be primarily interested in this API specification. Persons who are interested in making a particular
transport protocol available under the WinSock 2 interface will need to be familiar with the WinSock 2
Service Provider Interface (SPI) Specification as well. The Windows Sockets 2 SPI specification exists
under separate cover.

1.2. Document Organization
The complete Windows Sockets 2 specification consists of four separate documents:

1. Windows Sockets 2 Application Programming Interface
2. Windows Sockets 2 Protocol-Specific Annex
3. Windows Sockets 2 Service Provider Interface
4. Windows Sockets 2 Debug-Trace DLL

This document (Windows Sockets 2 Application Programming Interface) is divided into four main
sections and four appendices.

Section 1 Introductory material about the specification as a whole
Section 2 Summary of additions and changes in going from Windows Sockets 1.1 to Windows

Sockets 2
Section 3 Windows Sockets Programming Considerations
Section 4 Detailed reference information for the data transport functions
Section 5 Introductory material and detailed reference information for the name resolution and

registration functions
Appendix A Information on WinSock header files, error codes and data type definitions
Appendix B Details on multipoint and multicast features in Windows Sockets 2
Appendix C The WinSock Lame List
Appendix D A bibliography for those seeking additional information

The Windows Sockets 2 Protocol-Specific Annex contains information specific to a number of transport
protocols that are accessible via Windows Sockets 2. The Windows Sockets 2 Service Provider Interface
specifies the interface that transport providers must conform to in order to be accessible via Windows
Sockets 2. Windows Sockets 2 Debug-Trace DLL describes the files and mechanics of the debug-trace
DLL. This is a useful tool for application developers and service providers alike, that shows API and SPI
calls in and out of the WinSock 2 DLL..

1.3. Status of This Specification
Version 2.2.1 of the API specification is considered final with respect to functionality. Future revisions of
this specification are contemplated only for the purpose of correcting errors or removing ambiguity, not as a
means of incorporating additional functionality.

This document comprises only the API portion of the Windows Sockets 2 specification. The WinSock
Group’s Generic API Extensions functionality group produced the initial versions of this document as well

Introduction 3

as the Windows Sockets 2 Protocol-Specific Annex. Constructive comments and feedback on this material
are always welcome and should be directed towards:

David B. Andersen
Intel Architecture Labs
andersen@ibeam.jf.intel.com

1.4. Document Version Conventions
Starting with draft release 2.0.6, the API and SPI documents have adopted a 3-part revision identification
system. Each revision of the document will be clearly labeled with a release date and a revision identifier
such as X.Y.Z where:

X is the major version of the WinSock specification (currently version 2)

Y is a major revision identifier that is incremented each time changes are made that impact binary
compatibility with the previous spec revision (e.g. changes in a function’s parameter list or new
functions being added)

Z is a minor revision indicator that is incremented when wording changes or clarifications have
been made which do not impact binary compatibility with a previous revision.

Note that gaps in the minor revision indicator (Z) between successive releases of a document are not
unusual, especially during the early stages of a document’s life when many changes are occurring.

1.5. New And/Or Different in Version 2.2.1
Version 2.2.1 is being released primarily to correct errors and omissions from earlier versions of the
specifications.

1.6. New And/Or Different in Version 2.2.2
Version 2.2.2 is being released to add new functionality for querying and receiving notification of changes
in network and system configuration. This new functionality consists of one new function
(WSAProviderConfigChange()) four new socket IOCTLs (SIO_ROUTING_INTERFACE_QUERY,
SIO_ROUTING_INTERFACE_CHANGE, SIO_ADDRESS_LIST_QUERY,
SIO_ADDRESS_LIST_CHANGE), and two new asynchronous network events
(FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LIST_CHANGE) reported via existing
functions (WSAAsyncSelect(),WSAEventSelect(), and WSAEnumNetworkEvents()).

4 New Concepts, Additions and Changes

2. Summary of New Concepts, Additions and Changes for WinSock 2
The paragraphs that follow summarize the completely new architecture for WinSock 2 and describe the
major changes and additions in going from WinSock 1.1 to WinSock 2. For detailed information about
how to use a specific function or feature, please refer to the appropriate API description(s) in sections 3 or
4.

2.1. WinSock 2 Architecture
A number of the features incorporated into WinSock 2 required that a substantial change in architecture
occur. Foremost among these is the ability of an application to access multiple different transport protocols
simultaneously. Other factors included the adoption of protocol-independent name resolution facilities,
provisions for layered protocols and protocol chains, and a different mechanism for WinSock service
providers to offer extended, provider-specific functionality.

2.1.1. Simultaneous Access to Multiple Transport Protocols
In order to provide simultaneous access to multiple transport protocols, the WinSock architecture has
changed in Version 2. With WinSock Version 1.1, the DLL which implements the WinSock interface is
supplied by the vendor of the TCP/IP protocol stack. The interface between the WinSock DLL and the
underlying stack was both unique and proprietary. WinSock 2 changes the model by defining a standard
service provider interface (SPI) between the WinSock DLL and protocol stacks. This makes it possible for
multiple stacks from multiple vendors to be accessed simultaneously from a single WinSock DLL.
Furthermore, WinSock 2 support is not limited to TCP/IP protocol stacks as is the case for WinSock 1.1.
The Windows Open System Architecture (WOSA) compliant WinSock 2 architecture is illustrated as
follows:

WinSock 2
Application

WinSock 2
Application

Transport
Service
Provider

Name Space
Service
Provider

Transport
Service

Provider

WinSock 2 API

WinSock 2
Transport SPI

Name Space
Service

Provider

 Transport Functions Name Space Functions

The WinSock 2 DLL

WS2_32.DLL (32 bit)

WinSock 2
Name Space SPI

Figure 1 WinSock 2 Architecture

Note: for simplicity’s sake the WS2_32.DLL will be referred to simply as WinSock 2 DLL.

With the above architecture, it is no longer necessary (or desirable) for each stack vendor to supply their
own implementation of WinSock 2 DLL, since a single WinSock 2 DLL must work across all stacks. The
WinSock 2 DLL and compatibility shims should thus be viewed in the same light as an operating system
component.

2.1.2. Backwards Compatibility For WinSock 1.1 Applications
WinSock Version 2 has been made backward compatible with WinSock Version 1.1 at 2 levels: source and
binary. This facilitates maximum interoperability between WinSock apps of any version and WinSock
implementations of any version, and minimizes pain and confusion for users of WinSock apps, network
stacks and service providers. Note that current WinSock 1.1 compliant applications are guaranteed to run
over a WinSock 2 implementation without modification of any kind as long as at least one TCP/IP service
provider is properly installed.

2.1.2.1. Source Code Compatibility
Source code compatibility in WinSock Version 2 means that with few exceptions, all the WinSock Version
1.1 API’s are preserved in WinSock Version 2. WinSock 1.1 applications that make use of blocking hooks
will need to be modified as blocking hooks are no longer supported in WinSock 2. See section 3.3.2.

New Concepts, Additions and Changes 5

Winsock 1.1 Blocking routines & EINPROGRESS for more information. This means that existing WinSock
1.1 application source code can easily be moved to the WinSock 2 system at a simple level by including the
new header file “winsock2.h” and performing a straightforward re-link with the appropriate WinSock 2
libraries. Application developers are encouraged to view this as merely the first step in a full transition to
WinSock Version 2. This is because there are numerous ways in which a WinSock 1.1 application can be
improved by exploring and using functionality that is new in WinSock Version 2.

2.1.2.2. Binary Compatibility
A major design goal for WinSock Version 2 was enabling existing WinSock Version 1.1 applications to
work unchanged at a binary level with WinSock Version 2. Since WinSock 1.1 applications were TCP/IP-
based, binary compatibility implies that TCP/IP-based WinSock 2 Transport and Name Resolution Service
Providers are present in the WinSock 2 system. In order to enable WinSock Version 1.1 applications in this
scenario, the WinSock Version 2 system has an additional “shim” component supplied with it: a Version 1.1
compliant WINSOCK DLL. Installation guidelines for the WinSock 2 system ensure that the introduction of
the WinSock 2 components to an end user system has no negative impact on users’ existing WinSock-based
applications.

WinSock 2
Application

WinSock 1.1
Application

WS2_32.DLL (32 bit)

TCP/IP
Transport

Service Provider

WinSock 2 SPI’s

WinSock 2 API
API

WINSOCK.DLL (16 bit)
WSOCK32.DLL (32 bit)

WinSock 1.1 API

TCP/IP-based
Namespace

Service Provider
e.g. DNS

Figure 2 WinSock 1.1 Compatibility Architecture

WinSock 1.1 applications currently use certain elements from the WSAData structure (obtained via a call
to WSAStartup()) to obtain information about the underlying TCP/IP stack.. These include: iMaxSockets,
iMaxUdpDg, and lpVendorInfo. While WinSock 2 applications will know to ignore these values (since
they cannot uniformly apply to all available protocol stacks), safe values are supplied to avoid breaking
WinSock 1.1 applications.

2.2. Making Transport Protocols Available To WinSock
In order for a transport protocol to be accessible via WinSock it must be properly installed on the system
and registered with WinSock. The WinSock 2 DLL exports a set of APIs to facilitate the registration
process. These include creating a new registration and removing an existing one. When new registrations
are created the caller (presumed to be the stack vendor’s installation script) supplies one or more filled in
WSAPROTOCOL_INFO structs which contain a complete set of information about the protocol. Please
refer to the SPI document for details on how this is accomplished.

Note that transport stacks that are thus installed are considered to be WinSock service providers, and
hereafter are referred to as such. The WinSock 2 SDK includes a small Windows applet called
SPORDER.EXE that will allow the user to view and modify the order in which service providers are
enumerated. Using this applet, a user may manually establish a particular TCP/IP protocol stack as the
default TCP/IP provider if more than one such stack is present.

The functions that this applet uses to reorder the service providers are exported from a DLL
(SPORDER.DLL). As a result, installation applications may use the interface of SPORDER.DLL to

6 New Concepts, Additions and Changes

programmatically reorder service providers, to suit their needs. Please refer to the Service Provider
Interface document for a detailed description of the interface.

2.2.1. Layered Protocols and Protocol Chains
WinSock 2 accommodates the notion of a layered protocol. A layered protocol is one that implements only
higher level communications functions, while relying on an underlying transport stack for the actual
exchange of data with a remote endpoint. An example of such a layered protocol would be a security layer
that adds protocol to the connection establishment process in order to perform authentication and to
establish a mutually agreed upon encryption scheme. Such a security protocol would generally require the
services of an underlying reliable transport protocol such as TCP or SPX. The term base protocol refers to
a protocol such as TCP or SPX which is fully capable of performing data communications with a remote
endpoint, and the term layered protocol is used to describe a protocol that cannot stand alone. A protocol
chain is defined as one or more layered protocols strung together and anchored by a base protocol.

This stringing together of one or more layered protocols and a base protocol into chains can be
accomplished by arranging for the layered protocols to support the WinSock 2 SPI at both their upper and
lower edges. A special WSAPROTOCOL_INFO struct is created which refers to the protocol chain as a
whole, and which describes the explicit order in which the layered protocols are joined. This is illustrated
in Figure 3. Note that since only base protocols and protocol chains are directly usable by applications,
only these protocols are listed when the installed protocols are enumerated with WSAEnumProtocols().

2.2.2. Using Multiple Protocols
An application may use WSAEnumProtocols() to discover which transport protocols and protocol chains
are present and obtain information about each as contained in the associated WSAPROTOCOL_INFO
struct. In most instances, there will be a single WSAPROTOCOL_INFO struct for each protocol or protocol
chain. Some protocols however, are able to exhibit multiple behaviors. For example the SPX protocol is

Figure 3 Layered Protocol Architecture

New Concepts, Additions and Changes 7

message-oriented (i.e. the sender’s message boundaries are preserved by the network), but the receiving end
may choose to ignore these message boundaries and treat the socket as a byte stream. Thus there could
reasonably be two different WSAPROTOCOL_INFO struct entries for SPX, one for each of these
behaviors.

Whereas in WinSock 1.1 there is a single address family (AF_INET) comprising a small number of well-
known socket types and protocol identifiers, the focus will shift for WinSock 2. The existing address
family, socket type and protocol identifiers are retained for compatibility reasons, but many new address
family, socket type and protocol values will appear which are unique but not necessarily well known. Not
being well known need not pose a problem since applications that desire to be protocol-independent are
encouraged to select protocols for use on the basis of their suitability rather than the particular values
assigned to their socket_type or protocol fields. Protocol suitability is indicated by the communications
attributes (e.g. message vs. byte-stream oriented, reliable vs. unreliable, etc.) contained within the
protocol’s WSAPROTOCOL_INFO struct. Selecting protocols on the basis of suitability as opposed to
well-known protocol names and socket types allows protocol-independent applications to take advantage of
new transport protocols and their associated media types as they become available.

In terms of the well-known client/server paradigm, the server half of a client/server application will benefit
by establishing listening sockets on all suitable transport protocols. The client, then, may establish its
connection using any suitable protocol. This would enable, for example, a client application to be
unmodified whether it was running on a desktop system connected via LAN or on a laptop using a wireless
network.

A WinSock 2 clearinghouse has been established for protocol stack vendors to obtain unique identifiers for
new address families, socket types and protocols. FTP and world-wide web servers are used to supply
current identifier/value mappings, and email is used to request allocation of new ones. At the time of this
writing the world-wide web URL for the Windows Sockets 2 Identifier Clearinghouse is

http://www.stardust.com/wsresource/winsock2/ws2ident.html

2.2.3. Multiple Provider Restrictions on select()
In WinSock 2 the FD_SET supplied to the select() function is constrained to contain sockets associated
with a single service provider. This does not in any way restrict an application from having multiple sockets
open using multiple providers. When non-blocking operations are preferred the WSAAsyncSelect()
function is the solution. Since it takes a socket descriptor as an input parameter, it doesn’t matter what
provider is associated with the socket. When an application needs to use blocking semantics on a set of
sockets that spans multiple providers, the recommended solution is to use WSAWaitForMultipleEvents().
The application may also choose to take advantage of the WSAEventSelect() function which allows the
FD_XXX network events to be associated with an event object and handled from within the event object
paradigm (described below).

2.3. Function Extension Mechanism
Since the WinSock DLL itself is no longer supplied by each individual stack vendor, it is no longer possible
for a stack vendor to offer extended functionality by just adding entry points to the WinSock DLL. To
overcome this limitation, WinSock 2 takes advantage of the new WSAIoctl() function to accommodate
service providers who wish to offer provider-specific functionality extensions. This mechanism
presupposes, of course, that an application is aware of a particular extension and understands both the
semantics and syntax involved. Such information would typically be supplied by the service provider
vendor.

In order to invoke an extension function, the application must first ask for a pointer to the desired function.
This is done via the WSAIoctl() function using the SIO_GET_EXTENSION_FUNCTION_POINTER
command code. The input buffer to the WSAIoctl() function contains an identifier for the desired

8 New Concepts, Additions and Changes

extension function and the output buffer will contain the function pointer itself. The application can then
invoke the extension function directly without passing through the WinSock 2 DLL.

The identifiers assigned to extension functions are globally unique identifiers (GUIDs) that are allocated by
service provider vendors.. Vendors who create extension functions are urged to publish full details about
the function including the syntax of the function prototype. This makes it possible for common and/or
popular extension functions to be offered by more than one service provider vendor. An application can
obtain the function pointer and use the function without needing to know anything about the particular
service provider that implements the function.

2.4. Debug and Trace Facilities
When the developer of a WinSock 2 application encounters a WinSock-related bug there is a need to isolate
the bug to either (1) the application, (2) the WinSock 2 DLL (or one of it’s 1.1 compatibility “shim” DLLs),
or (3) the service provider. WinSock 2 addresses this need through a specially instrumented version of the
WinSock 2 DLL and a separate debug/trace DLL. This combination allows all procedure calls across the
WinSock 2 API or SPI to be monitored, and to some extent controlled.

Developers can use this mechanism to trace procedure calls, procedure returns, parameter values, and return
values. Parameter values and return values can be altered on procedure-call or procedure-return. If desired,
a procedure-call can even be prevented or redirected. With access to this level of information and control,
it should be easy for a developer to isolate any problem to the application, WinSock 2 DLL or service
provider.

The WinSock 2 SDK includes the instrumented WinSock 2 DLL, a sample debug/trace DLL and a
document containing a detailed description of the above two components. The sample debug/trace DLL is
provided in both source and object form. Developers are free to use the source to develop versions of the
debug/trace DLL that meet their special needs.

2.5. Protocol Independent Name Resolution
WinSock 2 includes provisions for standardizing the way applications access and use the various network
name resolution services. WinSock 2 applications will not need to be cognizant of the widely differing
interfaces associated with name services such as DNS, NIS, X.500, SAP, etc. An introduction to this topic
and the details of the APIs are currently located in section 5.1. Protocol-Independent Name Resolution

2.6. Overlapped I/O and Event Objects
WinSock 2 introduces overlapped I/O and requires that all transport providers support this capability.
Overlapped I/O can be performed only on sockets that were created via the WSASocket() function with the
WSA_FLAG_OVERLAPPED flag set (or created via the socket() function), and follows the model
established in Win32.

Note that creating a socket with the overlapped attribute has no impact on whether a socket is currently in
the blocking or non-blocking mode. Sockets created with the overlapped attribute may be used to perform
overlapped I/O, and doing so does not change the blocking mode of a socket. Since overlapped I/O
operations do not block, the blocking mode of a socket is irrelevant for these operations.

For receiving, applications use WSARecv() or WSARecvFrom() to supply buffers into which data is to be
received. If one or more buffers are posted prior to the time when data has been received by the network, it
is possible that data will be placed into the user’s buffers immediately as it arrives and thereby avoid the
copy operation that would otherwise occur at the time the recv() or recvfrom() function is invoked. If data
is already present when receive buffers are posted, it is copied immediately into the user’s buffers. If data
arrives when no receive buffers have been posted by the application, the network resorts to the familiar
synchronous style of operation where the incoming data is buffered internally until such time as the

New Concepts, Additions and Changes 9

application issues a receive call and thereby supplies a buffer into which the data may be copied. An
exception to this would be if the application used setsockopt() to set the size of the receive buffer to zero.
In this instance, reliable protocols would only allow data to be received when application buffers had been
posted, and data on unreliable protocols would be lost.

On the sending side, applications use WSASend() or WSASendTo() to supply pointers to filled buffers and
then agree to not disturb the buffers in any way until such time as the network has consumed the buffer's
contents.

Overlapped send and receive calls return immediately. A return value of zero indicates that the I/O
operation completed immediately and that the corresponding completion indication has already occurred.
That is, the associated event object has been signaled, or a completion routine has been queued and will be
executed when the calling thread gets into the alterable wait state. A return value of SOCKET_ERROR
coupled with an error code of WSA_IO_PENDING indicates that the overlapped operation has been
successfully initiated and that a subsequent indication will be provided when send buffers have been
consumed or when a receive operation has been completed. However, for byte stream style sockets, the
completion indication occurs whenever the incoming data is exhausted, regardless of whether the buffers
are fully filled. Any other error code indicates that the overlapped operation was not successfully initiated
and that no completion indication will be forthcoming.

Both send and receive operations can be overlapped. The receive functions may be invoked multiple times
to post receive buffers in preparation for incoming data, and the send functions may be invoked multiple
times to queue up multiple buffers to be sent. Note that while the application can rely upon a series of
overlapped send buffers being sent in the order supplied, the corresponding completion indications may
occur in a different order. Likewise, on the receiving side, buffers will be filled in the order they are
supplied but the completion indications may occur in a different order.

There is no way to cancel individual overlapped operations pending on a given socket, however, the
closesocket() function can be called to close the socket and eventually discontinue all pending operations.

The deferred completion feature of overlapped I/O is also available for WSAIoctl() which is an enhanced
version of ioctlsocket().

2.6.1. Event Objects
Introducing overlapped I/O requires a mechanism for applications to unambiguously associate send and
receive requests with their subsequent completion indications. In WinSock 2 this may be accomplished via
event objects which are modeled after Win32 events. WinSock event objects are fairly simple constructs
which can be created and closed, set and cleared, waited upon and polled. Their prime usefulness comes
from the ability of an application to block and wait until one or more event objects become set.

Applications use WSACreateEvent() to obtain an event object handle which may then be supplied as a
required parameter to the overlapped versions of send and receive calls (WSASend(), WSASendTo(),
WSARecv(), WSARecvFrom()). The event object, which is cleared when first created, is set by the
transport providers when the associated overlapped I/O operation has completed (either successfully or with
errors). Each event object created by WSACreateEvent() should have a matching WSACloseEvent() to
destroy it.

Event objects are also used in WSAEventSelect() to associate one or more FD_XXX network events with
an event object. This is described in section 2.7. Asynchronous Notification Using Event Objects.

In 32-bit environments, event object related functions, including WSACreateEvent(), WSACloseEvent(),
WSASetEvent(), WSAResetEvent(), and WSAWaitForMultipleEvents()are directly mapped to the
corresponding native Win32 functions, i.e. the same function name without the WSA prefix.

10 New Concepts, Additions and Changes

2.6.2. Receiving Completion Indications
In order to provide applications with appropriate levels of flexibility, several options are available for
receiving completion indications. These include: waiting on (i.e. blocking on) event objects, polling event
objects, and socket I/O completion routines.

2.6.2.1. Blocking and Waiting for Completion Indication
Applications may choose to block while waiting for one or more event objects to become set using
WSAWaitForMultipleEvents(). Since WinSock 2 event objects are implemented as Win32 events, the
native Win32 function WaitForMultipleObjects() may also be used for this purpose. This is especially
useful if the thread needs to wait on both socket and non-socket events.

2.6.2.2. Polling for Completion Indication
Applications that prefer not to block may use WSAGetOverlappedResult() to poll for the completion
status associated with any particular event object. This function indicates whether or not the overlapped
operation has completed, and, if completed, arranges for WSAGetLastError() to retrieve the error status
of the overlapped operation.

2.6.2.3. Using socket I/O completion routines
The functions used to initiate overlapped I/O (WSASend(), WSASendTo(), WSARecv(),
WSARecvFrom()) all take lpCompletionRoutine as an optional input parameter. This is a pointer to an
application-specified function that will be called after a successfully initiated overlapped I/O operation has
completed (successfully or otherwise). The completion routine follows the same rules as stipulated for
Win32 file I/O completion routines. The completion routine will not be invoked until the thread is in an
alertable wait state such as can occur when the function WSAWaitForMultipleEvents() is invoked with
the fAlertable flag set. Note that an application that uses the completion routine option for a particular
overlapped I/O request may not use the “wait” option of WSAGetOverlappedResult() for that same
overlapped I/O request.

Transports allow an application to invoke send and receive operations from within the context of the socket
I/O completion routine, and guarantee that, for a given socket, I/O completion routines will not be nested.
This permits time-sensitive data transmissions to occur entirely within a preemptive context.

2.6.2.4. Summary of overlapped completion indication mechanisms
The particular overlapped I/O completion indication to be used for a given overlapped operation is
determined by whether or not the application supplies a pointer to a completion function, whether or not a
WSAOVERLAPPED structure is referenced, and the value of the hEvent field within the
WSAOVERLAPPED structure (if supplied). The following table summarizes the completion semantics for
an overlapped socket, showing the various combination of lpOverlapped, hEvent, and
lpCompletionRoutine:

lpOverlapped hEvent lpCompletionRoutine Completion Indication
NULL not applicable ignored Operation completes

synchronously, i.e. it behaves as
if it were a non-overlapped
socket.

!NULL NULL NULL Operation completes
overlapped, but there is no
WinSock 2 supported
completion mechanism. The
completion port mechanism (if
supported) may be used in this
case, otherwise there will be no
completion notification.

New Concepts, Additions and Changes 11

!NULL !NULL NULL Operation completes
overlapped, notification by
signaling event object.

!NULL ignored !NULL Operation completes
overlapped, notification by
scheduling completion routine.

2.6.3. WSAOVERLAPPED Details

The WSAOVERLAPPED structure provides a communication medium between the initiation of an
overlapped I/O operation and its subsequent completion. The WSAOVERLAPPED structure is designed
to be compatible with the Win32 OVERLAPPED structure:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // reserved
DWORD OffsetHigh; // reserved
WSAEVENT hEvent;

} WSAOVERLAPPED, LPWSAOVERLAPPED;

Internal This reserved field is used internally by the entity that
implements overlapped I/O. For service providers that create
sockets as installable file system (IFS) handles, this field is
used by the underlying operating system. Other service
providers (non-IFS providers) are free to use this field as
necessary.

InternalHigh This reserved field is used internally by the entity that
implements overlapped I/O. For service providers that create
sockets as IFS handles, this field is used by the underlying
operating system. Non-IFS providers are free to use this field
as necessary.

Offset This field is reserved for service providers to use.

OffsetHigh This field is reserved for service providers to use.

hEvent If an overlapped I/O operation is issued without an I/O
completion routine (lpCompletionRoutine is NULL), then this
field should either contain a valid handle to a WSAEVENT
object or be NULL. If lpCompletionRoutine is non-NULL then
applications are free to use this field as necessary. An
application that uses a non-NULL lpCompletionRoutine for a
particular overlapped I/O request may not use the “wait”
option of WSAGetOverlappedResult() for that same
overlapped I/O request.

2.7. Asynchronous Notification Using Event Objects
To accommodate applications such as daemons and services that have no user interface (and hence do not
use Windows handles), the WSAEventSelect() and WSAEnumNetworkEvents() functions are provided.
WSAEventSelect() behaves exactly like WSAAsyncSelect() except that, rather than cause a Windows

12 New Concepts, Additions and Changes

message to be sent on the occurrence of an FD_XXX network event (e.g.. FD_READ, FD_WRITE, etc.),
an application-designated event object is set.

Also, the fact that a particular FD_XXX network event has occurred is “remembered” by the service
provider. The application may call WSAEnumNetworkEvents() to have the current contents of the
network event memory copied to an application supplied buffer and to have the network event memory
atomically cleared. If desired, the application may also designate a particular event object which is cleared
along with the network event memory.

2.8. Quality of Service
The basic QOS mechanism in WinSock 2 descends from the flow specification (or "flow spec") as
described by Craig Partridge in RFC 1363, dated September 1992. A brief overview of this concept is as
follows:

Flow specs describe a set of characteristics about a proposed unidirectional flow through the network. An
application may associate a pair of flowspecs with a socket (one for each direction) at the time a connection
request is made using WSAConnect(), or at other times using WSAIoctl() with the
SIO_SET_QOS/SIO_SET_GROUP_QOS command. Flowspecs indicate parametrically what level of
service is required and provide a feedback mechanism for applications to use in adapting to network
conditions.

The usage model for QOS in WinSock 2 is as follows. An application may establish its QOS requirements
at any time via WSAIoctl() or coincident with the connect operation via WSAConnect(). For connection-
oriented transports, it is often most convenient for an application to use WSAConnect(), and any QOS
values supplied at connect time supersede those that may have been supplied earlier via WSAIoctl(). If the
WSAConnect() function completes successfully the application knows that its QOS request has been
honored by the network, and the application is then free to use the socket for data exchange. If the connect
operation fails because of limited resources an appropriate error indication is given. At this point the
application may scale down its service request and try again or simply give up.

After every connection attempt (successful or otherwise) transport providers update the associated flow
spec structures in order to indicate, as well as possible, the existing network conditions. (Note that it is
legal to update with the default values defined below to indicate that information about the current network
conditions is not available.) This update from the service provider about current network conditions is
especially useful for the case where the application’s QOS request consisted entirely of the default (i.e.
unspecified) values, which any service provider should be able to agree to. Applications expect to be able
to use this information about current network conditions to guide their use of the network, including any
subsequent QOS requests. Note however, that information provided by the transport in the updated flow
spec structure is only a hint and may be little more than a rough estimate that only applies to the first hop as
opposed to the complete end-to-end connection. The application must take appropriate precautions in
interpreting this information.

Connectionless sockets may also use WSAConnect() to establish a specified QOS level to a single
designated peer. Otherwise connectionless sockets make use of WSAIoctl() to stipulate the initial QOS
request, and any subsequent QOS renegotiations.

Even after a flow is established, conditions in the network may change or one of the communicating parties
may invoke a QOS renegotiation which results in a reduction (or increase) in the available service level. A
notification mechanism is included which utilizes the usual WinSock notification techniques (FD_QOS and
FD_GROUP_QOS events) to indicate to the application that QOS levels have changed. The basic
guideline for a service provider to generate FD_QOS/FD_GROUP_QOS notifications is when the current
level of service supported is significantly different (especially in the negative direction) from what was last
reported. The application should use WSAIoctl() with SIO_GET_QOS and/or SIO_GET_GROUP_QOS
to retrieve the corresponding flow specs and examine them in order to discover what aspect of the service

New Concepts, Additions and Changes 13

level has changed. Note that the QOS structures will be updated as appropriate regardless of whether
FD_QOS/FD_GROUP_QOS is registered and generated. If the updated level of service is not acceptable,
the application may adjust itself to accommodate it, attempt to renegotiate QOS, or close the socket. If a
renegotiation is attempted, a successful return from the WSAIoctl() function indicates that the revised QOS
request was accepted, otherwise an appropriate error will be indicated.

The flow specs proposed for WinSock 2 divide QOS characteristics into the following general areas:

1. Source Traffic Description - The manner in which the application's traffic will be injected into the
network. This includes specifications for the token rate, the token bucket size, and the peak bandwidth.
Note that even though the bandwidth requirement is expressed in terms of a token rate, this does not
mean that service provider must actually implement token buckets. Any traffic management scheme
that yields equivalent behavior is permitted.

2. Latency - Upper limits on the amount of delay and delay variation that are acceptable.

3. Level of service guarantee - Whether or not an absolute guarantee is required as opposed to best effort.

Note that providers which have no feasible way to provide the level of service requested are expected
to fail the connection attempt.

4. Provider-specific parameters - The flowspec itself can be extended in ways that are particular to

specific providers.

2.8.1. The QOS Structure
The WinSock 2 QOS structure is defined through a combination of the qos.h and winsock2.h header files.
The relevant definitions are summarized here.

typedef struct_WSABUF {
 u_long len; /* the length of the buffer */
 char FAR * buf; /* the pointer to the buffer */
} WSABUF, FAR * LPWSABUF;

typedef uint32 SERVICETYPE;

typedef struct _flowspec
{
 uint32 TokenRate; /* In Bytes/sec */
 uint32 TokenBucketSize; /* In Bytes */
 uint32 PeakBandwidth; /* In Bytes/sec */
 uint32 Latency; /* In microseconds */
 uint32 DelayVariation; /* In microseconds */
 SERVICETYPE ServiceType;
 uint32 MaxSduSize; /* In Bytes */
 uint32 MinimumPolicedSize; /* In Bytes */

} FLOWSPEC, *PFLOWSPEC, FAR * LPFLOWSPEC;

typedef struct _QualityOfService
{
 FLOWSPEC SendingFlowspec; /* the flow spec for */
 /* data sending */
 FLOWSPEC ReceivingFlowspec; /* the flow spec for */
 /* data receiving */
 WSABUF ProviderSpecific; /* additional provider */
 /* specific stuff */

14 New Concepts, Additions and Changes

} QOS, FAR * LPQOS;

Definitions:

TokenRate/TokenBucketSize A Token bucket model is used to specify the rate at which permission
to send traffic (or credits) accrues. The value of -1 in these variables
indicates that no rate limiting is in force. The TokenRate is expressed
in bytes per second, and the TokenBucketSize in bytes.

The concept of the token bucket is a bucket which has a maximum
volume (token bucket size) and continuously fills at a certain rate
(token rate). If the “bucket” contains sufficient credit, the application
may send data; if it does, it reduces the available credit by that
amount. If sufficient credits are not available, the application must
wait or discard the extra traffic.

If an application has been sending at a low rate for a period of time, it
clearly may send a large burst of data all at once until it runs out of
credit. Having done so, it must limit itself to sending at TokenRate
until its data burst is exhausted.

In video applications, the TokenRate is typically the average bit rate
peak to peak, and the TokenBucketSize is the largest typical frame
size. In constant rate applications, the TokenRate is equal to the
PeakBandwidth, and the TokenBucketSize is chosen to accommodate
small variations.

PeakBandwidth This field, expressed in bytes/second, limits how fast packets may be
sent back to back from the application. Some intermediate systems
can take advantage of this information resulting in a more efficient
resource allocation.

Latency Latency is the maximum acceptable delay between transmission of a
bit by the sender and its receipt by the intended receiver(s), expressed
in microseconds. The precise interpretation of this number depends
on the level of guarantee specified in the QOS request.

DelayVariation This field is the difference, in microseconds, between the maximum
and minimum possible delay that a packet will experience. This
value is used by applications to determine the amount of buffer space
needed at the receiving side in order to restore the original data
transmission pattern.

ServiceType This is the level of service being negotiated for. Values permitted for
level of service are given below.

SERVICETYPE_NOTRAFFIC
In either Sending or Receiving flowspec, indicates that there
will be no traffic in this direction. On duplex capable media,
this signals underlying software to setup unidirectional
connections only.

SERVICETYPE_BESTEFFORT
Indicates that the service provider, at minimum, takes the flow
spec as a guideline and makes reasonable efforts to maintain

New Concepts, Additions and Changes 15

the level of service requested, however without making any
guarantees whatsoever.

SERVICETYPE_CONTROLLEDLOAD
Indicates that end-to-end behavior provided to an application
by a series of network elements tightly approximates the
behavior visible to applications receiving best-effort service
"under unloaded conditions" from the same series of network
elements. Thus, applications using this service may assume
that: (1) A very high percentage of transmitted packets will be
successfully delivered by the network to the receiving end-
nodes. (Packet loss rate will closely approximate the basic
packet error rate of the transmission medium).; and (2) Transit
delay experienced by a very high percentage of the delivered
packets will not greatly exceed the minimum transit delay
experienced by any successfully delivered packet at the speed
of light.

SERVICETYPE_GUARANTEED
Indicates that the service provider implements a queuing
algorithm which isolates the flow from the effects of other
flows as much as possible, and guarantees the flow the ability
to propagate data at the TokenRate for the duration of the
connection. If the sender sends faster than that rate, the
network may delay or discard the excess traffic. If the sender
does not exceed TokenRate over time, then latency is also
guaranteed. This service type is designed for applications
which require a precisely known quality of service but would
not benefit from better service, such as real-time control
systems.

SERVICETYPE_NETWORK_UNAVAILABLE
In either a Sending or Receiving flowspec, this may be used by
a service provider to indicate a loss of service in the
corresponding direction.

SERVICETYPE_GENERAL_INFORMATION
Indicates that all service types are supported for this traffic
flow.

SERVICETYPE_NOCHANGE
In either a Sending or Receiving flowspec, this requests that
the QOS in the corresponding direction is not changed. This
may be used when requesting a QOS change in one direction
only, or when requesting a change only in the ProviderSpecific
part of a QOS specification and not in the SendingFlowspec or
the ReceivingFlowspec.

SERVICE_IMMEDIATE_TRAFFIC_CONTROL
In either a Sending or Receiving flowspec, this may be
combined using bit-wise OR with one of the other defined
ServiceType values to request the service provider to activate
traffic control coincident with provision of the flowspec.

16 New Concepts, Additions and Changes

MaxSduSize The maximum packet size, in bytes, that is permitted or used in the
traffic flow.

MinimumPolicedSize The minimum packet size that will be given the level of service
requested.

2.8.2. QOS Templates
It is possible for QOS templates to be established for well-known media flows such as H.323, G.711, etc.
The WSAGetQOSByName() function can be used to obtain the appropriate QOS structure for named
media streams. It is up to each service provider to determine the appropriate values for each element in the
QOS structure, as well as any protocol or media-dependent QOS extensions. The documentation for
WSAGetQOSByName() will be periodically updated with a list of flow specifications and general
descriptions as they become well-known. WSAGetQOSByName() can also be used to enumerate the set
of known QOS template names.

2.8.3. Default Values
A default flow spec is associated with each eligible socket at the time it is created. Field values for this
default flow spec are indicated below. In all cases these values indicate that no particular flow
characteristics are being requested from the network. Applications only need to modify values for those
fields which they are interested in, but must be aware that there exists some coupling between fields such as
TokenRate and TokenBucketSize.

TokenRate = 0xFFFFFFFF (not specified)
TokenBucketSize = 0xFFFFFFFF (not specified)
PeakBandwidth = 0xFFFFFFFF (not specified)
Latency = 0xFFFFFFFF (not specified)
DelayVariation = 0xFFFFFFFF (not specified)
ServiceType = SERVICETYPE_NOCHANGE
MaxSduSize = 0xFFFFFFFF (not specified)
MinimumPolicedSize = 0xFFFFFFFF (not specified)

2.9. Socket Groups
Reserved for future use with socket groups:

WinSock 2 introduces a number of function parameters, data types, structure members,
and manifest constant values that are reserved for future use in grouping sockets together.
As of the version 2.2.1 of the specification, the intended future use of these items is fully
described, however, none of the group-related parameters is interpreted in software
releases corresponding to the version 2.2.1 specification. Since a client always has the
option to elect not to use socket groups, there are always default values and behaviors
defined for group-related definitions. It is simple for an application that does not wish to
use socket groups to use default values in such a fashion that the application will not be
harmed if and when socket groups are “turned on” in the future. Definitions related to
socket groups are marked in version 2.2.1 specification with the phrase: “Reserved for
future use with socket groups” preceding the description of the intended future use.

WinSock 2 introduces the notion of a socket group as a means for an application (or cooperating set of
applications) to indicate to an underlying service provider that a particular set of sockets are related and that
the group thus formed has certain attributes. Group attributes include relative priorities of the individual
sockets within the group and a group quality of service specification.

Applications needing to exchange multimedia streams over the network are benefited by being able to
establish a specific relationship among the set of sockets being utilized. As a minimum this might include a

New Concepts, Additions and Changes 17

hint to the service provider about the relative priorities of the media streams being carried. For example, a
conferencing application would want to have the socket used for carrying the audio stream be given higher
priority than that of the socket used for the video stream. Furthermore, there are transport providers (e.g.
digital telephony and ATM) which can utilize a group quality of service specification to determine the
appropriate characteristics for the underlying call or circuit connection. The sockets within a group are then
multiplexed in the usual manner over this call. By allowing the application to identify the sockets that make
up a group and to specify the required group attributes, such service providers can operate with maximum
effectiveness.

WSASocket() and WSAAccept() are two new functions used to explicitly create and/or join a socket group
coincident with creating a new socket. Socket group IDs can be retrieved by using getsockopt() with
option SO_GROUP_ID. Relative priority can be accessed by using get/setsockopt() with option
SO_GROUP_PRIORITY.

2.10. Shared Sockets
WSADuplicateSocket() is introduced to enable socket sharing across processes. A source process calls
WSADuplicateSocket() to obtain a special WSAPROTOCOL_INFO structure for a target process ID. It
uses some interprocess communications (IPC) mechanism to pass the contents of this structure to a target
process. The target process then uses the WSAPROTOCOL_INFO structure in a call to WSPSocket(). The
socket descriptor returned by this function will be an additional socket descriptor to an underlying socket
which thus becomes shared. Note however, that sockets may be shared amongst threads in a given process
without using the WSADuplicateSocket() function, since a socket descriptor is valid in all of a process’
threads.

The two (or more) descriptors that reference a shared socket may be used independently as far as I/O is
concerned. However, the WinSock interface does not implement any type of access control, so it is up to
the processes involved to coordinate their operations on a shared socket. A typical use for shared sockets is
to have one process that is responsible for creating sockets and establishing connections, hand off sockets to
other processes which are responsible for information exchange.

Since what is duplicated are the socket descriptors and not the underlying socket, all of the state associated
with a socket is held in common across all the descriptors. For example a setsockopt() operation performed
using one descriptor is subsequently visible using a getsockopt() from any or all descriptors. A process
may call closesocket() on a duplicated socket and the descriptor will become deallocated. The underlying
socket, however, will remain open until closesocket() is called with the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of WSAAsyncSelect() and
WSAEventSelect(). Issuing either of these calls using any of the shared descriptors cancels any previous
event registration for the socket, regardless of which descriptor was used to make that registration. Thus,
for example, it would not be possible to have process A receive FD_READ events and process B receive
FD_WRITE events. For situations when such tight coordination is required, it is suggested that developers
use threads instead of separate processes.

2.11. Enhanced Functionality During Connection Setup and Teardown
WSAAccept () allows an application to obtain caller information such as caller ID, QOS, etc., before
deciding whether or not to accept an incoming connection request. This is done via a callback to an
application-supplied condition function.

User-to-user data specified via parameters in WSAConnect() and/or the condition function of
WSAAccept() may be transferred to the peer during connection establishment, provided this feature is
supported by the service provider.

18 New Concepts, Additions and Changes

At connection teardown time, it is also possible (for protocols that support this) to exchange user data
between the endpoints. The end that initiates the teardown can call WSASendDisconnect() to indicate that
no more data is to be sent and cause the connection teardown sequence to be initiated. For certain
protocols, part of this teardown sequence is the delivery of disconnect data from the teardown initiator.
After receiving notice that the remote end has initiated the teardown sequence (typically via the FD_CLOSE
indication), the WSARecvDisconnect() function may be called to receive the disconnect data (if any).

To illustrate how disconnect data might be used, consider the following scenario. The client half of a
client/server application is responsible for terminating a socket connection. Coincident with the termination
it provides (via disconnect data) the total number of transactions it processed with the server. The server in
turn responds back with the cumulative grand total of transactions that it has processed with all clients. The
sequence of calls and indications might occur as follows:

Client Side Server Side
(1) invoke WSASendDisconnect() to conclude session
and supply transaction total

(2) get FD_CLOSE, recv() with a return value
of zero, or WSAEDISCON error return from
WSARecv() indicating graceful shutdown in
progress
(3) invoke WSARecvDisconnect() to get
client’s transaction total
(4) Compute cumulative grand total of all
transactions
(5) invoke WSASendDisconnect() to transmit
grand total

(6) receive FD_CLOSE indication (5’) invoke closesocket()
(7) invoke WSARecvDisconnect() to receive and store
cumulative grand total of transactions
(8) invoke closesocket()

Note that step (5’) must follow step (5), but has no timing relationship with step (6), (7), or (8).

2.12. Extended Byte Order Conversion Routines
WinSock 2 does not assume that the network byte order for all protocols is the same. Therefore a set of
conversion routines are supplied for converting 16 and 32 bit quantities to and from network byte order.
These routines take as an input parameter the socket handle, which has a WSAPROTOCOL_INFO structure
associated with it. The NetworkByteOrder field in the WSAPROTOCOL_INFO structure specifies what
the desired network byte order is (currently either “big-endian” or “little-endian”)..

2.13. Support for Scatter/Gather I/O
The WSASend(), WSASendTo(), WSARecv(), and WSARecvFrom() routines all take an array of
application buffers as input parameters and thus may be used for scatter/gather (or vectored) I/O. This can
be very useful in instances where portions of each message being transmitted consist of one or more fixed
length “header” components in addition to message body. Such header components need not be
concatenated by the application into a single contiguous buffer prior to sending. Likewise on receiving, the
header components can be automatically split off into separate buffers, leaving the message body “pure”.

When receiving into multiple buffers, completion occurs as data arrives from the network, regardless of
whether all of the supplied buffers are utilized.

New Concepts, Additions and Changes 19

2.14. Protocol-Independent Multicast and Multipoint
Just as WinSock 2 allows the basic data transport capabilities of numerous transport protocols to be
accessed in a generic manner, it also provides a generic way to utilize multipoint and multicast capabilities
of transports that implement these features. To simplify, the term multipoint is used hereafter to refer to
both multicast and multipoint communications.

Current multipoint implementations (e.g. IP multicast, ST-II, T.120, ATM UNI, etc.) vary widely with
respect to how nodes join a multipoint session, whether a particular node is designated as a central or root
node, and whether data is exchanged between all nodes or only between a root node and the various leaf
nodes. WinSock 2’s WSAPROTOCOL_INFO struct is used to declare the various multipoint attributes of
a protocol. By examining these attributes the programmer will know what conventions to follow with the
applicable WinSock 2 functions to setup, utilize and teardown multipoint sessions.

The features of WinSock 2 that support multicast can be summarized as follows:
• Two attribute bits in the WSAPROTOCOL_INFO struct
• Four flags defined for the dwFlags parameter of WSASocket()
• One function, WSAJoinLeaf(), for adding leaf nodes into a multipoint session
• Two WSAIoctl() command codes for controlling multipoint loopback and establishing the scope for

multicast transmissions. (The latter corresponds to the IP multicast time-to-live or TTL parameter.)

Note that the inclusion of these multipoint features in WinSock 2 does not preclude an application from
using an existing protocol-dependent interface, such as the Deering socket options for IP multicast (as
described in the TCP/IP section of the Windows Sockets 2 Protocol-Specific Annex).

Please refer to Appendix B. Multipoint and Multicast Semantics for detailed information on how the various
multipoint schemes are characterized and how the applicable features of WinSock 2 are utilized.

2.15. Summary of New Socket Options
The new socket options for Winsock 2 are summarized in the following table. More detailed information is
provided in section 3 under getsockopt() and/or setsockopt(). There are other new protocol-specific socket
options which can be found in the protocol-specific annex.

20 New Concepts, Additions and Changes

Value Type Meaning Default Note
SO_GROUP_ID GROUP Reserved for future use with

socket groups: The identifier of
the group to which this socket
belongs.

NULL get
only

SO_GROUP_PRIORITY int Reserved for future use with
socket groups: The relative
priority for sockets that are part
of a socket group.

0

SO_MAX_MSG_SIZE int Maximum outbound (send) size
of a message for message-
oriented socket types. There is
no provision for finding out the
maximum inbound message
size. Has no meaning for
stream-oriented sockets.

Implementation
dependent

get
only

SO_PROTOCOL_INFO struct
WSAPROTO
COL_INFO

Description of protocol info for
protocol that is bound to this
socket.

protocol dependent get
only

PVD_CONFIG char FAR * An opaque data structure object
containing configuration
information of the service
provider.

Implementation
dependent

2.16. Summary of New Socket Ioctl Opcodes
The new socket ioctl opcodes for Winsock 2 are summarized in the following table. More detailed
information is provided in section 3 under WSAIoctl(). Note that WSAIoctl() also supports all the ioctl
opcodes specified in ioctlsocket(). There are other new protocol-specific ioctl opcodes which can be found
in the protocol-specific annex.

New Concepts, Additions and Changes 21

Opcode Input Type Output Type Meaning
SIO_ASSOCIATE_HANDLE companion

API
dependent

<not used> Associate the socket with the specified handle of
a companion interface.

SIO_ENABLE_CIRCULAR_Q
UEUEING

<not used> <not used> Circular queuing is enabled.

SIO_FIND_ROUTE struct
sockaddr

<not used> Request the route to the specified address to be
discovered.

SIO_FLUSH <not used> <not used> Discard current contents of the sending queue.
SIO_GET_BROADCAST_AD
DRESS

<not used> struct
sockaddr

Retrieve the protocol-specific broadcast address
to be used in sendto()/WSASendTo()

SIO_GET_QOS <not used> QOS Retrieve current flow spec(s) for the socket.
SIO_GET_GROUP_QOS <not used> QOS Reserved for future use with socket groups:

Retrieve current group flow spec(s) for the group
this socket belongs to.

SIO_MULTIPOINT_LOOPBA
CK

BOOL <not used> Control whether data sent in a multipoint session
will also be received by the same socket on the
local host.

SIO_MULTICAST_SCOPE int <not used> Specify the scope over which multicast
transmissions will occur.

SIO_SET_QOS QOS <not used> Establish new flow spec(s) for the socket.
SIO_SET_GROUP_QOS QOS <not used> Reserved for future use with socket groups:

Establish new group flow spec(s) for the group
this socket belongs to.

SIO_TRANSLATE_HANDLE int companion
API
dependent

Obtain a corresponding handle for socket s that
is valid in the context of a companion interface.

SIO_ROUTING_INTERFACE
_QUERY

SOCKAD
DR

SOCKADD
R

Obtain the address of local interface which
should be used to send to the specified address

SIO_ROUTING_INTERFACE
_CHANGE

SOCKAD
DR

<not used> Request notification of changes in information
reported via
SIO_ROUTING_INTERFACE_QUERY for the
specified address

SIO_ADDRESS_LIST_QUER
Y

<not used> SOCKET_A
DDRESS_L
IST

Obtain the list of addresses to which application
can bind.

SIO_ADDRESS_LIST_CHAN
GE

<not used> <not used> Request notification of changes in information
reported via SIO_ADDRESS_LIST_QUERY

22 New Concepts, Additions and Changes

2.17. Summary of New Functions
The new API functions for Winsock 2 are summarized in the following tables.

2.17.1. Generic Data Transport Functions
WSAAccept()* An extended version of accept() which allows for

conditional acceptance and socket grouping.
WSACloseEvent() Destroys an event object.
WSAConnect()* An extended version of connect() which allows for

exchange of connect data and QOS specification.
WSACreateEvent() Creates an event object.
WSADuplicateSocket() Create a new socket descriptor for a shared socket.
WSAEnumNetworkEvents() Discover occurrences of network events.
WSAEnumProtocols() Retrieve information about each available protocol.
WSAEventSelect() Associate network events with an event object.
WSAGetOverlappedResult() Get completion status of overlapped operation.
WSAGetQOSByName() Supply QOS parameters based on a well-known service

name.
WSAHtonl() Extended version of htonl()
WSAHtons() Extended version of htons()
WSAIoctl()* Overlapped-capable version of ioctlsocket()
WSAJoinLeaf()* Join a leaf node into a multipoint session.
WSANtohl() Extended version of ntohl()
WSANtohs() Extended version of ntohs()
WSAProviderConfigChange() Receive notifications of service providers being

installed/removed.
WSARecv()* An extended version of recv() which accommodates

scatter/gather I/O, overlapped sockets and provides the
flags parameter as IN OUT

WSARecvDisconnect() Terminate reception on a socket, and retrieve the disconnect
data if the socket is connection-oriented.

WSARecvFrom()* An extended version of recvfrom() which accommodates
scatter/gather I/O, overlapped sockets and provides the
flags parameter as IN OUT

WSAResetEvent() Resets an event object.
WSASend()* An extended version of send() which accommodates

scatter/gather I/O and overlapped sockets
WSASendDisconnect() Initiate termination of a socket connection and optionally

send disconnect data.
WSASendTo()* An extended version of sendto() which accommodates

scatter/gather I/O and overlapped sockets
WSASetEvent() Sets an event object.
WSASocket() An extended version of socket() which takes a

WSAPROTOCOL_INFO struct as input and allows
overlapped sockets to be created. Also allows socket
groups to be formed.

WSAWaitForMultipleEvents() Blocks on multiple event objects.

* = The routine can block if acting on a blocking socket.

2.17.2. Name Registration and Resolution Functions
WSAAddressToString() Convert an address structure into a human-readable

numeric string

New Concepts, Additions and Changes 23

WSAEnumNameSpaceProviders() Retrieve the list of available Name Registration and
Resolution service providers

WSAGetServiceClassInfo Retrieves all of the class-specific information
pertaining to a service class

WSAGetServiceClassNameByClassId() Returns the name of the service associated with the
given type

WSAInstallServiceClass() Create a new new service class type and store its
class-specific information

WSALookupServiceBegin() Initiate a client query to retrieve name information as
constrained by a WSAQUERYSET data structure

WSALookupServiceEnd() Finish a client query started by
WSALookupServiceBegin() and free resources
associated with the query

WSALookupServiceNext() Retrieve the next unit of name information from a
client query initiated by
WSALookupServiceBegin()

WSARemoveServiceClass() Permanently removes a service class type
WSASetService() Register or deregister a service instance within one or

more name spaces
WSAStringToAddress() Convert a human-readable numeric string to a socket

address structure suitable for passing to Windows
Sockets routines.

24 Windows Sockets Programming Considerations

3. Windows Sockets Programming Considerations
This section provides programmers with important information on a number of topics. It is especially
pertinent to those who are porting socket applications from UNIX-based environments or who are
upgrading their WinSock 1.1 applications to WinSock 2.

3.1. Deviation from BSD Sockets
There are a few limited instances where Windows Sockets has had to divert from strict adherence to the
Berkeley conventions, usually because of important differences between UNIX and Windows environments.

3.1.1. Socket Data Type
A new data type, SOCKET, has been defined. This is needed because a WinSock application cannot
assume that socket descriptors are equivalent to file descriptors as they are in UNIX. Furthermore, in
UNIX, all handles, including socket handles, are small, non-negative integers, and some applications make
assumptions that this will be true. WinSock handles have no restrictions, other than that the value
INVALID_SOCKET is not a valid socket. Socket handles may take any value in the range 0 to
INVALID_SOCKET-1.

Because the SOCKET type is unsigned, compiling existing source code from, for example, a UNIX
environment may lead to compiler warnings about signed/unsigned data type mismatches.

This means, for example, that checking for errors when routines such as socket() or accept() return should
not be done by comparing the return value with -1, or seeing if the value is negative (both common, and
legal, approaches in BSD). Instead, an application should use the manifest constant INVALID_SOCKET
as defined in Winsock2.h. For example:

TYPICAL BSD STYLE:
s = socket(...);
if (s == -1) /* or s < 0 */

{...}

PREFERRED STYLE:
s = socket(...);
if (s == INVALID_SOCKET)

{...}

3.1.2. select() and FD_*
Because a SOCKET is no longer represented by the UNIX-style "small non-negative integer", the
implementation of the select() function was changed in WinSock. Each set of sockets is still represented by
the fd_set type, but instead of being stored as a bitmask the set is implemented as an array of SOCKETs.
To avoid potential problems, applications must adhere to the use of the FD_XXX macros to set, initialize,
clear, and check the fd_set structures.

3.1.3. Error codes - errno, h_errno & WSAGetLastError()
Error codes set by WinSock are NOT made available via the errno variable. Additionally, for the
getXbyY() class of functions, error codes are NOT made available via the h_errno variable. Instead, error
codes are accessed by using the WSAGetLastError() function described in section 4.33. This function is
implemented in WinSock 2 as an alias for the Win32 function GetLastError(), and is intended to provide a
reliable way for a thread in a multi-threaded process to obtain per-thread error information.

For compatibility with BSD, an application may choose to include a line of the form:

#define errno WSAGetLastError()

This will allow networking code which was written to use the global errno to work correctly in a single-
threaded environment. There are, obviously, some drawbacks. If a source file includes code which inspects

Windows Sockets Programming Considerations 25

errno for both socket and non-socket functions, this mechanism cannot be used. Furthermore, it is not
possible for an application to assign a new value to errno. (In WinSock the function WSASetLastError()
may be used for this purpose.)

TYPICAL BSD STYLE:
r = recv(...);
if (r == -1
 && errno == EWOULDBLOCK)

{...}

PREFERRED STYLE:
r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError() == EWOULDBLOCK)

{...}

Although error constants consistent with 4.3 Berkeley Sockets are provided for compatibility purposes,
applications should, where possible, use the "WSA" error code definitions. This is because error codes
returned by certain WinSock routines fall into the standard range of error codes as defined by Microsoft C.
Thus, a better version of the above source code fragment is:

r = recv(...);
if (r == -1 /* (but see below) */
 && WSAGetLastError() == WSAEWOULDBLOCK)

{...}

Note that this specification defines a recommended set of error codes, and lists the possible errors which
may be returned as a result of each function. It may be the case in some implementations that other
WinSock error codes will be returned in addition to those listed, and applications should be prepared to
handle errors other than those enumerated under each function description. However WinSock will
not return any value which is not enumerated in the table of legal WinSock errors given in Appendix A.1.

3.1.4. Pointers
All pointers used by applications with WinSock should be FAR, although this is only relevant to 16-bit
applications, and meaningless in a 32-bit operating system. To facilitate this, data type definitions such as
LPHOSTENT are provided.

3.1.5. Renamed functions
In two cases it was necessary to rename functions which are used in Berkeley Sockets in order to avoid
clashes with other Windows APIs.

3.1.5.1. close() and closesocket()
In Berkeley Sockets, sockets are represented by standard file descriptors, and so the close() function can be
used to close sockets as well as regular files. While nothing in the WinSock prevents an implementation
from using regular file handles to identify sockets, nothing requires it either. Therefore, sockets must be
closed by using the closesocket() routine. Using the close() routine to close a socket is incorrect and the
effects of doing so are undefined by this specification.

3.1.5.2. ioctl() and ioctlsocket()/WSAIoctl()
Various C language run-time systems use the ioctl() routine for purposes unrelated to WinSock. For this
reason we have defined the routine ioctlsocket() and WSAIoctl() which is used to handle socket functions
which in the Berkeley Software Distribution are performed using ioctl() and fcntl().

26 Windows Sockets Programming Considerations

3.1.6. Maximum number of sockets supported
The maximum number of sockets supported by a particular WinSock service provider is implementation
specific. An application should make no assumptions about the availability of a certain number of sockets.
This topic is addressed further in section 4.54. , WSAStartup(). However, independent of the number of
sockets supported by a particular implementation is the issue of the maximum number of sockets which an
application can actually make use of.

The maximum number of sockets which a WinSock application can make use of is determined at the
application's compile time by the manifest constant FD_SETSIZE. This value is used in constructing the
fd_set structures used in select() (see section 4.16.). The default value in Winsock2.h is 64. If an
application is designed to be capable of working with more than 64 sockets, the implementor should define
the manifest FD_SETSIZE in every source file before including Winsock2.h. One way of doing this may
be to include the definition within the compiler options in the makefile, for example adding -
DFD_SETSIZE=128 as an option to the compiler command line for Microsoft C. It must be emphasized
that defining FD_SETSIZE as a particular value has no effect on the actual number of sockets provided by a
WinSock service provider.

3.1.7. Include files
For ease of portability of existing Berkeley sockets based source code, a number of standard Berkeley
include files are supported. However, these Berkeley header files merely include the Winsock2.h include
file, and it is therefore sufficient (and recommended) that WinSock application source files simply include
Winsock2.h.

3.1.8. Return values on function failure
The manifest constant SOCKET_ERROR is provided for checking function failure. Although use of this
constant is not mandatory, it is recommended. The following example illustrates the use of the
SOCKET_ERROR constant:

TYPICAL BSD STYLE:
r = recv(...);
if (r == -1 /* or r < 0 */
 && errno == EWOULDBLOCK)

{...}
PREFERRED STYLE:

r = recv(...);
if (r == SOCKET_ERROR
 && WSAGetLastError() == WSAEWOULDBLOCK)

{...}

3.1.9. Raw Sockets
The WinSock specification does not mandate that a WinSock service provider support raw sockets, that is,
sockets of type SOCK_RAW. However, service providers are allowed and encouraged to supply raw
socket support. A WinSock-compliant application that wishes to use raw sockets should attempt to open
the socket with the socket() call (see section 4.21.), and if it fails either attempt to use another socket type
or indicate the failure to the user.

3.2. Byte Ordering
Care must always be taken to account for any differences between the Intel Architecture byte ordering and
that used on the wire by individual transport protocols. Any reference to addresses or port numbers passed
to or from a WinSock routine must be in the network order for the protocol being utilized. In the case of IP,
this includes the IP address and port fields of a struct sockaddr_in (but not the sin_family field).

Consider an application which normally contacts a server on the TCP port corresponding to the "time"
service, but which provides a mechanism for the user to specify that an alternative port is to be used. The

Windows Sockets Programming Considerations 27

port number returned by getservbyname() is already in network order, which is the format required for
constructing an address, so no translation is required. However if the user elects to use a different port,
entered as an integer, the application must convert this from host to TCP/IP network order (using the
WSAHtons() function) before using it to construct an address. Conversely, if the application wishes to
display the number of the port within an address (returned via, e.g., getpeername()), the port number must
be converted from network to host order (using WSANtohs()) before it can be displayed.

Since the Intel Architecture and Internet byte orders are different, the conversions described above are
unavoidable. Application writers are cautioned that they should use the standard conversion functions
provided as part of WinSock rather than writing their own conversion code, since future implementations of
WinSock are likely to run on systems for which the host order is identical to the network byte order. Only
applications which use the standard conversion functions are likely to be portable.

3.3. WinSock 1.1 Compatibility Issues
To provide smooth backwards compatibility, WinSock 2 continues to support all of the WinSock 1.1
semantics and function calls except for those dealing with psuedo blocking. Since WinSock 2 runs only in
32 bit preemptively scheduled environments such as Windows NT and Windows 95, there is no need to
implement the psuedo blocking found in WinSock 1.1. This means that the WSAEINPROGRESS error
code will never be indicated and that the following WinSock 1.1 functions are not available to WinSock 2
applications:

1. WSACancelBlockingCall()
2. WSAIsBlocking()
3. WSASetBlockingHook()
4. WSAUnhookBlockingHook()

WinSock 1.1 programs that are written to utilize psuedo blocking will continue to operate correctly since
they link to either WINSOCK.DLL or WSOCK32.DLL, both of which continue to support the complete set
of WinSock 1.1 functions. In order for these programs to become WinSock 2 applications, some amount of
code modification must occur. In most cases, judicious use of threads to accommodate processing that was
being accomplished via a blocking hook function will suffice.

3.3.1. Default state for a socket’s overlapped attribute
When Microsoft introduced the 32 bit version of WinSock 1.1 with their WSOCK32.DLL, the default case
for the socket() function was to create sockets with the overlapped attribute. In order to preserve
backwards compatibility with currently deployed WSOCK32.DLL implementations, this will continue to be
the case for WinSock 2 as well. That is, in WinSock 2, sockets created via the socket() function will have
the overlapped attribute. However, in order to be more compatible with the rest of the Win32 API, sockets
created via WSASocket() will, by default, not have the overlapped attribute. This attribute will only be
applied if the WSA_FLAG_OVERLAPPED flag bit is set.

3.3.2. Winsock 1.1 Blocking routines & EINPROGRESS
One major issue in porting applications from a Berkeley sockets environment to a WinSock 1.1
environment involves "blocking"; that is, invoking a function which does not return until the associated
operation is completed. The problem arises when the operation may take an arbitrarily long time to
complete: an obvious example is a recv() which may block until data has been received from the peer
system. The default behavior within the Berkeley sockets model is for a socket to operate in a blocking
mode unless the programmer explicitly requests that operations be treated as non-blocking. WinSock 1.1
environments could not assume preemptive scheduling. Therefore, with WinSock 1.1 it was strongly
recommended that programmers use the nonblocking (asynchronous) operations if at all possible. Because
this was not always possible, the psuedo blocking facilities described below were provided (NOTE: This is
no longer a necessary recommendation with WinSock 2, since it runs on pre-emptive 32-bit operating
systems, where deadlocks are not a problem).

28 Windows Sockets Programming Considerations

Even on a blocking socket, some operations (e.g. bind(), getsockopt(), getpeername()) can be completed
immediately. For such operations there is no difference between blocking and non-blocking operation.
Other operations (e.g. recv()) may be completed immediately or may take an arbitrary time to complete,
depending on various transport conditions. When applied to a blocking socket, these operations are
referred to as blocking operations.

With a (16-bit) WinSock 1.1, a blocking operation which cannot be completed immediately is handled via
psuedo blocking as follows. The service provider initiates the operation, and then enters a loop in which it
dispatches any Windows messages (yielding the processor to another thread if necessary) and then checks
for the completion of the WinSock function. If the function has completed, or if
WSACancelBlockingCall() has been invoked, the blocking function completes with an appropriate result.
Refer to WSASetBlockingHook() for a complete description of this mechanism, including pseudo code for
the various functions.

A service provider must allow installation of a blocking hook function that does not process messages in
order to avoid the possibility of reentrant messages while a blocking operation is outstanding. The simplest
such blocking hook function would simply return FALSE. If a service provider depends on messages for
internal operation it may execute PeekMessage(hMyWnd...) before executing the application blocking hook
so it can get its messages without affecting the rest of the system.

In (16-bit) WinSock 1.1 environments, if a Windows message is received for a process for which a blocking
operation is in progress, there is a risk that the application will attempt to issue another WinSock call.
Because of the difficulty of managing this condition safely, the WinSock 1.1 specification did not support
such application behavior. In WinSock 1.1, it was not permissible for an application to make multiple
nested Windows Sockets function calls. Only one outstanding function call was allowed for a particular
task. The only exceptions being two functions that were provided to assist the programmer in this situation.
WSAIsBlocking() may be called at any time to determine whether or not a blocking WinSock 1.1 call is in
progress. Similarly, WSACancelBlockingCall() may be called at any time to cancel an in-progress
blocking call, if any. Any other nesting of functions in WinSock 1.1 will fail with the error
WSAEINPROGRESS.

It should be emphasized that this restriction applies to both blocking and non-blocking operations, but only
for WinSock 1.1. For WinSock 2 applications (i.e., those that negotiate version 2.0 or higher at the time of
WSAStartup()) there is no restriction on the nesting of operations. Operations can become nested under
some rare circumstances such as during a WSAAccept() conditional-acceptance callback, or if a service
provider in turn invokes a WinSock 2 function.

Although this mechanism is sufficient for simple applications, it cannot support the complex message-
dispatching requirements of more advanced applications (for example, those using the MDI model). For
such applications, the WinSock 1.1 API included the function WSASetBlockingHook(), which allows the
application to specify a special routine that would be called instead of the default message dispatch routine
described above.

The WinSock provider calls the blocking hook only if all of the following are true: the routine is one which
is defined as being able to block, the specified socket is a blocking socket, and the request cannot be
completed immediately. (A socket is set to blocking by default, but the IOCTL FIONBIO, and
WSAAsyncSelect()set a socket to nonblocking mode.) If a WinSock 1.1 application uses only non-
blocking sockets and uses the WSAAsyncSelect() and/or the WSAAsyncGetXByY() routines instead of
select() and the getXbyY() routines, then the blocking hook will never be called and the application does
not need to be concerned with the reentrancy issues the blocking hook can introduce.

If a WinSock 1.1 application invokes an asynchronous or non-blocking operation which takes a pointer to a
memory object (e.g. a buffer, or a global variable) as an argument, it is the responsibility of the application

Windows Sockets Programming Considerations 29

to ensure that the object is available to WinSock throughout the operation. The application must not invoke
any Windows function which might affect the mapping or addressability of the memory involved.

3.4. Graceful shutdown, linger options and socket closure
Much confusion has been evidenced on the subject of shutting down socket connections and closing the
sockets involved. Unless properly understood, the recent addition of WSASendDisconnect() and
WSARecvDisconnect() could possibly exacerbate this situation. The following material is provided as
clarification.

It is important to distinguish the difference between shutting down a socket connection and closing a socket.
Shutting down a socket connection involves an exchange of protocol messages between the two endpoints
which is hereafter referred to as a shutdown sequence. Two general classes of shutdown sequences are
defined: graceful and abortive (also referred to as “hard”). In a graceful shutdown sequence, any data that
has been queued but not yet transmitted can be sent prior to the connection being closed. In an abortive
shutdown, any unsent data is lost. The occurrence of a shutdown sequence (graceful or abortive) can also
be used to provide an FD_CLOSE indication to the associated applications signifying that a shutdown is in
progress. Closing a socket, on the other hand, causes the socket handle to become deallocated so that the
application can no longer reference or use the socket in any manner.

In Windows Sockets, both the shutdown() function, and the WSASendDisconnect() function can be used
to initiate a shutdown sequence, while the closesocket() function is used to deallocate socket handles and
free up any associated resources. Some amount of confusion arises, however, from the fact that the
closesocket() function will implicitly cause a shutdown sequence to occur if it has not already happened. In
fact, it has become a rather common programming practice to rely on this feature and use closesocket() to
both initiate the shutdown sequence and deallocate the socket handle.

To facilitate this usage, the sockets interface provides for controls via the socket option mechanism that
allows the programmer to indicate whether the implicit shutdown sequence should be graceful or abortive,
and also whether the closesocket() function should linger (i.e. not complete immediately) to allow time for a
graceful shutdown sequence to complete. Provided that the programmer fully understands the ramifications
of using closesocket() in this manner, all is well. Unfortunately, many do not.

By establishing appropriate values for the socket options SO_LINGER and SO_DONTLINGER, the
following types of behavior can be obtained with the closesocket() function.

• Abortive shutdown sequence, immediate return from closesocket().

• Graceful shutdown, delay return until either shutdown sequence completes or a specified time
interval elapses. If the time interval expires before the graceful shutdown sequence completes, an
abortive shutdown sequence occurs and closesocket() returns.

• Graceful shutdown, return immediately and allow the shutdown sequence to complete in the
background. This is the default behavior. Note, however, that the application has no way of
knowing when (or whether) the graceful shutdown sequence completes.

One technique that can be used to minimize the chance of problems occurring during connection teardown
is to not rely on an implicit shutdown being initiated by closesocket(). Instead one of the two explicit
shutdown functions (shutdown() or WSASendDisconnect()) are used. This in turn will cause an
FD_CLOSE indication to be received by the peer application indicating that all pending data has been
received. To illustrate this, the following table shows the functions that would be invoked by the client and
server components of an application, where the client is responsible for initiating a graceful shutdown.

30 Windows Sockets Programming Considerations

Client Side Server Side
(1) Invoke shutdown(s, SD_SEND) to signal end of
session and that client has no more data to send.

(2) Receive FD_CLOSE, indicating graceful
shutdown in progress and that all data has been
received.
(3) Send any remaining response data.

(5’) Get FD_READ and invoke recv() to get any
response data sent by server

(4) Invoke shutdown(s, SD_SEND) to indicate
server has no more data to send.

(5) Receive FD_CLOSE indication (4’) Invoke closesocket()
(6) Invoke closesocket()

Note that the timing sequence is maintained from step (1) to step (6) between the client
and the server, except for step (4’) and (5’) which only has local timing significance in the
sense that step (5) follows step (5’) on the client side while step (4’) follows step (4) on
the server side, with no timing relationship with the remote party.

3.5. Out-Of-Band data
The stream socket abstraction includes the notion of "out of band'' (OOB) data. Many protocols allow
portions of incoming data to be marked as "special" in some way, and these special data blocks may be
delivered to the user out of the normal sequence - examples include "expedited data" in X.25 and other OSI
protocols, and BSD Unix's use of "urgent data" in TCP. This section describes OOB data handling in a
protocol-independent manner - a discussion of OOB data implemented using TCP "urgent data" follows.
Note that in the following, the use of recv() also implies recvfrom(), WSARecv(), and WSARecvFrom(),
and references to WSAAsyncSelect() also apply to WSAEventSelect().

3.5.1. Protocol Independent OOB data

OOB data is a logically independent transmission channel associated with each pair of connected stream
sockets. OOB data may be delivered to the user independently of normal data. The abstraction defines that
the OOB data facilities must support the reliable delivery of at least one OOB data block at a time. This
data block may contain at least one byte of data, and at least one OOB data block may be pending delivery
to the user at any one time. For communications protocols which support in-band signaling (i.e. TCP,
where the "urgent data" is delivered in sequence with the normal data), the system normally extracts the
OOB data from the normal data stream and stores it separately (leaving a gap in the "normal" data stream).
This allows users to choose between receiving the OOB data in order and receiving it out of sequence
without having to buffer all the intervening data. It is possible to "peek'' at out-of-band data.

A user can determine if there is any OOB data waiting to be read using the ioctlsocket(SIOCATMARK)
function (q.v.). For protocols where the concept of the "position" of the OOB data block within the normal
data stream is meaningful (i.e. TCP), a Windows Sockets service provider will maintain a conceptual
"marker" indicating the position of the last byte of OOB data within the normal data stream. This is not
necessary for the implementation of the ioctlsocket(SIOCATMARK) functionality - the presence or
absence of OOB data is all that is required.

For protocols where the concept of the "position" of the OOB data block within the normal data stream is
meaningful an application may prefer to process out-of-band data "in-line", as part of the normal data
stream. This is achieved by setting the socket option SO_OOBINLINE (see section 4.19. , setsockopt()).
For other protocols where the OOB data blocks are truly independent of the normal data stream, attempting
to set SO_OOBINLINE will result in an error. An application can use the SIOCATMARK ioctlsocket()
command (see section 4.10.) to determine whether there is any unread OOB data preceding the mark. For
example, it might use this to resynchronize with its peer by ensuring that all data up to the mark in the data
stream is discarded when appropriate.

Windows Sockets Programming Considerations 31

With SO_OOBINLINE disabled (the default setting):
• WinSock notifies an application of an FD_OOB event, if the application registered for

notification with WSAAsyncSelect(), in exactly the same way FD_READ is used to notify of
the presence of normal data. That is, FD_OOB is posted when OOB data arrives and there
was no OOB data previously queued, and also when data is read using the MSG_OOB flag,
and some OOB data remains to be read after the read operation has returned. FD_READ
messages are not posted for OOB data.

• WinSock returns from select() with the appropriate exceptfds socket set if OOB data is queued
on the socket.

• the application can call recv() with MSG_OOB to read the urgent data block at any time. The
block of OOB data "jumps the queue".

• the application can call recv() without MSG_OOB to read the normal data stream. The OOB
data block will not appear in the data stream with "normal data." If OOB data remains after
any call to recv(), WinSock notifies the application with FD_OOB or via exceptfds when
using select().

• For protocols where the OOB data has a position within the normal data stream, a single
recv() operation will not span that position. One recv() will return the normal data before the
"mark", and a second recv() is required to begin reading data after the "mark".

With SO_OOBINLINE enabled:
• FD_OOB messages are _NOT_ posted for OOB data - for the purpose of the select() and

WSAAsyncSelect() functions, OOB data is treated as normal data, and indicated by setting
the socket in readfds or by sending an FD_READ message respectively.

• the application may not call recv() with the MSG_OOB flag set to read the OOB data block -
the error code WSAEINVAL will be returned.

• the application can call recv() without the MSG_OOB flag set. Any OOB data will be
delivered in its correct order within the "normal" data stream. OOB data will never be mixed
with normal data - there must be three read requests to get past the OOB data. The first returns
the normal data prior to the OOB data block, the second returns the OOB data, the third
returns the normal data following the OOB data. In other words, the OOB data block
boundaries are preserved.

The WSAAsyncSelect() routine is particularly well suited to handling notification of the presence of out-of-
band-data when SO_OOBINLINE is off.

3.5.2. OOB data in TCP
Note: The following discussion of out-of-band (OOB) data, implemented using TCP Urgent data, follows
the model used in the Berkeley software distribution. Users and implementors should be aware of the fact
that there are at present two conflicting interpretations of RFC 793 (in which the concept is introduced), and
that the implementation of out-of-band data in the Berkeley Software Distribution (BSD) does not conform
to the Host Requirements laid down in RFC 1122.

Specifically, the TCP urgent pointer in BSD points to the byte after the urgent data byte, and an RFC-
compliant TCP urgent pointer points to the urgent data byte. As a result, if an application sends urgent data
from a BSD-compatible implementation to an RFC-1122 compatible implementation then the receiver will
read the wrong urgent data byte (it will read the byte located after the correct byte in the data stream as the
urgent data byte).

To minimize interoperability problems, applications writers are advised not to use out-of-band data unless
this is required in order to interoperate with an existing service. Windows Sockets suppliers are urged to
document the out-of-band semantics (BSD or RFC 1122) which their product implements.

Arrival of a TCP segment with the "URG"ent flag set indicates the existence of a single byte of "OOB" data
within the TCP data stream. The "OOB data block" is one byte in size. The urgent pointer is a positive

32 Windows Sockets Programming Considerations

offset from the current sequence number in the TCP header that indicates the location of the "OOB data
block" (ambiguously, as noted above). This may point to data that has not yet been received.

With SO_OOBINLINE disabled (the default), when the TCP segment containing the byte pointed to by the
urgent pointer arrives, the OOB data block (one byte) is removed from the data stream and buffered. If a
subsequent TCP segment arrives with the urgent flag set (and a new urgent pointer), the OOB byte currently
queued may be lost as it is replaced by the new OOB data block (as occurs in Berkeley Software
Distribution). It is never replaced in the data stream, however.

With SO_OOBINLINE enabled, the urgent data remains in the data stream. As a result, the OOB data
block is never lost when a new TCP segment arrives containing urgent data. The existing OOB data "mark"
is updated to the new position.

3.6. Summary of WinSock 2 Functions
The following tables summarize the functions included in WinSock 2. (NOTE: It does not include the
Name Resolution and Registration functions described in section 4.)

3.6.1. BSD Socket Functions
The WinSock specification includes the following Berkeley-style socket routines (NOTE: All of the
following functions were part of the WinSock 1.1 API):

Windows Sockets Programming Considerations 33

accept() * An incoming connection is acknowledged and associated
with an immediately created socket. The original socket is
returned to the listening state.

bind() Assign a local name to an unnamed socket.
closesocket() * Remove a socket from the per-process object reference

table. Only blocks if SO_LINGER is set with a non-zero
timeout on a blocking socket.

connect() * Initiate a connection on the specified socket.
getpeername() Retrieve the name of the peer connected to the specified

socket.
getsockname() Retrieve the local address to which the specified socket is

bound.
getsockopt() Retrieve options associated with the specified socket.
htonl() ∞∞ Convert a 32-bit quantity from host byte order to network

byte order.
htons() ∞∞ Convert a 16-bit quantity from host byte order to network

byte order.
inet_addr() ∞∞ Converts a character string representing a number in the

Internet standard ".'' notation to an Internet address value.
inet_ntoa() ∞∞ Converts an Internet address value to an ASCII string in ".''

notation i.e. "a.b.c.d''.
ioctlsocket() Provide control for sockets.
listen() Listen for incoming connections on a specified socket.
ntohl() ∞∞ Convert a 32-bit quantity from network byte order to host

byte order.
ntohs() ∞∞ Convert a 16-bit quantity from network byte order to host

byte order.
recv() * Receive data from a connected or unconnected socket.
recvfrom() * Receive data from either a connected or unconnected

socket.
select() * Perform synchronous I/O multiplexing.
send() * Send data to a connected socket.
sendto() * Send data to either a connected or unconnected socket.
setsockopt() Store options associated with the specified socket.
shutdown() Shut down part of a full-duplex connection.
socket() Create an endpoint for communication and return a socket

descriptor.

* = The routine can block if acting on a blocking socket.
∞∞ = The routine is retained for backward compatibility with WinSock 1.1, and should only be used for
sockets created with AF_INET address family.

3.6.2. Microsoft Windows-specific Extension Functions
The WinSock specification provides a number of extensions to the standard set of Berkeley Sockets
routines. Principally, these extended functions allow message or function-based, asynchronous access to
network events, as well as enable overlapped I/O. While use of this extended API set is not mandatory for
socket-based programming (with the exception of WSAStartup() and WSACleanup()), it is recommended
for conformance with the Microsoft Windows programming paradigm. For features introduced in WinSock
2, please see section 2 for details.

34 Windows Sockets Programming Considerations

WSAAccept()* An extended version of accept() which allows for
conditional acceptance and socket grouping.

WSAAsyncGetHostByAddr()∞∞** A set of functions which provide asynchronous
WSAAsyncGetHostByName()∞∞** versions of the standard Berkeley
WSAAsyncGetProtoByName()∞∞** getXbyY() functions. For example, the
WSAAsyncGetProtoByNumber()∞∞*

*
WSAAsyncGetHostByName() function provides an

WSAAsyncGetServByName()∞∞** asynchronous message based implementation of
WSAAsyncGetServByPort()∞∞** the standard Berkeley gethostbyname() function.
WSAAsyncSelect()** Perform asynchronous version of select()
WSACancelAsyncRequest()∞∞** Cancel an outstanding instance of a

WSAAsyncGetXByY() function.
WSACleanup() Sign off from the underlying WinSock DLL.
WSACloseEvent() Destroys an event object.
WSAConnect()* An extended version of connect() which allows for

exchange of connect data and QOS specification.
WSACreateEvent() Creates an event object.
WSADuplicateSocket() Allow an underlying socket to be shared by creating a

virtual socket.
WSAEnumNetworkEvents() Discover occurrences of network events.
WSAEnumProtocols() Retrieve information about each available protocol.

WSAEventSelect() Associate network events with an event object.
WSAGetLastError()** Obtain details of last WinSock error
WSAGetOverlappedResult() Get completion status of overlapped operation.
WSAGetQOSByName() Supply QOS parameters based on a well-known service

name.
WSAHtonl() Extended version of htonl()
WSAHtons() Extended version of htons()
WSAIoctl()* Overlapped-capable version of ioctl()
WSAJoinLeaf()* Add a multipoint leaf to a multipoint session
WSANtohl() Extended version of ntohl()
WSANtohs() Extended version of ntohs()
WSAProviderConfigChange() Receive notifications of service providers being

installed/removed.
WSARecv()* An extended version of recv() which accommodates

scatter/gather I/O, overlapped sockets and provides the
flags parameter as IN OUT

WSARecvFrom()* An extended version of recvfrom() which accommodates
scatter/gather I/O, overlapped sockets and provides the
flags parameter as IN OUT

WSAResetEvent() Resets an event object.
WSASend()* An extended version of send() which accommodates

scatter/gather I/O and overlapped sockets
WSASendTo()* An extended version of sendto() which accommodates

scatter/gather I/O and overlapped sockets
WSASetEvent() Sets an event object.
WSASetLastError()** Set the error to be returned by a subsequent

WSAGetLastError()

Windows Sockets Programming Considerations 35

WSASocket() An extended version of socket() which takes a
WSAPROTOCOL_INFO struct as input and allows
overlapped sockets to be created. Also allows socket
groups to be formed.

WSAStartup()** Initialize the underlying WinSock DLL.
WSAWaitForMultipleEvents()* Blocks on multiple event objects.

* = The routine can block if acting on a blocking socket.
∞∞ = The routine is realized by queries to name space providers that supports AF_INET, if any
** = The routine was originally a WinSock 1.1 function.

36 accept

4. SOCKET LIBRARY REFERENCE
This chapter presents the data transport routines in alphabetical order, and describes each routine in detail.

 Note: the getXbyY() and WSAAsyncGetXbyY() functions now appear in section 5 on name
resolution.

In each routine it is indicated that the header file winsock2.h must be included. Appendix A.2 lists the
Berkeley-compatible header files which are supported. These are provided for compatibility purposes only,
and each of them will simply include winsock2.h. The Windows header file windows.h is also needed, but
winsock2.h will include it if necessary.

4.1. accept()
Description Accept a connection on a socket.

 #include <winsock2.h>

 SOCKET WSAAPI
accept (

IN SOCKET s,
OUT struct sockaddr FAR* addr,
OUT int FAR* addrlen

);

s A descriptor identifying a socket which is listening for connections after
a listen().

addr An optional pointer to a buffer which receives the address of the
connecting entity, as known to the communications layer. The exact
format of the addr argument is determined by the address family
established when the socket was created.

addrlen An optional pointer to an integer which contains the length of the
address addr.

Remarks This routine extracts the first connection on the queue of pending connections on s,
creates a new socket and returns a handle to the new socket. The newly created socket has
the same properties as s including asynchronous events registered with
WSAAsyncSelect() or with WSAEventSelect(), but not including the listening socket’s
group ID, if any. If no pending connections are present on the queue, and the socket is not
marked as non-blocking, accept() blocks the caller until a connection is present.

If the socket is marked non-blocking and no pending connections are present on the
queue, accept() returns a failure with the error WSAEWOULDBLOCK, as described
below.

After accept succeeds, and returns a new socket handle, the accepted socket may not be
used to accept more connections. The original socket remains open, and listening for new
connection requests.

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the address family in which the communication is occurring. The addrlen

accept 37

is a value-result parameter; it should initially contain the amount of space pointed to by
addr; on return it will contain the actual length (in bytes) of the address returned. This
call is used with connection-oriented socket types such as SOCK_STREAM. If addr
and/or addrlen are equal to NULL, then no information about the remote address of the
accepted socket is returned.

Return Value If no error occurs, accept() returns a value of type SOCKET which is a descriptor for the
accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a specific
error code may be retrieved by calling WSAGetLastError().

The integer referred to by addrlen initially contains the amount of space pointed to by
addr. On return it will contain the actual length in bytes of the address returned.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen argument is too small or addr is not a
valid part of the user address space.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINVAL listen() was not invoked prior to accept().

WSAEMFILE The queue is non-empty upon entry to accept() and
there are no descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that supports
connection-oriented service.

WSAEWOULDBLOCK The socket is marked as non-blocking and no
connections are present to be accepted.

See Also bind(), connect(), listen(), select(), socket(), WSAAsyncSelect(), WSAAccept()

38 bind

4.2. bind()
Description Associate a local address with a socket.

 #include <winsock2.h>

 int WSAAPI
bind (

IN SOCKET s,
IN const struct sockaddr FAR* name,
IN int namelen

);

s A descriptor identifying an unbound socket.

name The address to assign to the socket. The sockaddr structure is defined as
follows:

struct sockaddr {
u_short sa_family;
char sa_data[14];

};
Except for the sa_family field, sockaddr contents are expressed
in network byte order. NOTE: In WinSock 2, the name parameter
is not strictly interpreted as a pointer to a "sockaddr" struct. It is cast
this way for Windows Sockets compatibility. The actual structure is
interpreted differently in the context of different address families. The
only requirements are that the first u_short is the address family and the
total size of the memory buffer in bytes is namelen

namelen The length of the name.

Remarks This routine is used on an unconnected connectionless or connection-oriented socket,
before subsequent connect()s or listen()s. When a socket is created with socket(), it
exists in a name space (address family), but it has no name assigned. bind() establishes
the local association of the socket by assigning a local name to an unnamed socket.

As an example, in the Internet address family, a name consists of three parts: the address
family, a host address, and a port number which identifies the application. In WinSock 2,
the name parameter is not strictly interpreted as a pointer to a "sockaddr" struct. It is cast
this way for Windows Sockets compatibility. Service Providers are free to regard it as a
pointer to a block of memory of size namelen. The first two bytes in this block
(corresponding to "sa_family" in the "sockaddr" declaration) must contain the address
family that was used to create the socket. Otherwise an error WSAEFAULT will occur.

If an application does not care what local address is assigned to it, it may specify the
manifest constant value ADDR_ANY for the sa_data field of the name parameter. This
allows the underlying service provider to use any appropriate network address, potentially
simplifying application programming in the presence of multi-homed hosts (i.e., hosts that
have more than one network interface and address). For TCP/IP, if the port is specified
as 0, the service provider will assign a unique port to the application with a value between
1024 and 5000. The application may use getsockname() after bind() to learn the address
and the port that has been assigned to it, but note that if the Internet address is equal to
INADDR_ANY, getsockname() will not necessarily be able to supply the address until

bind 39

the socket is connected, since several addresses may be valid if the host is multi-homed.
Binding to a specific port number (i.e., other than port 0) is discouraged for client
applications, since there is a danger of conflicting with another socket that is already
using that port number.

Return Value If no error occurs, bind() returns 0. Otherwise, it returns SOCKET_ERROR, and a
specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE Some process on the machine has already bound to
the same fully-qualified address (e.g., IP address and
port in the af_inet case) and the socket has not been
marked to allow address re-use with
SO_REUSEADDR. (See the SO_REUSEADDR
socket option under setsockopt().)

WSAEADDRNOTAVAIL The specified address is not a valid address for this
machine.

WSAEFAULT The name or the namelen argument is not a valid part
of the user address space, the namelen argument is
too small, the name argument contains incorrect
address format for the associated address family, or
the first two bytes of the memory block specified by
name does not match the address family associated
with the socket descriptor s.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many connections.

WSAENOTSOCK The descriptor is not a socket.

See Also connect(), listen(), getsockname(), setsockopt(), socket(), WSACancelBlockingCall().

40 closesocket

4.3. closesocket()
Description Close a socket.

 #include <winsock2.h>

 int WSAAPI
closesocket (

IN SOCKET s
);

s A descriptor identifying a socket.

Remarks This function closes a socket. More precisely, it releases the socket descriptor s, so that
further references to s will fail with the error WSAENOTSOCK. If this is the last
reference to an underlying socket, the associated naming information and queued data are
discarded. Any pending blocking or asynchronous calls issued by any thread in this
process are canceled without posting any notification messages. Any pending overlapped
operations (e.g.,
WSASend()/WSASendTo()/WSARecv()/WSARecvFrom()/WSAIoctl() with an
overlapped socket) issued by any thread in this process are also canceled. Whatever
completion action was specified for these overlapped operations is performed (e.g., event,
completion routine, or completion port). In this case, the pending overlapped operations
fail with the error status WSA_OPERATION_ABORTED. An application should always
have a matching call to closesocket() for each successful call to socket() to return socket
resources to the system.

The semantics of closesocket() are affected by the socket options SO_LINGER and
SO_DONTLINGER as follows (Note: by default SO_DONTLINGER is enabled - that is,
SO_LINGER is disabled):

Option Interval Type of close Wait for close?
SO_DONTLINGER Don't care Graceful No
SO_LINGER Zero Hard No
SO_LINGER Non-zero Graceful Yes

If SO_LINGER is set (i.e. the l_onoff field of the linger structure is non-zero; see sections
4.7. and 4.19.) with a zero timeout interval (l_linger is zero), closesocket() is not
blocked even if queued data has not yet been sent or acknowledged. This is called a
"hard" or "abortive" close, because the socket's virtual circuit is reset immediately, and
any unsent data is lost. Any recv() call on the remote side of the circuit will fail with
WSAECONNRESET.

If SO_LINGER is set with a non-zero timeout interval on a blocking socket, the
closesocket() call blocks on a blocking socket until the remaining data has been sent or
until the timeout expires. This is called a graceful disconnect. If the timeout expires
before all data has been sent, the Windows Sockets implementation aborts the connection
before closesocket() returns.

Enabling SO_LINGER with a non-zero timeout interval on a non-blocking socket is not
recommended. In this case, the call to closesocket() will fail with an error of
WSAEWOULDBLOCK if the close operation cannot be completed immediately. If
closesocket() fails with WSAEWOULDBLOCK the socket handle is still valid, and a
disconnect is not initiated. The application must call closesocket() again to close the

closesocket 41

socket, although closesocket() may continue to fail unless the application disables
SO_DONTLINGER, enables SO_LINGER with a zero timeout, or calls shutdown() to
initiate closure.

If SO_DONTLINGER is set on a stream socket (i.e. the l_onoff field of the linger
structure is zero; see sections 4.7. and 4.19.), the closesocket() call will return
immediately and does not get WSAEWOULDBLOCK, whether the socket is blocking or
non-blocking. However, any data queued for transmission will be sent if possible before
the underlying socket is closed. This is also called a graceful disconnect. Note that in
this case the WinSock provider may not release the socket and other resources for an
arbitrary period, which may affect applications which expect to use all available sockets.
This is the default behavior (SO_DONTLINGER is set by default).

Note: to assure that all data is sent and received on a connection, an application should
call shutdown() before calling closesocket() (see section 3.4. Graceful shutdown, linger
options and socket closure for more information). Also note, FD_CLOSE will not be
posted after closesocket() is called.

Here is a summary of closesocket() behavior:
• if SO_DONTLINGER enabled (the default setting) it always returns immediately

without WSAEWOULDBLOCK - connection is gracefully closed "in the
background"

• if SO_LINGER enabled with a zero timeout: it always returns immediately -
connection is reset/aborted

• if SO_LINGER enabled with non-zero timeout:
 - with blocking socket it blocks until all data sent or timeout expires
 - with non-blocking socket it returns immediately indicating failure

For additional information please see 3.4. Graceful shutdown, linger options and socket
closure.

Return Value If no error occurs, closesocket() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEWOULDBLOCK The socket is marked as nonblocking and
SO_LINGER is set to a nonzero timeout value.

See Also accept(), socket(), ioctlsocket(), setsockopt(), WSAAsyncSelect(),
WSADuplicateSocket().

42 connect

4.4. connect()
Description Establish a connection to a peer.

 #include <winsock2.h>

 int WSAAPI
connect (

IN SOCKET s,
IN const struct sockaddr FAR* name,
IN int namelen

);

s A descriptor identifying an unconnected socket.

name The name of the peer to which the socket is to be connected.

namelen The length of the name.

Remarks This function is used to create a connection to the specified destination. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket
is marked as bound.

For connection-oriented sockets (e.g., type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space of the socket; for a
detailed description, please see bind()). When the socket call completes successfully, the
socket is ready to send/receive data. If the address field of the name structure is all zeroes,
connect() will return the error WSAEADDRNOTAVAIL. Any attempt to re-connect an
active connection will fail with the error code WSAEISCONN.

For connection-oriented, non-blocking sockets it is often not possible to complete the
connection immediately. In such a case, this function returns with the error
WSAEWOULDBLOCK but the operation proceeds. When the success or failure
outcome becomes known, it may be reported in one of several ways depending on how
the client registers for notification. If the client uses select() success is reported in the
writefds set and failure is reported in the exceptfds set. If the client uses
WSAAsyncSelect() or WSAEventSelect(), the notification is announced with
FD_CONNECT and the error code associated with the FD_CONNECT indicates either
success or a specific reason for failure.

For a connectionless socket (e.g., type SOCK_DGRAM), the operation performed by
connect() is merely to establish a default destination address which will be used on
subsequent send()/WSASend() and recv()/WSARecv() calls. Any datagrams received
from an address other than the destination address specified will be discarded. If the
address field of the name structure is all zeroes, the socket will be "dis-connected" - the
default remote address will be indeterminate, so send()/WSASend() and
recv()/WSARecv() calls will return the error code WSAENOTCONN, although
sendto()/WSASendTo() and recvfrom()/WSARecvFrom() may still be used. The
default destination may be changed by simply calling connect() again, even if the socket
is already "connected". Any datagrams queued for receipt are discarded if name is
different from the previous connect().

For connectionless sockets, name may indicate any valid address, including a broadcast
address. However, to connect to a broadcast address, a socket must have setsockopt()

connect 43

SO_BROADCAST enabled, otherwise connect() will fail with the error code
WSAEACCES.

Comments When connected sockets break (i.e. become closed for whatever reason), they should be
discarded and recreated. It is safest to assume that when things go awry for any reason
on a connected socket, the application must discard and recreate the needed sockets in
order to return to a stable point.

Return Value If no error occurs, connect() returns 0. Otherwise, it returns SOCKET_ERROR, and a
specific error code may be retrieved by calling WSAGetLastError().

On a blocking socket, the return value indicates success or failure of the connection
attempt.

With a non-blocking socket, the connection attempt may not be completed immediately -
in this case connect() will return SOCKET_ERROR, and WSAGetLastError() will
return WSAEWOULDBLOCK. In this case the application may:

1. Use select() to determine the completion of the connection request by checking if the
socket is writeable, or

2. If your application is using WSAAsyncSelect() to indicate interest in connection
events, then your application will receive an FD_CONNECT notification when the
connect operation is complete (successfully, or not), or

3. If your application is using WSAEventSelect() to indicate interest in connection
events, then the associated event object will be signaled when the connect operation is
complete (successfully, or not).

For a non-blocking socket, until the connection attempt completes, all subsequent calls to
connect() on the same socket will fail with the error code WSAEALREADY, and
WSAEISCONN when the connection completes successfully. Due to ambiguities in
version 1.1 of the Windows Sockets specification, error codes returned from connect()
while a connection is already pending may vary among implementations. As a result, it
isn’t recommended that applications use multiple calls to connect() to detect connection
completion. If they do, they must be prepared to handle WSAEINVAL and
WSAEWOULDBLOCK error values the same way that they handle WSAEALREADY,
to assure robust execution.

If the return error code indicates the connection attempt failed (i.e.
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application
may call connect() again for the same socket.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

44 connect

WSAEADDRINUSE The socket’s local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs at the
time of bind(), but could be delayed until this
function if the bind() was to a partially wild-card
address (involving ADDR_ANY) and if a specific
address needs to be “committed” at the time of this
function.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEALREADY A non-blocking connect() call is in progress on the
specified socket.
Important Note: In order to preserve backwards
compatibility, this error is reported as WSAEINVAL
to WinSock 1.1 applications that link to either
WINSOCK.DLL or WSOCK32.DLL.

WSAEADDRNOTAVAIL The remote address is not a valid address (e.g.,
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAEFAULT The name or the namelen argument is not a valid part
of the user address space, the namelen argument is
too small, or the name argument contains incorrect
address format for the associated address family.

WSAEINVAL The parameter s is a listening socket, or the
destination address specified is not consistent with
that of the constrained group the socket belongs to.

WSAEISCONN The socket is already connected (connection-oriented
sockets only).

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTSOCK The descriptor is not a socket.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

connect 45

WSAEWOULDBLOCK The socket is marked as non-blocking and the
connection cannot be completed immediately.

WSAEACCES Attempt to connect datagram socket to broadcast
address failed because setsockopt()
SO_BROADCAST is not enabled.

See Also accept(), bind(), getsockname(), socket(), select(), WSAAsyncSelect(),
WSAConnect().

46 getpeername

4.5. getpeername()
Description Get the address of the peer to which a socket is connected.

 #include <winsock2.h>

 int WSAAPI
getpeername (

IN SOCKET s,
OUT struct sockaddr FAR* name,
IN OUT int FAR* namelen

);

s A descriptor identifying a connected socket.

name The structure which is to receive the name of the peer.

namelen A pointer to the size of the name structure.

Remarks getpeername() retrieves the name of the peer connected to the socket s and stores it in the
struct sockaddr identified by name. It may be used only on a connected socket. For
datagram sockets, only the name of a peer specified in a previous connect() call will be
returned - any name specified by a previous sendto() call will not be returned by
getpeername().

On call, the namelen argument contains the size of the name buffer in bytes. On return,
the namelen argument contains the actual size of the name returned in bytes.

Return Value If no error occurs, getpeername() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen argument is not a valid part
of the user address space, or the namelen argument is
too small.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

See Also bind(), socket(), getsockname().

getsockname 47

4.6. getsockname()
Description Get the local name for a socket.

 #include <winsock2.h>

 int WSAAPI
getsockname (

IN SOCKET s,
OUT struct sockaddr FAR* name,
IN OUT int FAR* namelen

);

s A descriptor identifying a bound socket.

name Receives the address (name) of the socket.

namelen The size of the name buffer.

Remarks getsockname() retrieves the current name for the specified socket descriptor in name. It
is used on a bound and/or connected socket specified by the s parameter. The local
association is returned. This call is especially useful when a connect() call has been
made without doing a bind() first; this call provides the only means by which you can
determine the local association which has been set by the system.

On call, the namelen argument contains the size of the name buffer in bytes. On return,
the namelen argument contains the actual size of the name returned in bytes.

If a socket was bound to an unspecified address (e.g., ADDR_ANY), indicating that any
of the host's addresses within the specified address family should be used for the socket,
getsockname() will not necessarily return information about the host address, unless the
socket has been connected with connect() or accept(). A WinSock application must not
assume that the address will be specified unless the socket is connected. This is because
for a multi-homed host the address that will be used for the socket is unknown unless the
socket is connected. If the socket is using a connectionless protocol, the address may not
be available until I/O occurs on the socket.

Return Value If no error occurs, getsockname() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The name or the namelen argument is not a valid part
of the user address space, or the namelen argument is
too small.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

48 getsockname

WSAEINVAL The socket has not been bound to an address with
bind(), or ADDR_ANY is specified in bind() but
connection has not yet occurs.

See Also bind(), socket(), getpeername().

getsockopt 49

4.7. getsockopt()
Description Retrieve a socket option.

 #include <winsock2.h>

 int WSAAPI
getsockopt (

IN SOCKET s,
IN int level,
IN int optname,
OUT char FAR* optval,
IN OUT int FAR* optlen

);

s A descriptor identifying a socket.

level The level at which the option is defined; the supported levels include
SOL_SOCKET and IPPROTO_TCP. (See annex for more protocol-
specific levels.)

optname The socket option for which the value is to be retrieved.

optval A pointer to the buffer in which the value for the requested option is to
be returned.

optlen A pointer to the size of the optval buffer.

Remarks getsockopt() retrieves the current value for a socket option associated with a socket of
any type, in any state, and stores the result in optval. Options may exist at multiple
protocol levels, but they are always present at the uppermost "socket'' level. Options
affect socket operations, such as the routing of packets, out-of-band data transfer, etc.

The value associated with the selected option is returned in the buffer optval. The integer
pointed to by optlen should originally contain the size of this buffer; on return, it will be
set to the size of the value returned. For SO_LINGER, this will be the size of a struct
linger; for most other options it will be the size of an integer.

The application is responsible for allocating any memory space pointed to directly or
indirectly by any of the parameters it specified.

If the option was never set with setsockopt(), then getsockopt() returns the default value
for the option.

The following options are supported for getsockopt(). The Type identifies the type of data
addressed by optval (NOTE: there are other protocol-specific options available, as described in the
Windows Sockets 2 Protocol Specific Annex).

Level =
SOL_SOCKET

Value Type Meaning Default
SO_ACCEPTCONN BOOL Socket is listen()ing. FALSE unless a

WSPListen() has
been performed

50 getsockopt

SO_BROADCAST BOOL Socket is configured for the
transmission of broadcast
messages.

FALSE

SO_DEBUG BOOL Debugging is enabled. FALSE
SO_DONTLINGER BOOL If true, the SO_LINGER option

is disabled.
TRUE

SO_DONTROUTE BOOL Routing is disabled. FALSE
SO_ERROR int Retrieve error status and clear. 0
SO_GROUP_ID GROUP Reserved for future use with

socket groups: The identifier of
the group to which this socket
belongs.

NULL

SO_GROUP_PRIORITY int Reserved for future use with
socket groups: The relative
priority for sockets that are part
of a socket group.

0

SO_KEEPALIVE BOOL Keepalives are being sent. FALSE
SO_LINGER struct linger Returns the current linger

options.
l_onoff is 0

SO_MAX_MSG_SIZE unsigned int Maximum outbound (send) size
of a message for message-
oriented socket types (e.g.,
SOCK_DGRAM). There is no
provision for finding out the
maximum inbound message
size. Has no meaning for
stream-oriented sockets.

Implementation
dependent

SO_OOBINLINE BOOL Out-of-band data is being
received in the normal data
stream. (See section
3.3.2. Winsock 1.1 Blocking
routines & EINPROGRESS for
a discussion of this topic.).

FALSE

SO_PROTOCOL_INFO WSAPROTO
COL_INFO

Description of protocol info for
protocol that is bound to this
socket.

protocol dependent

SO_RCVBUF int Total per-socket buffer space
reserved for receives. This is
unrelated to
SO_MAX_MSG_SIZE or the
size of a TCP window.

Implementation
dependent

SO_REUSEADDR BOOL The socket may be bound to an
address which is already in use.

FALSE

SO_SNDBUF int Total per-socket buffer space
reserved for sends. This is
unrelated to
SO_MAX_MSG_SIZE or the
size of a TCP window.

Implementation
dependent

SO_TYPE int The type of the socket (e.g.
SOCK_STREAM).

As created via
socket()

getsockopt 51

PVD_CONFIG Service
Provider
Dependent

An "opaque" data structure
object from the service provider
associated with socket s. This
object stores the current
configuration information of the
service provider. The exact
format of this data structure is
service provider specific.

Implementation
dependent

level =
IPPROTO_TCP

TCP_NODELAY BOOL Disables the Nagle algorithm
for send coalescing.

Implementation
dependent

BSD options not supported for getsockopt() are:

Value Type Meaning
SO_RCVLOWAT int Receive low water mark
SO_RCVTIMEO int Receive timeout
SO_SNDLOWAT int Send low water mark
SO_SNDTIMEO int Send timeout

TCP_MAXSEG int Get TCP maximum segment size

Calling getsockopt() with an unsupported option will result in an error code of
WSAENOPROTOOPT being returned from WSAGetLastError().

SO_DEBUG
WinSock service providers are encouraged (but not required) to supply output debug
information if the SO_DEBUG option is set by an application. The mechanism for
generating the debug information and the form it takes are beyond the scope of this
specification.

SO_ERROR
The SO_ERROR option returns and resets the per-socket based error code, which is
different from the per-thread based error code that is handled using the
WSAGetLastError() and WSASetLastError() function calls. A successful call using
the socket does not reset the socket based error code returned by the SO_ERROR option.

SO_GROUP_ID
Reserved for future use with socket groups: This is a get-only socket option which
indicates the identifier of the group this socket belongs to. Note that socket group IDs are
unique across all processes for a given service provider. If this socket is not a group
socket, the value is NULL.

SO_GROUP_PRIORITY
Reserved for future use with socket groups: Group priority indicates the priority of the
specified socket relative to other sockets within the socket group. Values are non-
negative integers, with zero corresponding to the highest priority. Priority values
represent a hint to the underlying service provider about how potentially scarce resources
should be allocated. For example, whenever two or more sockets are both ready to
transmit data, the highest priority socket (lowest value for SO_GROUP_PRIORITY)

52 getsockopt

should be serviced first, with the remainder serviced in turn according to their relative
priorities.

The WSAENOPROTOOPT error code is indicated for non group sockets or for service
providers which do not support group sockets.

SO_KEEPALIVE
An application may request that a TCP/IP service provider enable the use of "keep-alive"
packets on TCP connections by turning on the SO_KEEPALIVE socket option. A
WinSock provider need not support the use of keep-alive: if it does, the precise semantics
are implementation-specific but should conform to section 4.2.3.6 of RFC 1122:
Requirements for Internet Hosts -- Communication Layers. If a connection is dropped as
the result of "keep-alives" the error code WSAENETRESET is returned to any calls in
progress on the socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a
closesocket() is performed. See closesocket() for a description of the way in which the
SO_LINGER settings affect the semantics of closesocket(). The application gets the
current behavior by retrieving a struct linger (pointed to by the optval argument) with the
following elements:

struct linger {
u_short l_onoff;
u_short l_linger;

}

SO_MAX_MSG_SIZE
This is a get-only socket option which indicates the maximum outbound (send) size of a
message for message-oriented socket types (e.g., SOCK_DGRAM) as implemented by a
particular service provider. It has no meaning for byte stream oriented sockets. There is
no provision to find out the maximum inbound message size.

SO_PROTOCOL_INFO
This is a get-only option which supplies the WSAPROTOCOL_INFO structure
associated with this socket. See WSAEnumProtocols() for more information about this
structure.

SO_RCVBUF
SO_SNDBUF

When a Windows Sockets implementation supports the SO_RCVBUF and SO_SNDBUF
options, an application may request different buffer sizes (larger or smaller). The call to
setsockopt() may succeed although the implementation did not provide the whole amount
requested. An application must call this function with the same option to check the buffer
size actually provided.

SO_REUSEADDR
By default, a socket may not be bound (see bind()) to a local address which is already in
use. On occasions, however, it may be desirable to "re-use" an address in this way. Since
every connection is uniquely identified by the combination of local and remote addresses,
there is no problem with having two sockets bound to the same local address as long as
the remote addresses are different. To inform the WinSock provider that a bind() on a
socket should not be disallowed because the desired address is already in use by another
socket, the application should set the SO_REUSEADDR socket option for the socket
before issuing the bind(). Note that the option is interpreted only at the time of the

getsockopt 53

bind(): it is therefore unnecessary (but harmless) to set the option on a socket which is not
to be bound to an existing address, and setting or resetting the option after the bind() has
no effect on this or any other socket.

PVD_CONFIG
This option retrieves an "opaque" data structure object from the service provider
associated with socket s. This object stores the current configuration information of the
service provider. The exact format of this data structure is service provider specific.

TCP_NODELAY
The Nagle algorithm is disabled if the TCP_NODELAY option is enabled (and vice
versa.). The Nagle algorithm (described in RFC 896) is very effective in reducing the
number of small packets sent by a host by essentially buffering send data if there is
unacknowledged data already "in flight" or until a full-size packet can be sent. It is highly
recommended that Windows Sockets implementations enable the Nagle Algorithm by
default, and for the vast majority of application protocols the Nagle Algorithm can deliver
significant performance enhancements. However, for some applications this algorithm can
impede performance, and setsockopt() with the same option may be used to turn it off.
These are applications where many small messages are sent, which need to be received by
the peer with the time delays between the messages maintained.

Return Value If no error occurs, getsockopt() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT One of the optval or the optlen arguments is not a
valid part of the user address space, or the optlen
argument is too small.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function).

WSAEINVAL level is unknown or invalid

WSAENOPROTOOPT The option is unknown or unsupported by the
indicated protocol family.

WSAENOTSOCK The descriptor is not a socket.

See Also setsockopt(), socket(), WSAAsyncSelect(), WSAConnect(), WSAGetLastError(),
WSASetLastError().

54 htonl

4.8. htonl()
Description Convert a u_long from host to TCP/IP network byte order (which is big-endian).

 #include <winsock2.h>

 u_long WSAAPI
htonl (

IN u_long hostlong
);

hostlong A 32-bit number in host byte order.

Remarks This routine takes a 32-bit number in host byte order and returns a 32-bit number in the
network byte order used in TCP/IP networks.

Return Value htonl() returns the value in TCP/IP’s network byte order.

See Also htons(), ntohl(), ntohs(), WSAHtons(), WSAHtonl(), WSANtohl(), WSANtohs().

htons 55

4.9. htons()
Description Convert a u_short from host to TCP/IP network byte order (which is big-endian).
.

 #include <winsock2.h>

 u_short WSAAPI
htons (

IN u_short hostshort
);

hostshort A 16-bit number in host byte order.

Remarks This routine takes a 16-bit number in host byte order and returns a 16-bit number in
network byte order used in TCP/IP networks.

Return Value htons() returns the value in TCP/IP network byte order.

See Also htonl(), ntohl(), ntohs(), WSAHtons(), WSAHtonl(), WSANtohl(), WSANtohs().

56 ioctlsocket

4.10. ioctlsocket()
Description Control the mode of a socket.

 #include <winsock2.h>

 int WSAAPI
ioctlsocket (

IN SOCKET s,
IN long cmd,
IN OUT u_long FAR* argp

);

s A descriptor identifying a socket.

cmd The command to perform on the socket s.

argp A pointer to a parameter for cmd.

Remarks This routine may be used on any socket in any state. It is used to get or retrieve operating
parameters associated with the socket, independent of the protocol and communications
subsystem. The following commands are supported:

Command Semantics

FIONBIO Enable or disable non-blocking mode on socket s. argp points at an
unsigned long, which is non-zero if non-blocking mode is to be
enabled and zero if it is to be disabled. When a socket is created, it
operates in blocking mode (i.e. non-blocking mode is disabled). This is
consistent with BSD sockets.

The WSAAsyncSelect() or WSAEventSelect() routine automatically
sets a socket to nonblocking mode. If WSAAsyncSelect() or
WSAEventSelect() has been issued on a socket, then any attempt to
use ioctlsocket() to set the socket back to blocking mode will fail with
WSAEINVAL. To set the socket back to blocking mode, an
application must first disable WSAAsyncSelect() by calling
WSAAsyncSelect() with the lEvent parameter equal to 0, or disable
WSAEventSelect() by calling WSAEventSelect() with the
lNetworkEvents parameter equal to 0.

FIONREAD Determine the amount of data which can be read atomically from socket
s. argp points to an unsigned long in which ioctlsocket() stores the
result. If s is stream-oriented (e.g., type SOCK_STREAM),
FIONREAD returns an amount of data which may be read in a single
recv(); this may or may not be the same as the total amount of data
queued on the socket. If s is message-oriented (e.g., type
SOCK_DGRAM), FIONREAD returns the size of the first datagram
(message) queued on the socket.

SIOCATMARK Determine whether or not all out-of-band data has been read (See
section 3.5.2 OOB Data in TCP for a discussion of this topic.). This
applies only to a socket of stream style (e.g., type SOCK_STREAM)
which has been configured for in-line reception of any out-of-band data

ioctlsocket 57

(SO_OOBINLINE). If no out-of-band data is waiting to be read, the
operation returns TRUE. Otherwise it returns FALSE, and the next
recv() or recvfrom() performed on the socket will retrieve some or all
of the data preceding the "mark"; the application should use the
SIOCATMARK operation to determine whether any remains. If there
is any normal data preceding the "urgent" (out of band) data, it will be
received in order. (Note that a recv() or recvfrom() will never mix
out-of-band and normal data in the same call.) argp points to an
unsigned long in which ioctlsocket() stores the boolean result.

Compatibility This function is a subset of ioctl() as used in Berkeley sockets. In particular, there is no
command which is equivalent to FIOASYNC, while SIOCATMARK is the only socket-
level command which is supported.

Return Value Upon successful completion, the ioctlsocket() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL cmd is not a valid command, or argp is not an
acceptable parameter for cmd, or the command is not
applicable to the type of socket supplied.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTSOCK The descriptor s is not a socket.

WSAEFAULT The argp argument is not a valid part of the user
address space.

See Also socket(), setsockopt(), getsockopt(), WSAAsyncSelect(), WSAEventSelect(),
WSAIoctl().

58 listen

4.11. listen()
Description Establish a socket to listen for incoming connection.

 #include <winsock2.h>

 int WSAAPI
listen (

IN SOCKET s,
IN int backlog

);

s A descriptor identifying a bound, unconnected socket.

backlog The maximum length to which the queue of pending connections may
grow. If this value is SOMAXCONN, then the underlying service
provider responsible for socket s will set the backlog to a maximum
“reasonable” value. There is no standard provision to find out the actual
backlog value used.

Remarks To accept connections, a socket is first created with socket(), bound to a local address
with bind(), a backlog for incoming connections is specified with listen(), and then the
connections are accepted with accept(). listen() applies only to sockets that are
connection-oriented , e.g., those of type SOCK_STREAM. The socket s is put into
"passive'' mode where incoming connection requests are acknowledged and queued
pending acceptance by the process.

This function is typically used by servers that could have more than one connection
request at a time: if a connection request arrives with the queue full, the client will receive
an error with an indication of WSAECONNREFUSED.

listen() attempts to continue to function rationally when there are no available descriptors.
It will accept connections until the queue is emptied. If descriptors become available, a
later call to listen() or accept() will re-fill the queue to the current or most recent
"backlog'', if possible, and resume listening for incoming connections.

An application may call listen() more than once on the same socket. This has the effect of
updating the current backlog for the listening socket. Should there be more pending
connections than the new backlog value, the excess pending connections will be reset and
dropped.

Compatibility backlog is limited (silently) to a reasonable value as determined by the underlying service
provider. Illegal values are replaced by the nearest legal value. There is no standard
provision to find out the actual backlog value used.

Return Value If no error occurs, listen() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

listen 59

WSAEADDRINUSE The socket’s local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs at the
time of bind(), but could be delayed until this
function if the bind() was to a partially wild-card
address (involving ADDR_ANY) and if a specific
address needs to be “committed” at the time of this
function.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINVAL The socket has not been bound with bind().

WSAEISCONN The socket is already connected.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not of a type that supports
the listen() operation.

See Also accept(), connect(), socket().

60 ntohl

4.12. ntohl()
Description Convert a u_long from TCP/IP network order to host byte order (which is big-endian).

 #include <winsock2.h>

 u_long WSAAPI
ntohl (

IN u_long netlong
);

netlong A 32-bit number in TCP/IP network byte order.

Remarks This routine takes a 32-bit number in TCP/IP network byte order and returns a 32-bit
number in host byte order.

Return Value ntohl() returns the value in host byte order.

See Also htonl(), htons(), ntohs(), WSAHtons(), WSAHtonl(), WSANtohl(), WSANtohs().

ntohs 61

4.13. ntohs()
Description Convert a u_short from TCP/IP network byte order to host byte order (which is big-

endian).

 #include <winsock2.h>

 u_short WSAAPI
ntohs (

IN u_short netshort
);

netshort A 16-bit number in TCP/IP network byte order.

Remarks This routine takes a 16-bit number in TCP/IP network byte order and returns a 16-bit
number in host byte order.

Return Value ntohs() returns the value in host byte order.

See Also htonl(), htons(), ntohl(), WSAHtons(), WSAHtonl(), WSANtohl(), WSANtohs().

62 recv

4.14. recv()
Description Receive data from a connected socket.
 #include <winsock2.h>

 int WSAAPI
recv (

IN SOCKET s,
OUT char FAR* buf,
IN int len,
IN int flags

);

s A descriptor identifying a connected socket.

buf A buffer for the incoming data.

len The length of buf.

flags Specifies the way in which the call is made.

Remarks This function is used on connected sockets or bound connectionless sockets specified by
the s parameter and is used to read incoming data. The socket’s local address must be
known. For server applications, this is usually done explicitly through bind() or
implicitly through accept() or WSAAccept(). Explicit binding is discouraged for client
applications. For client applications the socket can become bound implicitly to a local
address through connect(), WSAConnect(), sendto(), WSASendTo(), or
WSAJoinLeaf().

For connected, connectionless sockets, this function restricts the addresses from which
received messages are accepted. The function only returns messages from the remote
address specified in the connection. Messages from other addresses are (silently)
discarded.

For byte stream style socket (e.g., type SOCK_STREAM), as much information as is
currently available up to the size of the buffer supplied is returned. If the socket has been
configured for in-line reception of out-of-band data (socket option SO_OOBINLINE) and
out-of-band data is unread, only out-of-band data will be returned. The application may
use the ioctlsocket() or WSAIoctl() with the SIOCATMARK command to determine
whether any more out-of-band data remains to be read.

For message-oriented sockets (e.g., type SOCK_DGRAM), data is extracted from the first
enqueued datagram (message) from the destination address specified in the connect()
call. If the datagram or message is larger than the buffer supplied, the buffer is filled with
the first part of the datagram, and recv() generates the error WSAEMSGSIZE. For
unreliable protocols (e.g. UDP) the excess data is lost, for reliable protocols the data is
retained by the service provider until it is successfully read by calling recv() with a large
enough buffer. For TCP/IP, an application cannot receive from any multicast address until
after becoming a group member (see Windows Sockets 2 Protocol-Specific Annex for
more information).

If no incoming data is available at the socket, the recv() call blocks and waits for data to
arrive according to the blocking rules defined for WSARecv() with the MSG_PARTIAL
flag not set unless the socket is non-blocking. In this case a value of SOCKET_ERROR

recv 63

is returned with the error code set to WSAEWOULDBLOCK. The select(),
WSAAsyncSelect(), or WSAEventSelect() calls may be used to determine when more
data arrives.

If the socket is connection-oriented and the remote side has shut down the connection
gracefully, and all data has been received already, a recv() will complete immediately
with 0 bytes received. If the connection has been reset, a recv() will fail with the error
WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by or-
ing any of the following values:

Value Meaning
MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not

removed from the input queue, and the function returns the number of
bytes currently pending to receive.

MSG_OOB Process out-of-band data (See section 3.5. Out-Of-Band data for a
discussion of this topic.)

Return Value If no error occurs, recv() returns the number of bytes received. If the connection has been
gracefully closed, and all data received, the return value is 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf argument is not totally contained in a valid
part of the user address space.

WSAENOTCONN The socket is not connected.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOTSOCK The descriptor is not a socket.

64 recv

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
recv() on a socket after shutdown() has been invoked
with how set to SD_RECEIVE or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as non-blocking and the receive
operation would block.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and was truncated.

WSAEINVAL The socket has not been bound (e.g., with bind()), or
an unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled
or (for byte stream sockets only) len was 0 or
negative.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure. The application should close the socket
as it is no longer useable.

WSAETIMEDOUT The connection has been dropped because of a
network failure or because the peer system failed to
respond.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a “hard” or “abortive” close. The
application should close the socket as it is no longer
useable. On a UDP datagram socket this error would
indicate that a previous send operation resulted in an
ICMP "Port Unreachable" message.

See Also recvfrom(), send(), select(), socket(), WSAAsyncSelect().

recvfrom 65

4.15. recvfrom()
Description Receive a datagram and store the source address.

 #include <winsock2.h>

 int WSAAPI
recvfrom (

IN SOCKET s,
OUT char FAR* buf,
IN int len,
IN int flags,
OUT struct sockaddr FAR* from,
IN OUT int FAR* fromlen

);

s A descriptor identifying a bound socket.

buf A buffer for the incoming data.

len The length of buf.

flags Specifies the way in which the call is made.

from An optional pointer to a buffer which will hold the source address upon
return.

fromlen An optional pointer to the size of the from buffer.

Remarks This function is used to read incoming data on a socket and capture the address from
which the data was sent. The socket must not be connected. The socket’s local address
must be known. For server applications, this is usually done explicitly through bind().
Explicit binding is discouraged for client applications. For client applications using this
function, the socket can become bound implicitly to a local address through sendto(),
WSASendTo(), or WSAJoinLeaf().

For stream-oriented sockets such as those of type SOCK_STREAM, as much information
as is currently available up to the size of the buffer supplied is returned. If the socket has
been configured for in-line reception of out-of-band data (socket option
SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be returned.
The application may use the ioctlsocket() or WSAIoctl() SIOCATMARK command to
determine whether any more out-of-band data remains to be read. The from and fromlen
parameters are ignored for connection-oriented sockets.

For message-oriented sockets, data is extracted from the first enqueued message, up to the
size of the buffer supplied. If the datagram or message is larger than the buffer supplied,
the buffer is filled with the first part of the datagram, and recvfrom() generates the error
WSAEMSGSIZE. For unreliable protocols (e.g. UDP) the excess data is lost.

If from is non-zero, and the socket is not connection-oriented (e.g., type
SOCK_DGRAM), the network address of the peer which sent the data is copied to the
corresponding struct sockaddr. The value pointed to by fromlen is initialized to the size
of this structure, and is modified on return to indicate the actual size of the address stored
there.

66 recvfrom

If no incoming data is available at the socket, the recvfrom() call blocks and waits for
data to arrive according to the blocking rules defined for WSARecv() with the
MSG_PARTIAL flag not set unless the socket is non-blocking. In this case a value of
SOCKET_ERROR is returned with the error code set to WSAEWOULDBLOCK. The
select(), WSAAsyncSelect(), or WSAEventSelect() may be used to determine when
more data arrives.

If the socket is connection-oriented and the remote side has shut down the connection
gracefully, a recvfrom() will complete immediately with 0 bytes received. If the
connection has been reset recvfrom() will fail with the error WSAECONNRESET.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by or-
ing any of the following values:

Value Meaning
MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not

removed from the input queue, and the function returns the number of
bytes currently pending to receive

MSG_OOB Process out-of-band data (See section 3.5. Out-Of-Band data for a
discussion of this topic.)

Return Value If no error occurs, recvfrom() returns the number of bytes received. If the connection has
been gracefully closed, and all data received, the return value is 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The buf or from parameters are not part of the user
address space, or the fromlen argument is too small to
accommodate the peer address.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINVAL The socket has not been bound (e.g., with bind()), or
an unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled,
or (for byte stream style sockets only) len was 0 or
negative.

recvfrom 67

WSAEISCONN The socket is connected. This function is not
permitted with a connected socket, whether the socket
is connection-oriented or connectionless.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
recvfrom() on a socket after shutdown() has been
invoked with how set to SD_RECEIVE or
SD_BOTH.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
recvfrom() operation would block.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and was truncated.

WSAETIMEDOUT The connection has been dropped, because of a
network failure or because the system on the other
end went down without notice.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a “hard” or “abortive” close. The
application should close the socket as it is no longer
useable. On a UDP datagram socket this error would
indicate that a previous send operation resulted in an
ICMP "Port Unreachable" message.

See Also recv(), send(), socket(), WSAAsyncSelect(), WSAEventSelect().

68 select

4.16. select()
Description Determine the status of one or more sockets, waiting if necessary.

 #include <winsock2.h>

 int WSAAPI
select (

IN int nfds,
IN OUT fd_set FAR * readfds,
IN OUT fd_set FAR * writefds,
IN OUT fd_set FAR * exceptfds,
IN const struct timeval FAR * timeout

);

nfds This argument is ignored and included only for the sake of
compatibility.

readfds An optional pointer to a set of sockets to be checked for readability.

writefds An optional pointer to a set of sockets to be checked for writability

exceptfds An optional pointer to a set of sockets to be checked for errors.

timeout The maximum time for select() to wait, or NULL for blocking
operation.

Remarks This function is used to determine the status of one or more sockets. For each socket, the
caller may request information on read, write or error status. The set of sockets for which
a given status is requested is indicated by an fd_set structure. The sockets contained
within the fd_set structures must be associated with a single service provider. For the
purpose of this restriction, sockets are considered to be from the same service provider if
the WSAPROTOCOL_INFO structures describing their protocols have the same
providerId value.

Upon return, the structures are updated to reflect the subset of these sockets which meet
the specified condition, and select() returns the number of sockets meeting the conditions.
A set of macros is provided for manipulating an fd_set. These macros are compatible
with those used in the Berkeley software, but the underlying representation is completely
different.

The parameter readfds identifies those sockets which are to be checked for readability. If
the socket is currently listen()ing, it will be marked as readable if an incoming connection
request has been received, so that an accept() is guaranteed to complete without blocking.
For other sockets, readability means that queued data is available for reading so that a
recv() or recvfrom(), WSARecv() or WSARecvFrom(),is guaranteed not to block.

For connection-oriented sockets, readability may also indicate that a close request has
been received from the peer. If the virtual circuit was closed gracefully, and all data
received, then a recv() will return immediately with 0 bytes read. If the virtual circuit was
reset, then a recv() will complete immediately with an error code, such as
WSAECONNRESET. The presence of out-of-band data will be checked if the socket
option SO_OOBINLINE has been enabled (see setsockopt()).

select 69

The parameter writefds identifies those sockets which are to be checked for writability.
If a socket is connect()ing (non-blocking), writability means that the connection
establishment successfully completed. If the socket is not in the process of connect()ing,
writability means that a send() or sendto(), or WSASend() or WSASendto(), are
guaranteed to succeed. However, they may block on a blocking socket if the len exceeds
the amount of outgoing system buffer space available. [It is not specified how long these
guarantees can be assumed to be valid, particularly in a multithreaded environment.]

The parameter exceptfds identifies those sockets which are to be checked for the presence
of out-of-band data (see section 3.5. Out-Of-Band data for a discussion of this topic) or
any exceptional error conditions. Note that out-of-band data will only be reported in this
way if the option SO_OOBINLINE is FALSE. If a socket is connect()ing (non-blocking),
failure of the connect attempt is indicated in exceptfds (application must then call
getsockopt() SO_ERROR to determine the error value to describe why the failure
occurred. This specification does not define which other errors will be included.

Any two of readfds, writefds, or exceptfds may be given as NULL if no descriptors are to
be checked for the condition of interest. At least one must be non-NULL, and any non-
NULL descriptor set must contain at least one socket descriptor..

Summary: A socket will be identified in a particular set when select() returns if:

readfds: * If listen()ing, a connection is pending, accept() will succeed
* Data is available for reading (includes OOB data if

SO_OOBINLINE is enabled)
* Connection has been closed/reset/aborted

writefds: * If connect()ing (non-blocking), connection has succeeded.
* Data may be sent

exceptfds: * If connect()ing (non-blocking), connection attempt failed.
* OOB data is available for reading (only if SO_OOBINLINE

is disabled)

Four macros are defined in the header file winsock2.h for manipulating and checking the
descriptor sets. The variable FD_SETSIZE determines the maximum number of
descriptors in a set. (The default value of FD_SETSIZE is 64, which may be modified by
#defining FD_SETSIZE to another value before #including winsock2.h.) Internally,
socket handles in a fd_set are not represented as bit flags as in Berkeley Unix. Their data
representation is opaque. Use of these macros will maintain software portability between
different socket environments. The macros to manipulate and check fd_set contents are:

FD_CLR(s, *set) Removes the descriptor s from set.

FD_ISSET(s, *set) Nonzero if s is a member of the set, zero otherwise.

FD_SET(s, *set) Adds descriptor s to set.

FD_ZERO(*set) Initializes the set to the NULL set.

The parameter timeout controls how long the select() may take to complete. If timeout is
a null pointer, select() will block indefinitely until at least one descriptor meets the
specified criteria. Otherwise, timeout points to a struct timeval which specifies the
maximum time that select() should wait before returning. When select() returns, the

70 select

contents of the struct timeval are not altered. If the timeval is initialized to {0, 0}, select()
will return immediately; this is used to "poll" the state of the selected sockets. If this is
the case, then the select() call is considered nonblocking and the standard assumptions for
nonblocking calls apply. For example, the blocking hook will not be called, and WinSock
will not yield.

Return Value select() returns the total number of descriptors which are ready and contained in the
fd_set structures, 0 if the time limit expired, or SOCKET_ERROR if an error occurred. If
the return value is SOCKET_ERROR, WSAGetLastError() may be used to retrieve a
specific error code.

Comments select() has no effect on the persistence of socket events registered with
WSAAsyncSelect() or WSAEventSelect().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAEFAULT The WinSock implementation was unable to allocate
needed resources for its internal operations, or the
readfds, writefds, exceptfds, or timeval parameters are
not part of the user address space.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL The timeout value is not valid, or all three descriptor
parameters were NULL.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTSOCK One of the descriptor sets contains an entry which is
not a socket.

See Also accept(), connect(), recv(), recvfrom(), send(), WSAAsyncSelect(),
WSAEventSelect()

send 71

4.17. send()
Description Send data on a connected socket.

 #include <winsock2.h>

 int WSAAPI
send (

IN SOCKET s,
IN const char FAR * buf,
IN int len,
IN int flags

);

s A descriptor identifying a connected socket.

buf A buffer containing the data to be transmitted.

len The length of the data in buf.

flags Specifies the way in which the call is made.

Remarks send() is used to write outgoing data on a connected socket. For message-oriented
sockets, care must be taken not to exceed the maximum packet size of the underlying
provider, which can be obtained by getting the value of socket option
SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the underlying
protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a send() does not indicate that the data was
successfully delivered.

If no buffer space is available within the transport system to hold the data to be
transmitted, send() will block unless the socket has been placed in a non-blocking I/O
mode. On non-blocking stream-oriented sockets, the number of bytes written may be
between 1 and the requested length, depending on buffer availability on both the local and
foreign hosts. The select(), WSAAsyncSelect() or WSAEventSelect() call may be used
to determine when it is possible to send more data.

Calling send() with a len of 0 is to be treated by implementations as successful - in this
case send() may return 0 as a valid return value. For message-oriented sockets, a zero-
length transport datagram is sent.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by or-
ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing. A WinSock
service provider may choose to ignore this flag.

MSG_OOB Send out-of-band data (stream style socket such as SOCK_STREAM
only).

72 send

Return Value If no error occurs, send() returns the total number of bytes sent. (Note that this may be
less than the number indicated by len for non-blocking sockets.) Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set (call setsockopt
SO_BROADCAST to allow use of the broadcast
address).

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEFAULT The buf argument is not totally contained in a valid
part of the user address space.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOBUFS No buffer space is available.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
send() on a socket after shutdown() has been
invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
requested operation would block.

WSAEMSGSIZE The socket is message-oriented, and the message is
larger than the maximum supported by the underlying
transport.

send 73

WSAEHOSTUNREACH The remote host can't be reached from this host at this
time.

WSAEINVAL The socket has not been bound with bind(), or an
unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure. The application should close the socket
as it is no longer useable.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a “hard” or “abortive” close. For UPD
sockets, the remote host was unable to deliver a
previously sent UDP datagram and responded with a
"Port Unreachable" ICMP packet. The application
should close the socket as it is no longer useable.

WSAETIMEDOUT The connection has been dropped, because of a
network failure or because the system on the other
end went down without notice.

See Also recv(), recvfrom(), select(), socket(), sendto(), WSAAsyncSelect(),
WSAEventSelect().

74 sendto

4.18. sendto()
Description Send data to a specific destination.

 #include <winsock2.h>

 int WSAAPI
sendto (

IN SOCKET s,
IN const char FAR * buf,
IN int len,
IN int flags,
IN const struct sockaddr FAR * to,
IN int tolen

);

s A descriptor identifying a (possibly connected) socket.

buf A buffer containing the data to be transmitted.

len The length of the data in buf.

flags Specifies the way in which the call is made.

to An optional pointer to the address of the target socket.

tolen The size of the address in to.

Remarks sendto() is used to write outgoing data on a socket. For message-oriented sockets, care
must be taken not to exceed the maximum packet size of the underlying subnets, which
can be obtained by getting the value of socket option SO_MAX_MSG_SIZE. If the data
is too long to pass atomically through the underlying protocol the error WSAEMSGSIZE
is returned, and no data is transmitted.

The to parameter may be any valid address in the socket's address family, including a
broadcast or any multicast address. To send to a broadcast address, an application must
have setsockopt() SO_BROADCAST enabled, otherwise sendto() will fail with the error
code WSAEACCES. For TCP/IP, an application can send to any multicast address
(without becoming a group member).

If the socket is unbound, unique values are assigned to the local association by the system,
and the socket is marked as bound. An application may use getsockname() to determine
the local socket name in this case.

Note that the successful completion of a sendto() does not indicate that the data was
successfully delivered.

sendto() is normally used on a connectionless socket to send a datagram to a specific peer
socket identified by the to parameter. Even if the connectionless socket has been
previously connect()ed to a specific address, to overrides the destination address for that
particular datagram only. On a connection-oriented socket, the to and tolen parameters
are ignored; in this case the sendto() is equivalent to send().

For sockets using IP (version 4):

sendto 75

To send a broadcast (on a SOCK_DGRAM only), the address in the to parameter should
be constructed using the special IP address INADDR_BROADCAST (defined in
winsock2.h) together with the intended port number. It is generally inadvisable for a
broadcast datagram to exceed the size at which fragmentation may occur, which implies
that the data portion of the datagram (excluding headers) should not exceed 512 bytes.

If no buffer space is available within the transport system to hold the data to be
transmitted, sendto() will block unless the socket has been placed in a non-blocking I/O
mode. On non-blocking stream-oriented sockets, the number of bytes written may be
between 1 and the requested length, depending on buffer availability on both the local and
foreign hosts. The select(), WSAAsyncSelect() or WSAEventSelect() call may be used
to determine when it is possible to send more data.

Calling sendto() with a len of 0 is legal and in this case sendto() will return 0 as a valid
return value. For message-oriented sockets, a zero-length transport datagram is sent.

Flags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the flags parameter. The latter is constructed by or-
ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing. A WinSock
service provider may choose to ignore this flag.

MSG_OOB Send out-of-band data (stream style socket such as SOCK_STREAM
only).

Return Value If no error occurs, sendto() returns the total number of bytes sent. (Note that this may be
less than the number indicated by len.) Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set (call setsockopt
SO_BROADCAST to allow use of the broadcast
address).

.

WSAEINVAL An unknown flag was specified, or MSG_OOB was
specified for a socket with SO_OOBINLINE enabled.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

76 sendto

WSAEFAULT The buf or to parameters are not part of the user
address space, or the tolen argument is too small.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOBUFS No buffer space is available.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
sendto() on a socket after shutdown() has been
invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
requested operation would block.

WSAEMSGSIZE The socket is message-oriented, and the message is
larger than the maximum supported by the underlying
transport.

WSAEHOSTUNREACH The remote host can't be reached from this host at this
time.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure. The application should close the socket
as it is no longer useable.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a “hard” or “abortive” close. For UPD
sockets, the remote host was unable to deliver a
previously sent UDP datagram and responded with a
"Port Unreachable" ICMP packet. The application
should close the socket as it is no longer useable.

WSAEADDRNOTAVAIL The remote address is not a valid address (e.g.,
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network can't be reached from this host at this
time.

sendto 77

WSAETIMEDOUT The connection has been dropped, because of a
network failure or because the system on the other
end went down without notice.

See Also recv(), recvfrom(), select(), socket(), send(), WSAAsyncSelect(), WSAEventSelect().

78 setsockopt

4.19. setsockopt()
Description Set a socket option.

 #include <winsock2.h>

 int WSAAPI
setsockopt (

IN SOCKET s,
IN int level,
IN int optname,
IN const char FAR * optval,
IN int optlen

);

s A descriptor identifying a socket.

level The level at which the option is defined; the supported levels include
SOL_SOCKET and IPPROTO_TCP. (See annex for more protocol-
specific levels.)

optname The socket option for which the value is to be set.

optval A pointer to the buffer in which the value for the requested option is
supplied.

optlen The size of the optval buffer.

Remarks setsockopt() sets the current value for a socket option associated with a socket of any
type, in any state. Although options may exist at multiple protocol levels, they are always
present at the uppermost "socket'' level. Options affect socket operations, such as whether
expedited data is received in the normal data stream, whether broadcast messages may be
sent on the socket, etc.

There are two types of socket options: Boolean options that enable or disable a feature or
behavior, and options which require an integer value or structure. To enable a Boolean
option, optval points to a nonzero integer. To disable the option optval points to an
integer equal to zero. optlen should be equal to sizeof(int) for Boolean options. For other
options, optval points to the an integer or structure that contains the desired value for the
option, and optlen is the length of the integer or structure.

The following options are supported for setsockopt(). For default values of these options, see the
description of getsockopt(). The Type identifies the type of data addressed by optval.

Level = SOL_SOCKET
Value Type Meaning
SO_BROADCAST BOOL Allow transmission of broadcast messages on

the socket.
SO_DEBUG BOOL Record debugging information.
SO_DONTLINGER BOOL Don't block close waiting for unsent data to be

sent. Setting this option is equivalent to setting
SO_LINGER with l_onoff set to zero.

SO_DONTROUTE BOOL Don't route: send directly to interface.

setsockopt 79

SO_GROUP_PRIORITY int Reserved for future use with socket groups:
Specify the relative priority to be established
for sockets that are part of a socket group.

SO_KEEPALIVE BOOL Send keepalives
SO_LINGER struct linger Linger on close if unsent data is present
SO_OOBINLINE BOOL Receive out-of-band data in the normal data

stream (see section
3.5. Out-Of-Band data for a discussion of this
topic).

SO_RCVBUF int Specify the total per-socket buffer space
reserved for receives. This is unrelated to
SO_MAX_MSG_SIZE or the size of a TCP
window.

SO_REUSEADDR BOOL Allow the socket to be bound to an address
which is already in use. (See bind().)

SO_SNDBUF int Specify the total per-socket buffer space
reserved for sends. This is unrelated to
SO_MAX_MSG_SIZE or the size of a TCP
window.

PVD_CONFIG Service
Provider
Dependent

This object stores the configuration
information for the service provider associated
with socket s. The exact format of this data
structure is service provider specific.

Level = IPPROTO_TCP*

TCP_NODELAY BOOL Disables the Nagle algorithm for send
coalescing.

*included for backwards compatibility with WinSock 1.1

BSD options not supported for setsockopt() are:

Value Type Meaning
SO_ACCEPTCONN BOOL Socket is listening
SO_RCVLOWAT int Receive low water mark
SO_RCVTIMEO int Receive timeout
SO_SNDLOWAT int Send low water mark
SO_SNDTIMEO int Send timeout
SO_TYPE int Type of the socket

SO_DEBUG
WinSock service providers are encouraged (but not required) to supply output debug
information if the SO_DEBUG option is set by an application. The mechanism for
generating the debug information and the form it takes are beyond the scope of this
specification.

SO_GROUP_PRIORITY
Reserved for future use with socket groups: Group priority indicates the relative priority
of the specified socket relative to other sockets within the socket group. Values are non-
negative integers, with zero corresponding to the highest priority. Priority values
represent a hint to the underlying service provider about how potentially scarce resources
should be allocated. For example, whenever two or more sockets are both ready to

80 setsockopt

transmit data, the highest priority socket (lowest value for SO_GROUP_PRIORITY)
should be serviced first, with the remainder serviced in turn according to their relative
priorities.

The WSAENOPROTOOPT error is indicated for non group sockets or for service
providers which do not support group sockets.

SO_KEEPALIVE
An application may request that a TCP/IP provider enable the use of "keep-alive" packets
on TCP connections by turning on the SO_KEEPALIVE socket option. A WinSock
provider need not support the use of keep-alives: if it does, the precise semantics are
implementation-specific but should conform to section 4.2.3.6 of RFC 1122:
Requirements for Internet Hosts -- Communication Layers. If a connection is dropped as
the result of "keep-alives" the error code WSAENETRESET is returned to any calls in
progress on the socket, and any subsequent calls will fail with WSAENOTCONN.

SO_LINGER
SO_LINGER controls the action taken when unsent data is queued on a socket and a
closesocket() is performed. See closesocket() for a description of the way in which the
SO_LINGER settings affect the semantics of closesocket(). The application sets the
desired behavior by creating a struct linger (pointed to by the optval argument) with the
following elements:

struct linger {
u_short l_onoff;
u_short l_linger;

}

To enable SO_LINGER, the application should set l_onoff to a non-zero value, set
l_linger to 0 or the desired timeout (in seconds), and call setsockopt(). To enable
SO_DONTLINGER (i.e. disable SO_LINGER) l_onoff should be set to zero and
setsockopt() should be called. Note that enabling SO_LINGER with a non-zero timeout
on a non-blocking socket is not recommended (see section 4.3. for details).

Enabling SO_LINGER also disables SO_DONTLINGER, and vice versa. Note that if
SO_DONTLINGER is DISABLED (i.e. SO_LINGER is ENABLED) then no timeout
value is specified. In this case the timeout used is implementation dependent. If a previous
timeout has been established for a socket (by enabling SO_LINGER), then this timeout
value should be reinstated by the service provider.

SO_REUSEADDR
By default, a socket may not be bound (see bind()) to a local address which is already in
use. On occasions, however, it may be desirable to "re-use" an address in this way. Since
every connection is uniquely identified by the combination of local and remote addresses,
there is no problem with having two sockets bound to the same local address as long as
the remote addresses are different. To inform the WinSock provider that a bind() on a
socket should not be disallowed because the desired address is already in use by another
socket, the application should set the SO_REUSEADDR socket option for the socket
before issuing the bind(). Note that the option is interpreted only at the time of the
bind(): it is therefore unnecessary (but harmless) to set the option on a socket which is not
to be bound to an existing address, and setting or resetting the option after the bind() has
no effect on this or any other socket.

SO_RCVBUF
SO_SNDBUF

setsockopt 81

When a Windows Sockets implementation supports the SO_RCVBUF and SO_SNDBUF
options, an application may request different buffer sizes (larger or smaller). The call to
setsockopt() may succeed although the implementation did not provide the whole amount
requested. An application must call getsockopt() with the same option to check the
buffer size actually provided.

PVD_CONFIG
This object stores the configuration information for the service provider associated with
socket s. The exact format of this data structure is service provider specific.

TCP_NODELAY
The TCP_NODELAY option is specific to TCP/IP service providers. Enabling the
TCP_NODELAY option disables the TCP Nagle Algorithm (and vice versa). The Nagle
algorithm (described in RFC 896) is very effective in reducing the number of small
packets sent by a host by essentially buffering send data if there is unacknowledged data
already “in flight” or until a full-size packet can be sent. It is highly recommended that
TCP/IP service providers enable the Nagle Algorithm by default, and for the vast majority
of application protocols the Nagle Algorithm can deliver significant performance
enhancements. However, for some applications this algorithm can impede performance,
and TCP_NODELAY may be used to turn it off. These are applications where many
small messages are sent, which need to be received by the peer with the time delays
between the messages maintained. Application writers should not set TCP_NODELAY
unless the impact of doing so is well-understood and desired, since setting
TCP_NODELAY can have a significant negative impact of network and application
performance.

Return Value If no error occurs, setsockopt() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT optval is not in a valid part of the process address
space or optlen argument is too small.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback function
(see section.

WSAEINVAL level is not valid, or the information in optval is not
valid.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOPROTOOPT The option is unknown or unsupported for the
specified provider or socket (see
SO_GROUP_PRIORITY limitations).

WSAENOTCONN Connection has been reset when SO_KEEPALIVE is
set.

82 setsockopt

WSAENOTSOCK The descriptor is not a socket.

See Also bind(), getsockopt(), ioctlsocket(), socket(), WSAAsyncSelect(), WSAEventSelect().

shutdown 83

4.20. shutdown()
Description Disable sends and/or receives on a socket.

 #include <winsock2.h>

 int WSAAPI
shutdown (

IN SOCKET s,
IN int how

);

s A descriptor identifying a socket.

how A flag that describes what types of operation will no longer be allowed.

Remarks shutdown() is used on all types of sockets to disable reception, transmission, or both.

If how is SD_RECEIVE, subsequent receives on the socket will be disallowed. This has
no effect on the lower protocol layers. For TCP sockets, if there is still data queued on
the socket waiting to be received, or data arrives subsequently, the connection is reset,
since the data cannot be delivered to the user. For UDP sockets, incoming datagrams are
accepted and queued. In no case will an ICMP error packet be generated.

If how is SD_SEND, subsequent sends are disallowed. For TCP sockets, a FIN will be
sent after all data is sent and acknowledged by the receiver..

Setting how to SD_BOTH disables both sends and receives as described above.

Note that shutdown() does not close the socket, and resources attached to the socket will
not be freed until closesocket() is invoked.

To assure that all data is sent and received on a connected socket before it is closed, an
application should use shutdown() to close connection before calling closesocket(). For
example, to initiate a graceful disconnect, an application could:

• call WSAAsyncSelect() to register for FD_CLOSE notification
• call shutdown() with how=SD_SEND
• when FD_CLOSE received, call recv() until 0 returned, or SOCKET_ERROR
• call closesocket()

Comments shutdown() does not block regardless of the SO_LINGER setting on the socket.

An application should not rely on being able to re-use a socket after it has been shut
down. In particular, a WinSock provider is not required to support the use of connect()
on such a socket.

Return Value If no error occurs, shutdown() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

84 shutdown

WSAENETDOWN The network subsystem has failed.

WSAEINVAL how is not valid, or is not consistent with the socket
type, e.g., SD_SEND is used with a UNI_RECV
socket type.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

See Also connect(), socket().

socket 85

4.21. socket()
Description Create a socket which is bound to a specific service provider.

 #include <winsock2.h>

 SOCKET WSAAPI
socket (

IN int af,
IN int type,
IN int protocol

);

af An address family specification.

type A type specification for the new socket.

protocol A particular protocol to be used with the socket which is specific to the
indicated address family.

Remarks socket() causes a socket descriptor and any related resources to be allocated and bound to
a specific transport service provider. WinSock will utilize the first available service
provider that supports the requested combination of address family, socket type and
protocol parameters. The socket created will have the overlapped attribute by default.
Note that on Microsoft operating systems there is a Microsoft-specific socket option,
SO_OPENTYPE, defined in “mswsock.h” that can affect this default. See Microsoft-
specific documentation for a detailed description of SO_OPENTYPE. Sockets without
the overlapped attribute can be created by using WSASocket(). All functions that allow
overlapped operation (WSASend(), WSARecv(),WSASendTo(), WSARecvFrom(),
WSAIoctl()) also support non-overlapped usage on an overlapped socket if the values for
parameters related to overlapped operation are NULL.

When selecting a protocol and its supporting service provider this procedure will only
choose a base protocol or a protocol chain, not a protocol layer by itself. Unchained
protocol layers are not considered to have "partial matches" on type or af either. That is,
they do not lead to an error code of WSAEAFNOSUPPORT or
WSAEPROTONOSUPPORT if no suitable protocol is found.

Note: the manifest constant AF_UNSPEC continues to be defined in the header file but
its use is strongly discouraged, as this may cause ambiguity in interpreting the value of
the protocol parameter.

The following are the only two type specifications supported for WinSock 1.1:

Type Explanation
SOCK_STREAM Provides sequenced, reliable, two-way, connection-

based byte streams with an out-of-band data
transmission mechanism. Uses TCP for the Internet
address family.

SOCK_DGRAM Supports datagrams, which are connectionless,
unreliable buffers of a fixed (typically small)

86 socket

maximum length. Uses UDP for the Internet address
family.

In WinSock 2 many new socket types will be introduced. However, since an application
can dynamically discover the attributes of each available transport protocol via the
WSAEnumProtocols() function, the various socket types need not be called out in the
API specification. Socket type definitions will appear in Winsock2.h which will be
periodically updated as new socket types, address families and protocols are defined.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections,
and must be in a connected state before any data may be sent or received on it. A
connection to another socket is created with a connect() call. Once connected, data may
be transferred using send() and recv() calls. When a session has been completed, a
closesocket() must be performed.

The communications protocols used to implement a reliable, connection-oriented socket
ensure that data is not lost or duplicated. If data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken and subsequent calls will fail with the error code set to
WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to
and from arbitrary peers using sendto() and recvfrom(). If such a socket is connect()ed
to a specific peer, datagrams may be sent to that peer using send() and may be received
from (only) this peer using recv().

Support for sockets with type RAW is not required but service providers are encouraged
to support raw sockets whenever it makes sense to do so.

Return Value If no error occurs, socket() returns a descriptor referencing the new socket. Otherwise, a
value of INVALID_SOCKET is returned, and a specific error code may be retrieved by
calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem or the associated service
provider has failed.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAEPROTONOSUPPORT The specified protocol is not supported.

socket 87

WSAEPROTOTYPE The specified protocol is the wrong type for this
socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this
address family.

See Also accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(), listen(), recv(),
recvfrom(), select(), send(), sendto(), shutdown(), ioctlsocket(), WSASocket().

88 WSAAccept

4.22. WSAAccept()
Description Conditionally accept a connection based on the return value of a condition function,

optionally create and/or join a socket group, provide QOS flowspecs, and allow transfer
of connection data.

 #include <winsock2.h>

 SOCKET WSAAPI
WSAAccept (

IN SOCKET s,
OUT struct sockaddr FAR * addr,
IN OUT LPINT addrlen,
IN LPCONDITIONPROC lpfnCondition,
IN DWORD dwCallbackData

);

s A descriptor identifying a socket which is listening for connections after
a listen().

addr An optional pointer to a buffer which receives the address of the
connecting entity, as known to the communications layer. The exact
format of the addr argument is determined by the address family
established when the socket was created.

addrlen An optional pointer to an integer which contains the length of the
address addr.

lpfnCondition The procedure instance address of the optional, application-supplied
condition function which will make an accept/reject decision based on
the caller information passed in as parameters, and optionally create
and/or join a socket group by assigning an appropriate value to the
result parameter g of this function.

dwCallbackData The callback data passed back to the application as the value of the
dwCallbackData parameter of the condition function. This parameter
is not interpreted by WinSock.

Remarks This routine extracts the first connection on the queue of pending connections on s, and
checks it against the condition function, provided the condition function is specified (i.e.,
not NULL). If the condition function returns CF_ACCEPT, this routine creates a new
socket and performs any socket grouping as indicated by the result parameter g in the
condition function . The newly created socket has the same properties as s including
asynchronous events registered with WSAAsyncSelect() or with WSAEventSelect(), but
not including the listening socket’s group ID, if any. If the condition function returns
CF_REJECT, this routine rejects the connection request. The condition function runs in
the same thread as this routine does, and should return as soon as possible. If the decision
cannot be made immediately, the condition function should return CF_DEFER to indicate
that no decision has been made, and no action about this connection request should be
taken by the service provider. When the application is ready to take action on the
connection request, it will invoke WSAAccept() again and return either CF_ACCEPT or
CF_REJECT as a return value from the condition function.

WSAAccept 89

For sockets which remain in the (default) blocking mode, if no pending connections are
present on the queue, WSAAccept() blocks the caller until a connection is present. For
sockets in a non-blocking mode, if this function is called when no pending connections
are present on the queue, WSAAccept() fails with the error WSAEWOULDBLOCK, as
described below.

After WSAAccept() succeeds, and returns a new socket handle, that accepted socket may
not be used to accept more connections. The original socket remains open, and listening
for new connection requests..

The argument addr is a result parameter that is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is
determined by the address family in which the communication is occurring. The addrlen
is a value-result parameter; it should initially contain the amount of space pointed to by
addr. On return, it will contain the actual length (in bytes) of the address returned. This
call is used with connection-oriented socket types such as SOCK_STREAM. If addr
and/or addrlen are equal to NULL, then no information about the remote address of the
accepted socket is returned. Otherwise, these two parameters will be filled in regardless
of whether the condition function is specified or what it returns.

The prototype of the condition function is as follows:

int CALLBACK
ConditionFunc(

IN LPWSABUF lpCallerId,
IN LPWSABUF lpCallerData,
IN OUT LPQOS lpSQOS,
IN OUT LPQOS lpGQOS,
IN LPWSABUF lpCalleeId,
OUT LPWSABUF lpCalleeData,
OUT GROUP FAR * g,
IN DWORD dwCallbackData

);

ConditionFunc is a placeholder for the application-supplied function name. The actual
condition function must reside in a DLL or application module and be exported in the
module definition file. You must use MakeProcInstance() to get a procedure-instance
address for the callback function.

The lpCallerId and lpCallerData are value parameters which contain the address of the
connecting entity and any user data that was sent along with the connection request,
respectively. If no caller ID or caller data is available, the corresponding parameters will
be NULL. (Many network protocols do not support connect-time caller data. Most
conventional network protocols can be expected to support caller ID information at
connection-request time.) The “buf” part of the WSABUF pointed to by lpCallerId points
to a SOCKADDR. The SOCKADDR is interpreted according to its address family
(typically by casting the SOCKADDR to some type specific to the address family).

lpSQOS references the flow specs for socket s specified by the caller, one for each
direction, followed by any additional provider-specific parameters. The sending or
receiving flow spec values will be ignored as appropriate for any unidirectional sockets. A
NULL value for lpSQOS indicates that there is no caller supplied QOS and that no
negotiation is possible. A non-NULL lpSQOS pointer indicates that a QOS negotiation is
to occur or that the provider is prepared to accept the QOS request without negotiation.

90 WSAAccept

Reserved for future use with socket groups: lpGQOS references the flow specs for the
socket group the caller is to create, one for each direction, followed by any additional
provider-specific parameters. A NULL value for lpGQOS indicates no caller-supplied
group QOS. QOS information may be returned if a QOS negotiation is to occur.

The lpCalleeId is a value parameter which contains the local address of the connected
entity. The “buf” part of the WSABUF pointed to by lpCalleeId points to a SOCKADDR.
The SOCKADDR is interpreted according to its address family (typically by casting the
SOCKADDR to some type specific to the address family).

The lpCalleeData is a result parameter used by the condition function to supply user data
back to the connecting entity. lpCalleeData->len initially contains the length of the
buffer allocated by the service provider and pointed to by lpCalleeData->buf. A value of
zero means passing user data back to the caller is not supported. The condition function
should copy up to lpCalleeData->len bytes of data into lpCalleeData->buf , and then
update lpCalleeData->len to indicate the actual number of bytes transferred. If no user
data is to be passed back to the caller, the condition function should set lpCalleeData-
>len to zero. The format of all address and user data is specific to the address family to
which the socket belongs.

Reserved for future use with socket groups: The result parameter g is assigned within the
condition function to indicate the following actions:

if &g is an existing socket group ID, add s to this group, provided all the
requirements set by this group are met; or

if &g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket
group and have s as the first member; or

if &g = SG_CONSTRAINED_GROUP, create a constrained socket group and
have s as the first member; or

if &g = zero, no group operation is performed.
For unconstrained groups, any set of sockets may be grouped together as long as they are
supported by a single service provider. A constrained socket group may consist only of
connection-oriented sockets, and requires that connections on all grouped sockets be to
the same address on the same host. For newly created socket groups, the new group ID
can be retrieved by using getsockopt() with option SO_GROUP_ID, if this operation
completes successfully. A socket group and its associated ID remain valid until the last
socket belonging to this socket group is closed. Socket group IDs are unique across all
processes for a given service provider.

The dwCallbackData parameter value passed to the condition function is the value passed
as the dwCallbackData parameter in the original WSAAccept() call. This value is
interpreted only by the WinSock 2 client. This allows a client to pass some context
information from the WSAAccept() call site through to the condition function. This
gives the condition function any additional information required to determine whether to
accept the connection or not. A typical usage is to pass a (suitably cast) pointer to a data
structure containing references to application-defined objects with which this socket is
associated.

Return Value If no error occurs, WSAAccept() returns a value of type SOCKET which is a descriptor
for the accepted socket. Otherwise, a value of INVALID_SOCKET is returned, and a
specific error code may be retrieved by calling WSAGetLastError().

The integer referred to by addrlen initially contains the amount of space pointed to by
addr. On return it will contain the actual length in bytes of the address returned.

WSAAccept 91

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAECONNREFUSED The connection request was forcefully rejected as
indicated in the return value of the condition function
(CF_REJECT).

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The addrlen argument is too small, or addr or
lpfnCondition are not part of the user address space.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress.

WSAEINVAL listen() was not invoked prior to WSAAccept(),
parameter g specified in the condition function is not
a valid value, the source address of the incoming
connection request is not consistent with that of the
constrained group the parameter g is referring to, the
return value of the condition function is not a valid
one, or any case where the specified socket is in an
invalid state.

WSAEMFILE The queue is non-empty upon entry to WSAAccept()
and there are no socket descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that supports
connection-oriented service.

WSATRY_AGAIN The acceptance of the connection request was
deferred as indicated in the return value of the
condition function (CF_DEFER).

WSAEWOULDBLOCK The socket is marked as non-blocking and no
connections are present to be accepted.

WSAEACCES The connection request that was offered has timed out
or been withdrawn.

See Also accept(), bind(), connect(), getsockopt(), listen(), select(), socket(),
WSAAsyncSelect(), WSAConnect().

92 WSAAsyncSelect

4.23. WSAAsyncSelect()
Description Request Windows message-based notification of network events for a socket.

 #include < winsock2.h >

 int WSAAPI
WSAAsyncSelect (

IN SOCKET s,
IN HWND hWnd,
IN unsigned int wMsg,
IN long lEvent

);

s A descriptor identifying the socket for which event notification is
required.

hWnd A handle identifying the window which should receive a message when
a network event occurs.

wMsg The message to be received when a network event occurs.

lEvent A bitmask which specifies a combination of network events in which
the application is interested.

Remarks This function is used to request that the WinSock DLL should send a message to the
window hWnd whenever it detects any of the network events specified by the lEvent
parameter. The message which should be sent is specified by the wMsg parameter. The
socket for which notification is required is identified by s.

This function automatically sets socket s to non-blocking mode, regardless of the value of
lEvent. See ioctlsocket() about how to set the non-blocking socket back to blocking
mode.

The lEvent parameter is constructed by or'ing any of the values specified in the following
list.

Value Meaning
FD_READ Want to receive notification of readiness for reading
FD_WRITE Want to receive notification of readiness for writing
FD_OOB Want to receive notification of the arrival of out-of-band

data
FD_ACCEPT Want to receive notification of incoming connections
FD_CONNECT Want to receive notification of completed connection or

multipoint “join” operation
FD_CLOSE Want to receive notification of socket closure
FD_QOS Want to receive notification of socket Quality of Service

(QOS) changes
FD_GROUP_QOS Reserved for future use with socket groups: Want to

receive notification of socket group Quality of Service
(QOS) changes

FD_ROUTING_INTERFACE_CHANGE
Want to receive notification of routing interface changes
for the specified destination(s)

WSAAsyncSelect 93

FD_ADDRESS_LIST_CHANGE
Want to receive notification of local address list changes
for the socket’s protocol family

Issuing a WSAAsyncSelect() for a socket cancels any previous WSAAsyncSelect() or
WSAEventSelect() for the same socket. For example, to receive notification for both
reading and writing, the application must call WSAAsyncSelect() with both FD_READ
and FD_WRITE, as follows:

rc = WSAAsyncSelect(s, hWnd, wMsg, FD_READ|FD_WRITE);

It is not possible to specify different messages for different events. The following code
will not work; the second call will cancel the effects of the first, and only FD_WRITE
events will be reported with message wMsg2:

rc = WSAAsyncSelect(s, hWnd, wMsg1, FD_READ);
rc = WSAAsyncSelect(s, hWnd, wMsg2, FD_WRITE);

To cancel all notification − i.e., to indicate that WinSock should send no further messages
related to network events on the socket − lEvent should be set to zero.

rc = WSAAsyncSelect(s, hWnd, 0, 0);

Although in this instance WSAAsyncSelect() immediately disables event message
posting for the socket, it is possible that messages may be waiting in the application's
message queue. The application must therefore be prepared to receive network event
messages even after cancellation. Closing a socket with closesocket() also cancels
WSAAsyncSelect() message sending, but the same caveat about messages in the queue
prior to the closesocket() still applies.

Since an accept()'ed socket has the same properties as the listening socket used to accept
it, any WSAAsyncSelect() events set for the listening socket apply to the accepted socket.
For example, if a listening socket has WSAAsyncSelect() events FD_ACCEPT,
FD_READ, and FD_WRITE, then any socket accepted on that listening socket will also
have FD_ACCEPT, FD_READ, and FD_WRITE events with the same wMsg value used
for messages. If a different wMsg or events are desired, the application should call
WSAAsyncSelect(), passing the accepted socket and the desired new information.2

When one of the nominated network events occurs on the specified socket s, the
application's window hWnd receives message wMsg. The wParam argument identifies
the socket on which a network event has occurred. The low word of lParam specifies the
network event that has occurred. The high word of lParam contains any error code. The
error code be any error as defined in winsock2.h. Note: Upon receipt of an event
notification message the WSAGetLastError() function cannot be used to check the error
value, because the error value returned may differ from the value in the high word of
lParam.

2Note that there is a timing window between the accept() call and the call to WSAAsyncSelect() to change
the events or wMsg. An application which desires a different wMsg for the listening and accept()'ed
sockets should ask for only FD_ACCEPT events on the listening socket, then set appropriate events after
the accept(). Since FD_ACCEPT is never sent for a connected socket and FD_READ, FD_WRITE,
FD_OOB, and FD_CLOSE are never sent for listening sockets, this will not impose difficulties.

94 WSAAsyncSelect

The error and event codes may be extracted from the lParam using the macros
WSAGETSELECTERROR and WSAGETSELECTEVENT, defined in winsock2.h as:

#define WSAGETSELECTERROR(lParam) HIWORD(lParam)
#define WSAGETSELECTEVENT(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

The possible network event codes which may be returned are as follows:

Value Meaning
FD_READ Socket s ready for reading
FD_WRITE Socket s ready for writing
FD_OOB Out-of-band data ready for reading on socket s
FD_ACCEPT Socket s ready for accepting a new incoming connection
FD_CONNECT Connection or multipoint “join” operation initiated on

socket s completed
FD_CLOSE Connection identified by socket s has been closed
FD_QOS Quality of Service associated with socket s has changed
FD_GROUP_QOS Reserved for future use with socket groups: Quality of

Service associated with the socket group to which s belongs
has changed

FD_ROUTING_INTERFACE_CHANGE
Local interface that should be used to send to the specified
destination has changed

FD_ADDRESS_LIST_CHANGE
The list of addresses of the socket’s protocol family to
which the application client can bind has changed

Return Value The return value is 0 if the application's declaration of interest in the network event set
was successful. Otherwise the value SOCKET_ERROR is returned, and a specific error
number may be retrieved by calling WSAGetLastError().

Comments Although WSAAsyncSelect() can be called with interest in multiple events, the
application window will receive a single message for each network event.

As in the case of the select() function, WSAAsyncSelect() will frequently be used to
determine when a data transfer operation (send() or recv()) can be issued with the
expectation of immediate success. Nevertheless, a robust application must be prepared
for the possibility that it may receive a message and issue a Winsock 2 call which returns
WSAEWOULDBLOCK immediately. For example, the following sequence of events is
possible:

(i) data arrives on socket s; Winsock 2 posts WSAAsyncSelect message
(ii) application processes some other message
(iii) while processing, application issues an ioctlsocket(s, FIONREAD...)

and notices that there is data ready to be read
(iv) application issues a recv(s,...) to read the data
(v) application loops to process next message, eventually reaching the

WSAAsyncSelect message indicating that data is ready to read
(vi) application issues recv(s,...), which fails with the error

WSAEWOULDBLOCK.

WSAAsyncSelect 95

Other sequences are possible.

The Winsock DLL will not continually flood an application with messages for a particular
network event. Having successfully posted notification of a particular event to an
application window, no further message(s) for that network event will be posted to the
application window until the application makes the function call which implicitly
reenables notification of that network event.

Event Re-enabling function
FD_READ recv(), recvfrom(), WSARecv(), or WSARecvFrom()
FD_WRITE send(), sendto(), WSASend(), or WSASendTo()
FD_OOB recv(), recvfrom(), WSARecv(), or WSARecvFrom()
FD_ACCEPT accept() or WSAAccept() unless the error code is

WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE
FD_CLOSE NONE
FD_QOS WSAIoctl() with command SIO_GET_QOS
FD_GROUP_QOS Reserved for future use with socket groups: WSAIoctl() with

command SIO_GET_GROUP_QOS
FD_ROUTING_INTERFACE_CHANGE

WSAIoctl() with command
SIO_ROUTING_INTERFACE_CHANGE

FD_ADDRESS_LIST_CHANGE
WSAIoctl() with command SIO_ADDRESS_LIST_CHANGE

Any call to the reenabling routine, even one which fails, results in reenabling of message
posting for the relevant event.

For FD_READ, FD_OOB, and FD_ACCEPT events, message posting is "level-
triggered." This means that if the reenabling routine is called and the relevant condition is
still met after the call, a WSAAsyncSelect() message is posted to the application. This
allows an application to be event-driven and not be concerned with the amount of data
that arrives at any one time. Consider the following sequence:

(i) network transport stack receives 100 bytes of data on socket s and
causes Winsock 2 to post an FD_READ message.

(ii) The application issues recv(s, buffptr, 50, 0) to read 50 bytes.
(iii) another FD_READ message is posted since there is still data to be read.

With these semantics, an application need not read all available data in response to an
FD_READ message--a single recv() in response to each FD_READ message is
appropriate. If an application issues multiple recv() calls in response to a single
FD_READ, it may receive multiple FD_READ messages. Such an application may wish
to disable FD_READ messages before starting the recv() calls by calling
WSAAsyncSelect() with the FD_READ event not set.

The FD_QOS and FD_GROUP_QOS events are considered “edge triggered.” A message
will be posted exactly once when a QOS change occurs. Further messages will not be
forthcoming until either the provider detects a further change in QOS or the application
renegotiates the QOS for the socket.

The FD_ROUTING_INTERFACE_CHANGE message is posted when the local interface
that should be used to reach the destination specified in WSAIoctl() with

96 WSAAsyncSelect

SIO_ROUTING_INTERFACE_CHANGE changes AFTER such IOCTL has been
issued.

The FD_ADDRESS_LIST_CHANGE message is posted when the list of addresses to
which the application can bind changes AFTER WSAIoctl() with
SIO_ADDRESS_LIST_CHANGE has been issued.

If any event has already happened when the application calls WSAAsyncSelect() or when
the reenabling function is called, then a message is posted as appropriate. For example,
consider the following sequence: 1) an application calls listen(), 2) a connect request is
received but not yet accepted, 3) the application calls WSAAsyncSelect() specifying that
it wants to receive FD_ACCEPT messages for the socket. Due to the persistence of
events, Winsock 2 posts an FD_ACCEPT message immediately.

The FD_WRITE event is handled slightly differently. An FD_WRITE message is posted
when a socket is first connected with connect()/WSAConnect() (after FD_CONNECT, if
also registered) or accepted with accept()/WSAAccept(), and then after a send operation
fails with WSAEWOULDBLOCK and buffer space becomes available. Therefore, an
application can assume that sends are possible starting from the first FD_WRITE message
and lasting until a send returns WSAEWOULDBLOCK. After such a failure the
application will be notified that sends are again possible with an FD_WRITE message.

The FD_OOB event is used only when a socket is configured to receive out-of-band data
separately (see section 3.5. Out-Of-Band data for a discussion of this topic). If the
socket is configured to receive out-of-band data in-line, the out-of-band (expedited) data
is treated as normal data and the application should register an interest in, and will
receive, FD_READ events, not FD_OOB events. An application may set or inspect the
way in which out-of-band data is to be handled by using setsockopt() or getsockopt() for
the SO_OOBINLINE option.

The error code in an FD_CLOSE message indicates whether the socket close was graceful
or abortive. If the error code is 0, then the close was graceful; if the error code is
WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to
connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE message is posted when a close indication is received for the virtual
circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE is
posted when the connection goes into the TIME WAIT or CLOSE WAIT states. This
results from the remote end performing a shutdown() on the send side or a closesocket().
FD_CLOSE should only be posted after all data is read from a socket, but an application
should check for remaining data upon receipt of FD_CLOSE to avoid any possibility of
losing data.

Please note your application will receive ONLY an FD_CLOSE message to indicate
closure of a virtual circuit, and only when all the received data has been read if this is a
graceful close. It will NOT receive an FD_READ message to indicate this condition.

The FD_QOS or FD_GROUP_QOS message is posted when any field in the flow spec
associated with socket s or the socket group that s belongs to has changed, respectively.
Applications should use WSAIoctl() with command SIO_GET_QOS or
SIO_GET_GROUP_QOS to get the current QOS for socket s or for the socket group s
belongs to, respectively.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LIST_CHANGE
events are considered “edge triggered” as well. A message will be posted exactly once

WSAAsyncSelect 97

when a change occurs after the application has request the notification by issuing
WSAIoctl() with SIO_ROUTING_INTERFACE_CHANGE or
SIO_ADDRESS_LIST_CHANGE correspondingly. Further messages will not be
forthcoming until the application reissues the IOCTL AND another change is detected
since the IOCTL has been issued.

Here is a summary of events and conditions for each asynchronous notification message:

• FD_READ:
1) when WSAAsyncSelect() called, if there is data currently available to receive,
2) when data arrives, if FD_READ not already posted,
3) after recv() or recvfrom() called (with or without MSG_PEEK), if data is still
available to receive.
(Note: when setsockopt() SO_OOBINLINE is enabled "data" includes both normal
data and out-of-band (OOB) data in the instances noted above.

• FD_WRITE:
1) when WSAAsyncSelect() called, if a send() or sendto() is possible
2) after connect() or accept() called, when connection established
3) after send() or sendto() fail with WSAEWOULDBLOCK, when send() or
sendto() are likely to succeed,
4) after bind() on a connectionless socket. FD_WRITE may or may not occur at this
time (implementation dependent). In any case, a connectionless socket is always
writeable immediately after bind().

•• FD_OOB: Only valid when setsockopt() SO_OOBINLINE Is
 disabled (default).

 1) when WSAAsyncSelect() called, if there is OOB data currently available to
receive with the MSG_OOB flag,
2) when OOB data arrives, if FD_OOB not already posted,
3) after recv() or recvfrom() called with or without MSG_OOB flag, if OOB data is
still available to receive.

• FD_ACCEPT:
1) when WSAAsyncSelect() called, if there is currently a connection request
available to accept,
2) when a connection request arrives, if FD_ACCEPT not already posted,
3) after accept() called, if there is another connection request available to accept.

• FD_CONNECT:
1) when WSAAsyncSelect() called, if there is currently a connection established,
2) after connect() called, when connection is established (even when connect()

succeeds immediately, as is typical with a datagram socket, and even when it
fails immediately).

3) after WSAJoinLeaf() called, when join operation completes.
4) after connect(), WSAConnect(), or WSAJoinLeaf() was called with a non-

blocking, connection-oriented socket. The initial operation returned with a
specific error of WSAEWOULDBLOCK, but the network operation went ahead.
Whether the operation eventually succeeds or not, when the outcome has been
determined, FD_CONNECT happens. The client should check the error code to
determine whether the outcome was success or failure.

• FD_CLOSE: Only valid on connection-oriented sockets (e.g. SOCK_STREAM)
1) when WSAAsyncSelect() called, if socket connection has been closed,

98 WSAAsyncSelect

2) after remote system initiated graceful close, when no data currently available to
receive (note: if data has been received and is waiting to be read when the remote
system initiates a graceful close, the FD_CLOSE is not delivered until all pending
data has been read),
3) after local system initiates graceful close with shutdown() and remote system has
responded with "End of Data" notification (e.g. TCP FIN), when no data currently
available to receive,
4) when remote system aborts connection (e.g. sent TCP RST), and lParam will
contain WSAECONNRESET error value.

Note: FD_CLOSE is not posted after closesocket() is called.

• FD_QOS:
1) when WSAAsyncSelect() called, if the QOS associated with the socket has been
changed,
2) after WSAIoctl() with SIO_GET_QOS called, when the QOS is changed.

• FD_GROUP_QOS:
Reserved for future use with socket groups:
1) when WSAAsyncSelect() called, if the group QOS associated with the socket has
been changed,
2) after WSAIoctl() with SIO_GET_GROUP_QOS called, when the group QOS is
changed.

• FD_ROUTING_INTERFACE_CHANGE:
1) after WSAIoctl() with SIO_ROUTING_INTERFACE_CHANGE called, when
the local interface that should be used to reach the destination specified in the IOCTL
changes.

• FD_ADDRESS_LIST_CHANGE:
1) after WSAIoctl() with SIO_ADDRESS_LIST_CHANGE called, when the list of
local addresses to which the application can bind changes.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid such as the window handle not referring to an
existing window, or the specified socket is in an
invalid state.

WSAEINPROGRESS A blocking Winsock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

Additional error codes may be set when an application window receives a message. This
error code is extracted from the lParam in the reply message using the
WSAGETSELECTERROR macro. Possible error codes for each network event are:
Event: FD_CONNECT
Error Code Meaning

WSAAsyncSelect 99

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAEFAULT The namelen argument is incorrect.

WSAEINVAL The socket is already bound to an address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTCONN The socket is not connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

Event: FD_CLOSE
Error Code Meaning
WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other
failure.

Event: FD_READ
Event: FD_WRITE
Event: FD_OOB
Event: FD_ACCEPT
Event: FD_QOS
Event: FD_GROUP_QOS
Event: FD_ADDRESS_LIST_CHANGE
Error Code Meaning
WSAENETDOWN The network subsystem has failed.
Event: FD_ROUTING_INTERFACE_CHANGE
Error Code Meaning
WSAENETUNREACH The specified destination is no longer reachable
WSAENETDOWN The network subsystem has failed.

See Also select(), WSAEventSelect()

100 WSACancelBlockingCall

4.24. WSACancelBlockingCall()
Description Cancel a blocking call which is currently in progress. WSACancelBlockingCall() is only

available for WinSock 1.1 apps (that is, if at least one thread within the process negotiates
version 1.0 or 1.1 at WSAStartup()).

Important Note: This function is for backwards compatibility with WinSock 1.1 and is
not considered part of the WinSock 2 specification. WinSock 2 applications should not
use this function.

 #include <winsock2.h>

 int WSAAPI WSACancelBlockingCall (void);

Remarks This function cancels any outstanding blocking operation for this thread. It is normally
used in two situations:

(1) An application is processing a message which has been received while a blocking call
is in progress. In this case, WSAIsBlocking() will be true.

(2) A blocking call is in progress, and WinSock has called back to the application's
"blocking hook" function (as established by WSASetBlockingHook()).

In each case, the original blocking call will terminate as soon as possible with the error
WSAEINTR. (In (1), the termination will not take place until Windows message
scheduling has caused control to revert to the blocking routine in WinSock. In (2), the
blocking call will be terminated as soon as the blocking hook function completes.)

In the case of a blocking connect()operation, WinSock will terminate the blocking call as
soon as possible, but it may not be possible for the socket resources to be released until
the connection has completed (and then been reset) or timed out. This is likely to be
noticeable only if the application immediately tries to open a new socket (if no sockets are
available), or to connect() to the same peer.

Canceling an accept() or a select() call does not adversely impact the sockets passed to
these calls. Only the particular call fails; any operation that was legal before the cancel is
legal after the cancel, and the state of the socket is not affected in any way.

Canceling any operation other than accept() and select() can leave the socket in an
indeterminate state. If an application cancels a blocking operation on a socket, the only
operation that the application can depend on being able to perform on the socket is a call
to closesocket(), although other operations may work on some WinSock implementations.
If an application desires maximum portability, it must be careful not to depend on
performing operations after a cancel. An application may reset the connection by setting
the timeout on SO_LINGER to 0 and calling closesocket().

If a cancel operation compromised the integrity of a SOCK_STREAM's data stream in
any way, the WinSock provider will reset the connection and fail all future operations
other than closesocket() with WSAECONNABORTED.

Return Value The value returned by WSACancelBlockingCall() is 0 if the operation was successfully
canceled. Otherwise the value SOCKET_ERROR is returned, and a specific error
number may be retrieved by calling WSAGetLastError().

WSACancelBlockingCall 101

Comments Note that it is possible that the network operation completes before the
WSACancelBlockingCall() is processed, for example if data is received into the user
buffer at interrupt time while the application is in a blocking hook. In this case, the
blocking operation will return successfully as if WSACancelBlockingCall() had never
been called. Note that the WSACancelBlockingCall() still succeeds in this case; the
only way to know with certainty that an operation was actually canceled is to check for a
return code of WSAEINTR from the blocking call.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that there is no outstanding blocking call.

WSAEOPNOTSUPP The caller is not a WinSock 1.0 or 1.1 client.

102 WSACleanup

4.25. WSACleanup()
Description Terminate use of the WinSock DLL.

 #include <winsock2.h>

 int WSAAPI WSACleanup (void);

Remarks An application or DLL is required to perform a successful WSAStartup() call before it
can use WinSock services. When it has completed the use of WinSock, the application or
DLL must call WSACleanup() to deregister itself from a WinSock implementation and
allow the implementation to free any resources allocated on behalf of the application or
DLL. Any pending blocking or asynchronous calls issued by any thread in this process are
canceled without posting any notification messages, or signaling any event objects. Any
pending overlapped send and receive operations
(WSASend()/WSASendTo()/WSARecv()/WSARecvFrom() with an overlapped socket)
issued by any thread in this process are also canceled without setting the event object or
invoking the completion routine, if specified. In this case, the pending overlapped
operations fail with the error status WSA_OPERATION_ABORTED. Any sockets open
when WSACleanup() is called are reset and automatically deallocated as if closesocket()
was called; sockets which have been closed with closesocket() but which still have
pending data to be sent may be affected--the pending data may be lost if the WinSock
DLL is unloaded from memory as the application exits. To insure that all pending data is
sent an application should use shutdown() to close the connection, then wait until the
close completes before calling closesocket() and WSACleanup(). All resources and
internal state, such as queued un-posted messages, must be deallocated so as to be
available to the next user.

There must be a call to WSACleanup() for every successful call to WSAStartup() made
by a task. Only the final WSACleanup() for that task does the actual cleanup; the
preceding calls simply decrement an internal reference count in the WinSock DLL.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments Attempting to call WSACleanup() from within a blocking hook and then failing to check
the return code is a common programming error in WinSock 1.1 applications. If an
application needs to quit while a blocking call is outstanding, the application must first
cancel the blocking call with WSACancelBlockingCall() then issue the WSACleanup()
call once control has been returned to the application.

In a multithreaded environment, WSACleanup() terminates WinSock operations for all
threads.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

See Also closesocket(), shutdown(), WSAStartup()

WSACloseEvent 103

4.26. WSACloseEvent()
Description Closes an open event object handle.

#include <winsock2.h>

BOOL WSAAPI
WSACloseEvent(

IN WSAEVENT hEvent
);

hEvent Identifies an open event object handle.

Remarks The handle to the event object is closed so that further references to this handle will fail
with the error WSA_INVALID_HANDLE.

Return Value If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSA_INVALID_HANDLE hEvent is not a valid event object handle.

See Also WSACreateEvent(), WSAEnumNetworkEvents(), WSAEventSelect(),
WSAGetOverlappedResult(), WSARecv(), WSARecvFrom(), WSAResetEvent(),
WSASend(), WSASendTo(), WSASetEvent(), WSAWaitForMultipleEvents().

104 WSAConnect

4.27. WSAConnect()
Description Establish a connection to a peer, exchange connect data, and specify needed quality of

service based on the supplied flow spec.

 #include <winsock2.h>

 int WSAAPI
WSAConnect (

IN SOCKET s,
IN const struct sockaddr FAR * name,
IN int namelen,
IN LPWSABUF lpCallerData,
OUT LPWSABUF lpCalleeData,
IN LPQOS lpSQOS,
IN LPQOS lpGQOS

);

s A descriptor identifying an unconnected socket.

name The name of the peer to which the socket is to be connected.

namelen The length of the name.

lpCallerData A pointer to the user data that is to be transferred to the peer during
connection establishment.

lpCalleeData A pointer to the user data that is to be transferred back from the peer
during connection establishment.

lpSQOS A pointer to the flow specs for socket s, one for each direction.

lpGQOS Reserved for future use with socket groups: A pointer to the flow specs
for the socket group (if applicable).

Remarks This function is used to create a connection to the specified destination, and to perform a
number of other ancillary operations that occur at connect time as well. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket
is marked as bound.

For connection-oriented sockets (e.g., type SOCK_STREAM), an active connection is
initiated to the foreign host using name (an address in the name space of the socket; for a
detailed description, please see bind()). When this call completes successfully, the socket
is ready to send/receive data. If the address field of the name structure is all zeroes,
WSAConnect() will return the error WSAEADDRNOTAVAIL. Any attempt to re-
connect an active connection will fail with the error code WSAEISCONN.

For connection-oriented, non-blocking sockets it is often not possible to complete the
connection immediately. In such a case, this function returns with the error
WSAEWOULDBLOCK but the operation proceeds. When the success or failure
outcome becomes known, it may be reported in one of several ways depending on how
the client registers for notification. If the client uses select() success is reported in the
writefds set and failure is reported in the exceptfds set. If the client uses
WSAAsyncSelect() or WSAEventSelect(), the notification is announced with

WSAConnect 105

FD_CONNECT and the error code associated with the FD_CONNECT indicates either
success or a specific reason for failure.

For a connectionless socket (e.g., type SOCK_DGRAM), the operation performed by
WSAConnect() is merely to establish a default destination address so that the socket may
be used on subsequent connection-oriented send and receive operations (send(),
WSASend(), recv(), WSARecv()). Any datagrams received from an address other than
the destination address specified will be discarded. If the address field of the name
structure is all zeroes, the socket will be "dis-connected" - the default remote address will
be indeterminate, so send()/WSASend() and recv()/WSARecv() calls will return the
error code WSAENOTCONN, although sendto()/WSASendTo() and
recvfrom()/WSARecvFrom() may still be used. The default destination may be changed
by simply calling WSAConnect() again, even if the socket is already "connected". Any
datagrams queued for receipt are discarded if name is different from the previous
WSAConnect().

For connectionless sockets, name may indicate any valid address, including a broadcast
address. However, to connect to a broadcast address, a socket must have setsockopt()
SO_BROADCAST enabled, otherwise WSAConnect() will fail with the error code
WSAEACCES.

On connectionless sockets, exchange of user to user data is not possible and the
corresponding parameters will be silently ignored.

The application is responsible for allocating any memory space pointed to directly or
indirectly by any of the parameters it specifies.

The lpCallerData is a value parameter which contains any user data that is to be sent
along with the connection request. If lpCallerData is NULL, no user data will be passed
to the peer. The lpCalleeData is a result parameter which will contain any user data
passed back from the peer as part of the connection establishment. lpCalleeData->len
initially contains the length of the buffer allocated by the application and pointed to by
lpCalleeData->buf. lpCalleeData->len will be set to 0 if no user data has been passed
back. The lpCalleeData information will be valid when the connection operation is
complete. For blocking sockets, this will be when the WSAConnect() function returns.
For non-blocking sockets, this will be after the FD_CONNECT notification has occurred.
If lpCalleeData is NULL, no user data will be passed back. The exact format of the user
data is specific to the address family to which the socket belongs.

At connect time, an application may use the lpSQOS and/or lpGQOS parameters to
override any previous QOS specification made for the socket via WSAIoctl() with either
the SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

lpSQOS specifies the flow specs for socket s, one for each direction, followed by any
additional provider-specific parameters. If either the associated transport provider in
general or the specific type of socket in particular cannot honor the QOS request, an error
will be returned as indicated below. The sending or receiving flow spec values will be
ignored, respectively, for any unidirectional sockets. If no provider-specific parameters
are supplied, the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL
and 0, respectively. A NULL value for lpSQOS indicates no application supplied QOS.

Reserved for future use with socket groups: lpGQOS specifies the flow specs for the
socket group (if applicable), one for each direction, followed by any additional provider-
specific parameters. If no provider-specific parameters are supplied, the buf and len

106 WSAConnect

fields of lpGQOS->ProviderSpecific should be set to NULL and 0, respectively. A NULL
value for lpGQOS indicates no application-supplied group QOS. This parameter will be
ignored if s is not the creator of the socket group.

Comments When connected sockets break (i.e. become closed for whatever reason), they should be
discarded and recreated. It is safest to assume that when things go awry for any reason
on a connected socket, the application must discard and recreate the needed sockets in
order to return to a stable point.

Return Value If no error occurs, WSAConnect() returns 0. Otherwise, it returns SOCKET_ERROR,
and a specific error code may be retrieved by calling WSAGetLastError().

On a blocking socket, the return value indicates success or failure of the connection
attempt.

With a non-blocking socket, the connection attempt may not be completed immediately -
in this case WSAConnect() will return SOCKET_ERROR, and WSAGetLastError()
will return WSAEWOULDBLOCK. In this case the application may:

1. Use select() to determine the completion of the connection request by checking if the
socket is writeable, or

2. If your application is using WSAAsyncSelect() to indicate interest in connection
events, then your application will receive an FD_CONNECT notification when the
connect operation is complete (successfully, or not), or

3. If your application is using WSAEventSelect() to indicate interest in connection
events, then the associated event object will be signaled when the connect operation is
complete (successfully, or not).

For a non-blocking socket, until the connection attempt completes all subsequent calls to
WSAConnect() on the same socket will fail with the error code WSAEALREADY, and
WSAEISCONN when the connection completes successfully. Due to ambiguities in
version 1.1 of the Windows Sockets specification, error codes returned from connect()
while a connection is already pending may vary among implementations. As a result, it
isn’t recommended that applications use multiple calls to connect() to detect connection
completion. If they do, they must be prepared to handle WSAEINVAL and
WSAEWOULDBLOCK error values the same way that they handle WSAEALREADY,
to assure robust execution.
If the return error code indicates the connection attempt failed (i.e.
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application
may call WSAConnect() again for the same socket.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAConnect 107

WSAEADDRINUSE The socket’s local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs at the
time of bind(), but could be delayed until this
function if the bind() was to a partially wild-card
address (involving ADDR_ANY) and if a specific
address needs to be “committed” at the time of this
function.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEALREADY A non-blocking connect()/WSAConnect() call is in
progress on the specified socket.

WSAEADDRNOTAVAIL The remote address is not a valid address (e.g.,
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to connect was rejected.

WSAEFAULT The name or the namelen argument is not a valid part
of the user address space, the namelen argument is
too small, the buffer length for lpCalleeData,
lpSQOS, and lpGQOS are too small, or the buffer
length for lpCallerData is too large.

WSAEINVAL The parameter s is a listening socket, or the
destination address specified is not consistent with
that of the constrained group the socket belongs to.

WSAEISCONN The socket is already connected (connection-oriented
sockets only).

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The flow specs specified in lpSQOS and lpGQOS
cannot be satisfied.

WSAEPROTONOSUPPORT The lpCallerData argument is not supported by the
service provider.

108 WSAConnect

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
connection cannot be completed immediately.

WSAEACCES Attempt to connect datagram socket to broadcast
address failed because setsockopt()
SO_BROADCAST is not enabled.

See Also accept(), bind(), connect(), getsockname(), getsockopt(), socket(), select(),
WSAAsyncSelect(), WSAEventSelect().

WSACreateEvent 109

4.28. WSACreateEvent()
Description Creates a new event object.

#include <winsock2.h>

WSAEVENT WSAAPI WSACreateEvent(void);

Remarks The event object created by this function is manual reset, with an initial state of
nonsignaled. WinSock 2 event objects are system objects in Win32 environments.
Therefore, if a Win32 application desires auto reset events, it may call the native
CreateEvent() Win32 API directly. The scope of an event object is limited to the process
in which it is created.

Return Value If the function succeeds, the return value is the handle of the event object.

If the function fails, the return value is WSA_INVALID_EVENT. To get extended error
information, call WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSA_NOT_ENOUGH_MEMORY Not enough free memory available to create the
event object.

See Also WSACloseEvent(), WSAEnumNetworkEvents(), WSAEventSelect(),
WSAGetOverlappedResult(), WSARecv(), WSARecvFrom(), WSAResetEvent(),
WSASend(), WSASendTo(), WSASetEvent(), WSAWaitForMultipleEvents().

110 WSADuplicateSocket

4.29. WSADuplicateSocket()
Description Return a WSAPROTOCOL_INFO structure that can be used to create a new socket

descriptor for a shared socket.

 #include <winsock2.h>

 int WSAAPI
WSADuplicateSocket (

IN SOCKET s,
IN DWORD dwProcessId,
OUT LPWSAPROTOCOL_INFO lpProtocolInfo

);

s Specifies the local socket descriptor.

dwProcessId Specifies the ID of the target process for which the shared socket will
be used.

lpProtocolInfo A pointer to a buffer allocated by the client that is large enough to
contain a WSAPROTOCOL_INFO struct. The service provider copies
the protocol info struct contents to this buffer.

Remarks This function is used to enable socket sharing between processes. A source process calls
WSADuplicateSocket() to obtain a special WSAPROTOCOL_INFO structure. It uses
some interprocess communications (IPC) mechanism to pass the contents of this structure
to a target process, which in turn uses it in a call to WSASocket() to obtain a descriptor
for the duplicated socket. Note that the special WSAPROTOCOL_INFO structure may
only be used once by the target process.

Note that sockets may be shared amongst threads in a given process without using the
WSADuplicateSocket() function, since a socket descriptor is valid in all of a process’
threads.
One possible scenario for establishing and using a shared socket in a handoff mode is
illustrated below:

Source Process IPC Destination Process
1) WSASocket(),
WSAConnect()
2) Request target process ID ⇒

3) Receive process ID request and
respond

4) Receive process ID ⇐
5) Call WSADuplicateSocket()
to get a special
WSAPROTOCOL_INFO
structure
6) Send
WSAPROTOCOL_INFO
structure to target

⇒ 7) Receive
WSAPROTOCOL_INFO structure
8) Call WSASocket() to create

WSADuplicateSocket 111

shared socket descriptor.
10) closesocket() 9)Use shared socket for data

exchange

Return Value If no error occurs, WSADuplicateSocket() returns zero. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Comments The descriptors that reference a shared socket may be used independently as far as I/O is
concerned. However, the WinSock interface does not implement any type of access
control, so it is up to the processes involved to coordinate their operations on a shared
socket. A typical use for shared sockets is to have one process that is responsible for
creating sockets and establishing connections, hand off sockets to other processes which
are responsible for information exchange.

Since what is duplicated are the socket descriptors and not the underlying socket, all of
the state associated with a socket is held in common across all the descriptors. For
example a setsockopt() operation performed using one descriptor is subsequently visible
using a getsockopt() from any or all descriptors. A process may call closesocket() on a
duplicated socket and the descriptor will become deallocated. The underlying socket,
however, will remain open until closesocket() is called by the last remaining descriptor.

Notification on shared sockets is subject to the usual constraints of WSAAsyncSelect()
and WSAEventSelect(). Issuing either of these calls using any of the shared descriptors
cancels any previous event registration for the socket, regardless of which descriptor was
used to make that registration. Thus, for example, a shared socket cannot deliver
FD_READ events to process A and FD_WRITE events to process B. For situations when
such tight coordination is required, it is suggested that developers use threads instead of
separate processes.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpProtocolInfo argument is not a valid part of the
user address space.

112 WSADuplicateSocket

See Also WSASocket()

WSAEnumNetworkEvents 113

4.30. WSAEnumNetworkEvents()
Description Discover occurrences of network events for the indicated socket, clear internal network

events record, and (optionally) reset event object.

 #include <winsock2.h>

 int WSAAPI
WSAEnumNetworkEvents (

IN SOCKET s,
IN WSAEVENT hEventObject,
OUT LPWSANETWORKEVENTS lpNetworkEvents

);

s A descriptor identifying the socket.

hEventObject An optional handle identifying an associated event object to be reset.

lpNetworkEvents A pointer to a WSANETWORKEVENTS struct which is filled with a
record of occurred network events and any associated error codes.

Remarks This function is used to discover which network events have occurred for the indicated
socket since the last invocation of this function. It is intended for use in conjunction with
WSAEventSelect(), which associates an event object with one or more network events.
Recording of network events commences when WSAEventSelect() is called with a non-
zero lNetworkEvents parameter and remains in effect until another call is made to
WSAEventSelect() with the lNetworkEvents parameter set to zero, or until a call is made
to WSAAsyncSelect().

WSAEnumNetworkEvents() only reports network activity and errors nominated through
WSAEventSelect(). See the descriptions of select() and WSAAsyncSelect() to find out
how those functions report network activity and errors.

The socket’s internal record of network events is copied to the structure referenced by
lpNetworkEvents, whereafter the internal network events record is cleared. If
hEventObject is non-null, the indicated event object is also reset. The WinSock provider
guarantees that the operations of copying the network event record, clearing it and
resetting any associated event object are atomic, such that the next occurrence of a
nominated network event will cause the event object to become set. In the case of this
function returning SOCKET_ERROR, the associated event object is not reset and the
record of network events is not cleared.

The WSANETWORKEVENTS structure is defined as follows:

typedef struct _WSANETWORKEVENTS {
 long lNetworkEvents;
 int iErrorCode [FD_MAX_EVENTS];
} WSANETWORKEVENTS, FAR * LPWSANETWORKEVENTS;

The lNetworkEvents field of the structure indicates which of the FD_XXX network events
have occurred. The iErrorCode array is used to contain any associated error codes, with
array index corresponding to the position of event bits in lNetworkEvents. The identifiers
FD_READ_BIT, FD_WRITE_BIT, etc. may be used to index the iErrorCode array.
Note that only those elements of the iErrorCode array are set that correspond to the bits

114 WSAEnumNetworkEvents

set in lNetworkEvents field. Other fields are not modified (this is important for
backwards compatibility with the applications that are not aware of new
FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LIST_CHANGE events).

The following error codes may be returned along with the respective network event:
Event: FD_CONNECT
Error Code Meaning
WSAEAFNOSUPPORT Addresses in the specified family cannot be used with

this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
connected.

WSAETIMEDOUT Attempt to connect timed out without establishing a
connection

Event: FD_CLOSE
Error Code Meaning
WSAENETDOWN The network subsystem has failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other
failure.

Event: FD_READ
Event: FD_WRITE
Event: FD_OOB
Event: FD_ACCEPT
Event: FD_QOS
Event: FD_GROUP_QOS
Event: FD_ADDRESS_LIST_CHANGE
Error Code Meaning
WSAENETDOWN The network subsystem has failed.

Event: FD_ROUTING_INTERFACE_CHANGE
Error Code Meaning
WSAENETUNREACH The specified destination is no longer reachable
WSAENETDOWN The network subsystem has failed.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEnumNetworkEvents 115

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpNetworkEvents argument is not a valid part of
the user address space.

See Also WSAEventSelect()

116 WSAEnumProtocols

4.31. WSAEnumProtocols()
Description Retrieve information about available transport protocols.

 #include <winsock2.h>

 int WSAAPI
WSAEnumProtocols (

IN LPINT lpiProtocols,
OUT LPWSAPROTOCOL_INFO lpProtocolBuffer,
IN OUT LPDWORD lpdwBufferLength

);

lpiProtocols A NULL-terminated array of iProtocol values. This parameter is
optional; if lpiProtocols is NULL, information on all available
protocols is returned, otherwise information is retrieved only for those
protocols listed in the array.

lpProtocolBuffer A buffer which is filled with WSAPROTOCOL_INFO structures. See
below for a detailed description of the contents of the
WSAPROTOCOL_INFO structure.

lpdwBufferLength On input, the count of bytes in the lpProtocolBuffer buffer passed to
WSAEnumProtocols(). On output, the minimum buffer size that can
be passed to WSAEnumProtocols() to retrieve all the requested
information. This routine has no ability to enumerate over multiple
calls; the passed-in buffer must be large enough to hold all entries in
order for the routine to succeed. This reduces the complexity of the
API and should not pose a problem because the number of protocols
loaded on a machine is typically small.

Remarks This function is used to discover information about the collection of transport protocols
and protocol chains installed on the local machine. Since layered protocols are only
usable by applications when installed in protocol chains, information on layered protocols
is not included in lpProtocolBuffer. The lpiProtocols parameter can be used as a filter to
constrain the amount of information provided. Normally it will be supplied as a NULL
pointer which will cause the routine to return information on all available transport
protocols and protocol chains.

A WSAPROTOCOL_INFO struct is provided in the buffer pointed to by
lpProtocolBuffer for each requested protocol. If the supplied buffer is not large enough
(as indicated by the input value of lpdwBufferLength), the value pointed to by
lpdwBufferLength will be updated to indicate the required buffer size. The application
should then obtain a large enough buffer and call this function again.

The order in which the WSAPROTOCOL_INFO structs appear in the buffer coincides
with the order in which the protocol entries were registered by the service provider with
the WinSock DLL, or with any subsequent re-ordering that may have occurred via the
WinSock applet or DLL supplied for establishing default TCP/IP providers.

Definitions WSAPROTOCOL_INFO Structure:
DWORD dwServiceFlags1 - a bitmask describing the services provided by the protocol. The

following values are possible:

WSAEnumProtocols 117

XP1_CONNECTIONLESS -the protocol provides connectionless (datagram)
service. If not set, the protocol supports connection-oriented data
transfer.

XP1_GUARANTEED_DELIVERY - the protocol guarantees that all data sent
will reach the intended destination.

XP1_GUARANTEED_ORDER - the protocol guarantees that data will only
arrive in the order in which it was sent and that it will not be duplicated.
This characteristic does not necessarily mean that the data will always
be delivered, but that any data that is delivered is delivered in the order
in which it was sent.

XP1_MESSAGE_ORIENTED - the protocol honors message boundaries, as
opposed to a stream-oriented protocol where there is no concept of
message boundaries.

XP1_PSEUDO_STREAM - this is a message oriented protocol, but message
boundaries will be ignored for all receives. This is convenient when an
application does not desire message framing to be done by the protocol.

XP1_GRACEFUL_CLOSE - the protocol supports two-phase (graceful) close.
If not set, only abortive closes are performed.

XP1_EXPEDITED_DATA - the protocol supports expedited (urgent) data.

XP1_CONNECT_DATA - the protocol supports connect data.

XP1_DISCONNECT_DATA - the protocol supports disconnect data.

XP1_SUPPORT_BROADCAST - the protocol supports a broadcast
mechanism.

XP1_SUPPORT_MULTIPOINT - the protocol supports a multipoint or
multicast mechanism. Control and data plane attributes are indicated
below. Refer to Appendix B. Multipoint and Multicast Semantics for
additional information.

XP1_MULTIPOINT_CONTROL_PLANE - indicates whether the control
plane is rooted (value = 1) or non-rooted (value = 0).

XP1_MULTIPOINT_DATA_PLANE - indicates whether the data plane is
rooted (value = 1) or non-rooted (value = 0).

XP1_QOS_SUPPORTED - the protocol supports quality of service requests.

XP1_RESERVED - This bit is reserved.

XP1_UNI_SEND - the protocol is unidirectional in the send direction.

XP1_UNI_RECV - the protocol is unidirectional in the recv direction.

XP1_IFS_HANDLES - the socket descriptors returned by the provider are
operating system Installable File System (IFS) handles.

118 WSAEnumProtocols

XP1_PARTIAL_MESSAGE - the MSG_PARTIAL flag is supported in
WSASend() and WSASendTo().

Note that only one of XP1_UNI_SEND or XP1_UNI_RECV may be set. If a protocol
can be unidirectional in either direction, two WSAPROTOCOL_INFO structs should be
used. When neither bit is set, the protocol is considered to be bi-directional.

DWORD dwServiceFlags2 - reserved for additional protocol attribute definitions.

DWORD dwServiceFlags3- reserved for additional protocol attribute definitions.

DWORD dwServiceFlags4 - reserved for additional protocol attribute definitions.

DWORD dwProviderFlags - provide information about how this protocol is represented in the
protocol catalog. The following flag values are possible:

PFL_MULTIPLE_PROTOCOL_ENTRIES - indicates that this is one of two or more
entries for a single protocol (from a given provider) which is capable of
implementing multiple behaviors. An example of this is SPX which, on the
receiving side, can behave either as a message oriented or a stream oriented
protocol.

PFL_RECOMMENDED_PROTO_ENTRY - indicates that this is the recommended or
most frequently used entry for a protocol which is capable of implementing
multiple behaviors.

PFL_HIDDEN - set by a provider to indicate to the WinSock 2 DLL that this protocol
should not be returned in the result buffer generated by WSAEnumProtocols().
Obviously, a WinSock 2 application should never see an entry with this bit set.

PFL_MATCHES_PROTOCOL_ZERO - indicates that a value of zero in the protocol
parameter of socket() or WSASocket() matches this protocol entry.

GUID ProviderId- A globally unique identifier assigned to the provider by the service provider
vendor. This value is useful for instances where more than one service provider is able to
implement a particular protocol. An application may use the ProviderId value to distinguish
between providers that might otherwise be indistinguishable.

DWORD dwCatalogEntryId - A unique identifier assigned by the WinSock 2 DLL for each
WSAPROTOCOL_INFO structure.

WSAPROTOCOLCHAIN ProtocolChain - A structure containing a counted list of Catalog Entry
IDs which comprise a protocol chain. This structure is defined as follows:
typedef struct {
 int ChainLen;
 DWORD ChainEntries[MAX_PROTOCOL_CHAIN];
} WSAPROTOCOLCHAIN

If the length of the chain is 0, this WSAPROTOCOL_INFO entry represents a layered
protocol which has WinSock 2 SPI as both its top and bottom edges. If the length of the chain
equals 1, this entry represents a base protocol whose Catalog Entry ID is in the
dwCatalogEntryId field above. If the length of the chain is larger than 1, this entry represents
a protocol chain which consists of one or more layered protocols on top of a base protocol.

WSAEnumProtocols 119

The corresponding Catalog Entry IDs are in the ProtocolChain.ChainEntries array starting
with the layered protocol at the top (the zeroth element in the ProtocolChain.ChainEntries
array) and ending with the base protocol. Refer to the WinSock 2 Service Provider Interface
specification for more information on protocol chains.

int iVersion - Protocol version identifier.

int iAddressFamily - the value to pass as the address family parameter to the socket()/WSASocket()
function in order to open a socket for this protocol. This value also uniquely defines the
structure of protocol addresses (SOCKADDRs) used by the protocol.

int iMaxSockAddr - The maximum address length in bytes (e.g. 16 for IP version 4, the equivalent of
sizeof(SOCKADDR_IN)).

int iMinSockAddr - The minimum address length (same as iMaxSockAddr, unless protocol supports
variable length addressing).

int iSocketType - The value to pass as the socket type parameter to the socket() function in order to
open a socket for this protocol.

int iProtocol - The value to pass as the protocol parameter to the socket() function in order to open a
socket for this protocol.

int iProtocolMaxOffset - The maximum value that may be added to iProtocol when supplying a
value for the protocol parameter to socket() and WSASocket(). Not all protocols allow a
range of values. When this is the case iProtocolMaxOffset will be zero.

int iNetworkByteOrder - Currently these values are manifest constants (BIGENDIAN and
LITTLEENDIAN) that indicate either “big-endian” or “little-endian” with the values 0 and 1
respectively.

int iSecurityScheme - Indicates the type of security scheme employed (if any). A value of
SECURITY_PROTOCOL_NONE is used for protocols that do not incorporate security
provisions.

DWORD dwMessageSize - The maximum message size supported by the protocol. This is the
maximum size that can be sent from any of the host’s local interfaces. For protocols which
do not support message framing, the actual maximum that can be sent to a given address may
be less. There is no standard provision to determine the maximum inbound message size.
The following special values are defined:

0 - the protocol is stream-oriented and hence the concept of message size is not
relevant.

0x1 - the maximum outbound (send) message size is dependent on the
underlying network MTU (maximum sized transmission unit) and hence
cannot be known until after a socket is bound. Applications should use
getsockopt() to retrieve the value of SO_MAX_MSG_SIZE after the
socket has been bound to a local address.

0xFFFFFFFF - the protocol is message-oriented, but there is no maximum limit
to the size of messages that may be transmitted.

DWORD dwProviderReserved - reserved for use by service providers.

120 WSAEnumProtocols

char szProtocol - an array of characters that contains a human-readable name identifying the
protocol, for example "SPX". The maximum number of characters allowed is
WSAPROTOCOL_LEN, which is defined to be 255.

Return Value If no error occurs, WSAEnumProtocols() returns the number of protocols to be reported
on. Otherwise a value of SOCKET_ERROR is returned and a specific error code may be
retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress.

WSAEINVAL Indicates that one of the specified parameters was
invalid.

WSAENOBUFS The buffer length was too small to receive all the
relevant WSAPROTOCOL_INFO structures and
associated information. Pass in a buffer at least as
large as the value returned in lpdwBufferLength.

WSAEFAULT One or more of the lpiProtocols, lpProtocolBuffer, or
lpdwBufferLength arguments are not a valid part of
the user address space.

WSAEventSelect 121

4.32. WSAEventSelect()
Description Specify an event object to be associated with the supplied set of FD_XXX network

events.

 #include <winsock2.h>

 int WSAAPI
WSAEventSelect (

IN SOCKET s,
IN WSAEVENT hEventObject,
IN long lNetworkEvents

);

s A descriptor identifying the socket.

hEventObject A handle identifying the event object to be associated with the supplied
set of FD_XXX network events.

lNetworkEvents A bitmask which specifies the combination of FD_XXX network events
in which the application has interest.

Remarks This function is used to specify an event object, hEventObject, to be associated with the
selected FD_XXX network events, lNetworkEvents. The socket for which an event object
is specified is identified by s. The event object is set when any of the nominated network
events occur.

WSAEventSelect() operates very similarly to WSAAsyncSelect(), the difference being
in the actions taken when a nominated network event occurs. Whereas
WSAAsyncSelect() causes an application-specified Windows message to be posted,
WSAEventSelect() sets the associated event object and records the occurrence of this
event in an internal network event record. An application can use
WSAWaitForMultipleEvents() to wait or poll on the event object, and use
WSAEnumNetworkEvents() to retrieve the contents of the internal network event
record and thus determine which of the nominated network events have occurred.

WSAEventSelect() is the only function that causes network activity and errors to be
recorded and retrievable through WSAEnumNetworkEvents(). See the descriptions of
select() and WSAAsyncSelect() to find out how those functions report network activity
and errors.

This function automatically sets socket s to non-blocking mode, regardless of the value of
lNetworkEvents. See ioctlsocket()/WSAIoctl() about how to set the socket back to
blocking mode.

The lNetworkEvents parameter is constructed by or'ing any of the values specified in the
following list.

Value Meaning
FD_READ Want to receive notification of readiness for reading
FD_WRITE Want to receive notification of readiness for writing
FD_OOB Want to receive notification of the arrival of out-of-band

data

122 WSAEventSelect

FD_ACCEPT Want to receive notification of incoming connections
FD_CONNECT Want to receive notification of completed connection or

multipoint “join” operation
FD_CLOSE Want to receive notification of socket closure
FD_QOS Want to receive notification of socket Quality of Service

(QOS) changes
FD_GROUP_QOS Reserved for future use with socket groups: Want to

receive notification of socket group Quality of Service
(QOS) changes

FD_ROUTING_INTERFACE_CHANGE
Want to receive notification of routing interface changes
for the specified destination

FD_ADDRESS_LIST_CHANGE
Want to receive notification of local address list changes
for the socket’s address family

Issuing a WSAEventSelect() for a socket cancels any previous WSAAsyncSelect() or
WSAEventSelect() for the same socket and clears the internal network event record. For
example, to associate an event object with both reading and writing network events, the
application must call WSAEventSelect() with both FD_READ and FD_WRITE, as
follows:

rc = WSAEventSelect(s, hEventObject, FD_READ|FD_WRITE);

It is not possible to specify different event objects for different network events. The
following code will not work; the second call will cancel the effects of the first, and only
FD_WRITE network event will be associated with hEventObject2:

rc = WSAEventSelect(s, hEventObject1, FD_READ);
rc = WSAEventSelect(s, hEventObject2, FD_WRITE); //bad

To cancel the association and selection of network events on a socket, lNetworkEvents
should be set to zero, in which case the hEventObject parameter will be ignored.

rc = WSAEventSelect(s, hEventObject, 0);

Closing a socket with closesocket() also cancels the association and selection of network
events specified in WSAEventSelect() for the socket. The application, however, still
must call WSACloseEvent() to explicitly close the event object and free any resources.

Since an accept()'ed socket has the same properties as the listening socket used to accept
it, any WSAEventSelect() association and network events selection set for the listening
socket apply to the accepted socket. For example, if a listening socket has
WSAEventSelect() association of hEventOject with FD_ACCEPT, FD_READ, and
FD_WRITE, then any socket accepted on that listening socket will also have
FD_ACCEPT, FD_READ, and FD_WRITE network events associated with the same
hEventObject. If a different hEventObject or network events are desired, the application
should call WSAEventSelect(), passing the accepted socket and the desired new
information.3

3Note that there is a timing window between the accept() call and the call to WSAEventSelect() to change
the network events or hEventObject. An application which desires a different hEventObject for the
listening and accept()'ed sockets should ask for only FD_ACCEPT network event on the listening socket,
then set appropriate network events after the accept(). Since FD_ACCEPT never happens to a connected

WSAEventSelect 123

Return Value The return value is 0 if the application's specification of the network events and the
associated event object was successful. Otherwise the value SOCKET_ERROR is
returned, and a specific error number may be retrieved by calling WSAGetLastError().

As in the case of the select() and WSAAsyncSelect() functions, WSAEventSelect() will
frequently be used to determine when a data transfer operation (send() or recv()) can be
issued with the expectation of immediate success. Nevertheless, a robust application must
be prepared for the possibility that the event object is set and it issues a WinSock call
which returns WSAEWOULDBLOCK immediately. For example, the following
sequence of operations is possible:

(i) data arrives on socket s; WinSock sets the WSAEventSelect event
object

(ii) application does some other processing
(iii) while processing, application issues an ioctlsocket(s, FIONREAD...)

and notices that there is data ready to be read
(iv) application issues a recv(s,...) to read the data
(v) application eventually waits on event object specified in

WSAEventSelect(), which returns immediately indicating that data is
ready to read

(vi) application issues recv(s,...), which fails with the error
WSAEWOULDBLOCK.

Other sequences are possible.

Having successfully recorded the occurrence of the network event (by setting the
corresponding bit in the internal network event record) and signaled the associated event
object, no further actions are taken for that network event until the application makes the
function call which implicitly reenables the setting of that network event and signaling of
the associated event object.

Network Event Re-enabling function
FD_READ recv(), recvfrom(), WSARecv(), or WSARecvFrom()
FD_WRITE send(), sendto(), WSASend(), or WSASendTo()
FD_OOB recv(), recvfrom(), WSARecv(), or WSARecvFrom()
FD_ACCEPT accept() or WSAAccept() unless the error code returned is

WSATRY_AGAIN indicating that the condition function
returned CF_DEFER

FD_CONNECT NONE
FD_CLOSE NONE
FD_QOS WSAIoctl() with command SIO_GET_QOS
FD_GROUP_QOS Reserved for future use with socket groups: WSAIoctl() with

command SIO_GET_GROUP_QOS
FD_ROUTING_INTERFACE_CHANGE

WSAIoctl() with command
SIO_ROUTING_INTERFACE_CHANGE

FD_ADDRESS_LIST_CHANGE
WSAIoctl() with command SIO_ADDRESS_LIST_CHANGE

socket and FD_READ, FD_WRITE, FD_OOB, and FD_CLOSE never happen to listening sockets, this will
not impose difficulties.

124 WSAEventSelect

Any call to the reenabling routine, even one which fails, results in reenabling of recording
and signaling for the relevant network event and event object, respectively.

For FD_READ, FD_OOB, and FD_ACCEPT network events, network event recording
and event object signaling are "level-triggered." This means that if the reenabling routine
is called and the relevant network condition is still valid after the call, the network event
is recorded and the associated event object is set . This allows an application to be
event-driven and not be concerned with the amount of data that arrives at any one time.
Consider the following sequence:

(i) transport provider receives 100 bytes of data on socket s and causes
WinSock DLL to record the FD_READ network event and set the
associated event object.

(ii) The application issues recv(s, buffptr, 50, 0) to read 50 bytes.
(iii) The transport provider causes WinSock DLL to record the FD_READ

network event and sets the associated event object again since there is
still data to be read.

With these semantics, an application need not read all available data in response to an
FD_READ network event --a single recv() in response to each FD_READ network event
is appropriate.

The FD_QOS and FD_GROUP_QOS events are considered edge triggered. A message
will be posted exactly once when a QOS change occurs. Further messages will not be
forthcoming until either the provider detects a further change in QOS or the application
renegotiates the QOS for the socket.

The FD_ROUTING_INTERFACE_CHANGE and FD_ADDRESS_LIST_CHANGE
events are considered “edge triggered” as well. A message will be posted exactly once
when a change occurs AFTER the application has request the notification by issuing
WSAIoctl() with SIO_ROUTING_INTERFACE_CHANGE or
SIO_ADDRESS_LIST_CHANGE correspondingly. Further messages will not be
forthcoming until the application reissues the IOCTL AND another change is detected
since the IOCTL has been issued.

If a network event has already happened when the application calls WSAEventSelect() or
when the reenabling function is called, then a network event is recorded and the
associated event object is set as appropriate. For example, consider the following
sequence: 1) an application calls listen(), 2) a connect request is received but not yet
accepted, 3) the application calls WSAEventSelect() specifying that it is interested in the
FD_ACCEPT network event for the socket. Due to the persistence of network events,
WinSock records the FD_ACCEPT network event and sets the associated event object
immediately.

The FD_WRITE network event is handled slightly differently. An FD_WRITE network
event is recorded when a socket is first connected with connect()/WSAConnect() or
accepted with accept()/WSAAccept(), and then after a send fails with
WSAEWOULDBLOCK and buffer space becomes available. Therefore, an application
can assume that sends are possible starting from the first FD_WRITE network event
setting and lasting until a send returns WSAEWOULDBLOCK. After such a failure the
application will find out that sends are again possible when an FD_WRITE network event
is recorded and the associated event object is set .

WSAEventSelect 125

The FD_OOB network event is used only when a socket is configured to receive out-of-
band data separately. If the socket is configured to receive out-of-band data in-line, the
out-of-band (expedited) data is treated as normal data and the application should register
an interest in, and will get, FD_READ network event, not FD_OOB network event. An
application may set or inspect the way in which out-of-band data is to be handled by using
setsockopt() or getsockopt() for the SO_OOBINLINE option.

The error code in an FD_CLOSE network event indicates whether the socket close was
graceful or abortive. If the error code is 0, then the close was graceful; if the error code is
WSAECONNRESET, then the socket's virtual circuit was reset. This only applies to
connection-oriented sockets such as SOCK_STREAM.

The FD_CLOSE network event is recorded when a close indication is received for the
virtual circuit corresponding to the socket. In TCP terms, this means that the FD_CLOSE
is recorded when the connection goes into the TIME WAIT or CLOSE WAIT states.
This results from the remote end performing a shutdown() on the send side or a
closesocket(). FD_CLOSE should only be posted after all data is read from a socket, but
an application should check for remaining data upon receipt of FD_CLOSE to avoid any
possibility of losing data.

Please note WinSock will record ONLY an FD_CLOSE network event to indicate
closure of a virtual circuit. It will NOT record an FD_READ network event to indicate
this condition.

The FD_QOS or FD_GROUP_QOS network event is recorded when any field in the
flow spec associated with socket s or the socket group that s belongs to has changed,
respectively. Applications should use WSAIoctl() with command SIO_GET_QOS or
SIO_GET_GROUP_QOS to get the current QOS for socket s or for the socket group s
belongs to, respectively.

The FD_ROUTING_INTERFACE_CHANGE nework event is recorded when the local
interface that should be used to reach the destination specified in WSAIoctl() with
SIO_ROUTING_INTERFACE_CHANGE changes AFTER such IOCTL has been
issued.

The FD_ADDRESS_LIST_CHANGE network event is recorded when the list of
addresses of socket’s protocol family to which the application can bind changes AFTER
WSAIoctl() with SIO_ADDRESS_LIST_CHANGE has been issued.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that one of the specified parameters was
invalid, or the specified socket is in an invalid state.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function).

WSAENOTSOCK The descriptor is not a socket.

126 WSAEventSelect

See Also WSAAsyncSelect(), WSACloseEvent(), WSACreateEvent(),
WSAEnumNetworkEvents(), WSAWaitForMultipleEvents().

WSAGetLastError 127

4.33. WSAGetLastError()
Description Get the error status for the last operation which failed.

 #include <winsock2.h>

 int WSAAPI WSAGetLastError (void);

Remarks This function returns the last network error that occurred. When a particular WinSock
function indicates that an error has occurred, this function should be called to retrieve the
appropriate error code. This error code may be different from the error code obtained
from getsockopt() SO_ERROR—which is socket-specific--since WSAGetLastError() is
for all sockets (i.e., thread-specific)..

A successful function call, or a call to WSAGetLastError(), does not reset the error
code. To reset the error code, use the WSASetLastError() function call with iError set
to zero (NOTE: getsockopt() SO_ERROR also resets the error code to zero)

This function should not be used to check for an error value on receipt of an
asynchronous message. In this case the error value is passed in the lParam field of the
message, and this may differ from the value returned by WSAGetLastError().

Return Value The return value indicates the error code for this thread’s last WinSock operation that
failed.

See Also WSASetLastError(), getsockopt()

128 WSAGetOverlappedResult

4.34. WSAGetOverlappedResult()
Description Returns the results of an overlapped operation on the specified socket.

#include <winsock2.h>

BOOL WSAAPI
WSAGetOverlappedResult (

IN SOCKET s,
IN LPWSAOVERLAPPED lpOverlapped,
OUT LPDWORD lpcbTransfer,
IN BOOL fWait,
OUT LPDWORD lpdwFlags

);

s Identifies the socket. This is the same socket that was specified when
the overlapped operation was started by a call to WSARecv(),
WSARecvFrom(), WSASend(), WSASendTo(), or WSAIoctl().

lpOverlapped Points to a WSAOVERLAPPED structure that was specified when the
overlapped operation was started.

lpcbTransfer Points to a 32-bit variable that receives the number of bytes that were
actually transferred by a send or receive operation, or by WSAIoctl().

fWait Specifies whether the function should wait for the pending overlapped
operation to complete. If TRUE, the function does not return until the
operation has been completed. If FALSE and the operation is still
pending, the function returns FALSE and the WSAGetLastError()
function returns WSA_IO_INCOMPLETE. The fWait parameter may
be set to TRUE only if the overlapped operation selected event-based
completion notification.

lpdwFlags Points to a 32-bit variable that will receive one or more flags that
supplement the completion status. If the overlapped operation was
initiated via WSARecv() or WSARecvFrom(), this parameter will
contain the results value for lpFlags parameter.

Remarks The results reported by the WSAGetOverlappedResult() function are those of the
specified socket's last overlapped operation to which the specified WSAOVERLAPPED
structure was provided, and for which the operation's results were pending. A pending
operation is indicated when the function that started the operation returns
SOCKET_ERROR, and the WSAGetLastError() function returns WSA_IO_PENDING.
When an I/O operation is pending, the function that started the operation resets the hEvent
member of the WSAOVERLAPPED structure to the nonsignaled state. Then when the
pending operation has been completed, the system sets the event object to the signaled
state.

If the fWait parameter is TRUE, WSAGetOverlappedResult() determines whether the
pending operation has been completed by waiting for the event object to be in the
signaled state. A client may set fWait parameter to TRUE only if it selected event-based
completion notification when the IO operation was requested. If another form of
notification was selected, the usage of the hEvent member of the WSAOVERLAPPED
structure is different, and setting fWait to TRUE causes unpredictable results.

WSAGetOverlappedResult 129

Return Value If WSAGetOverlappedResult() succeeds, the return value is TRUE. This means that the
overlapped operation has completed successfully and that the value pointed to by
lpcbTransfer has been updated. If WSAGetOverlappedResult() returns FALSE, this
means that either the overlapped operation has not completed or the overlapped operation
completed but with errors, or that completion status could not be determined due to errors
in one or more parameters to WSAGetOverlappedResult(). On failure, the value pointed
to by lpcbTransfer will not be updated. Use WSAGetLastError() to determine the
cause of the failure (either of WSAGetOverlappedResult() or of the associated
overlapped operation).

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSA_INVALID_HANDLE The hEvent field of the WSAOVERLAPPED
structure does not contain a valid event object handle.

WSA_INVALID_PARAMETER One of the parameters is unacceptable.

WSA_IO_INCOMPLETE fWait is FALSE and the I/O operation has not yet
completed.

WSAEFAULT One or more of the lpOverlapped, lpcbTransfer, or
lpdwFlags arguments are not a valid part of the user
address space.

See Also WSACreateEvent(), WSAWaitForMultipleEvents(), WSARecv(), WSARecvFrom(),
WSASend(), WSASendTo(), WSAConnect(), WSAAccept(), WSAIoctl().

130 WSAGetQOSByName

4.35. WSAGetQOSByName()
Description Initializes a QOS structure based on a named template, or retrieves an enumeration of the

available template names.

#include <winsock2.h>

BOOL WSAAPI
WSAGetQOSByName(

IN SOCKET s,
IN OUT LPWSABUF lpQOSName,
OUT LPQOS lpQOS

);

s A descriptor identifying a socket.

lpQOSName Specifies the QOS template name, or supplies a buffer to retrieve an
enumeration of the available template names.

lpQOS A pointer to the QOS structure to be filled.

Remarks Applications may use this function to initialize a QOS structure to a set of known values
appropriate for a particular service class or media type. These values are stored in a
template which is referenced by a well-known name. The client may retrieve these values
by setting the buf member of the WSABUF indicated by lpQOSName to point to a string
of non-zero length specifying a template name. In this case the usage of lpQOSName is
IN only, and results are returned through lpQOS.

Alternatively, the client may use this function to retrieve an enumeration of available
template names. The client may do this by setting the buf member of the WSABUF
indicated by lpQOSName to a zero-length null-terminated string. In this case the buffer
indicated by buf is over-written with a sequence of as many null-terminated template
names are available up to the number of bytes available in buf as indicated by the len
member of the WSABUF indicated by lpQOSName. The list of names itself is terminated
by a zero-length name. When WSAGetQOSByName() is used to retrieve template
names, the lpQOS parameter is ignored.

Return Value If the function succeeds, the return value is TRUE. If the function fails, the return value
is FALSE. To get extended error information, call WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpQOSName or lpQOS arguments are not a valid
part of the user address space, or the buffer length for
lpQOS is too small.

WSAEINVAL The specified QOS template name is invalid.
See Also WSAConnect(), WSAAccept(), getsockopt().

WSAHtonl 131

4.36. WSAHtonl()
Description Convert a u_long from host byte order to network byte order.

 #include <winsock2.h>

 int WSAAPI
WSAHtonl (

IN SOCKET s,
IN u_long hostlong,
OUT u_long FAR * lpnetlong

);

s A descriptor identifying a socket.

hostlong A 32-bit number in host byte order.

lpnetlong A pointer to a 32-bit number in network byte order.

Remarks This routine takes a 32-bit number in host byte order and returns a 32-bit number pointed
to by the lpnetlong parameter in the network byte order associated with socket s.

Return Value If no error occurs, WSAHtonl() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpnetlong argument is not totally contained in a
valid part of the user address space.

See Also htonl(), htons(), ntohs(), ntohl(), WSAHtons(), WSANtohl(), WSANtohs().

132 WSAHtons

4.37. WSAHtons()
Description Convert a u_short from host byte order to network byte order.

 #include <winsock2.h>

 int WSAAPI
WSAHtons (

IN SOCKET s,
IN u_short hostshort,
OUT u_short FAR * lpnetshort

);

s A descriptor identifying a socket.

hostshort A 16-bit number in host byte order.

lpnetshort A pointer to a 16-bit number in network byte order.

Remarks This routine takes a 16-bit number in host byte order and returns a 16-bit number pointed
to by the lpnetshort parameter in the network byte order associated with socket s.

Return Value If no error occurs, WSAHtons() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpnetshort argument is not totally contained in a
valid part of the user address space.

See Also htonl(), htons(), ntohs(), ntohl(), WSAHtonl(), WSANtohl(), WSANtohs().

WSAIoctl 133

4.38. WSAIoctl()
Description Control the mode of a socket.

 #include <winsock2.h>

 int WSAAPI
WSAIoctl (

IN SOCKET s,
IN DWORD dwIoControlCode,
IN LPVOID lpvInBuffer,
IN DWORD cbInBuffer,
OUT LPVOID lpvOutBuffer,
IN DWORD cbOutBuffer,
OUT LPDWORD lpcbBytesReturned,
IN LPWSAOVERLAPPED lpOverlapped,
IN LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompletionRoutine
);

s Handle to a socket

dwIoControlCode Control code of operation to perform

lpvInBuffer Address of input buffer

cbInBuffer Size of input buffer

lpvOutBuffer Address of output buffer

cbOutBuffer Size of output buffer

lpcbBytesReturned Address of actual bytes of output

lpOverlapped Address of WSAOVERLAPPED structure (ignored for non-
overlapped sockets)

lpCompletionRoutine A pointer to the completion routine called when the operation
has been completed. (ignored for non-overlapped sockets)

Remarks This routine is used to set or retrieve operating parameters associated with the socket, the
transport protocol, or the communications subsystem.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will
be treated as a non-overlapped socket.

For non-overlapped socket, lpOverlapped and lpCompletionRoutine parameters are
ignored, and this function behaves like the standard ioctlsocket() function except that it
may block if socket s is in the blocking mode. Note that if socket s is in the non-blocking
mode, this function may return WSAEWOULDBLOCK if the specified operation cannot
be finished immediately. In this case, the application may change the socket to the
blocking mode and reissue the request or wait for the corresponding network event (such
as FD_ROUTING_INTERFACE_CHANGE or FD_ADDRESS_LIST_CHANGE in case
of SIO_ROUTING_INTERFACE_CHANGE or SIO_ADDRESS_LIST_CHANGE)
using Windows message (via WSAAsyncSelect()) or event (via WSAEventSelect())

134 WSAIoctl

based notification mechanism. For overlapped sockets, operations that cannot be
completed immediately will be initiated, and completion will be indicated at a later time.
The final completion status is retrieved via WSAGetOverlappedResult(). The
lpcbBytesReturned parameter is ignored.

Any ioctl may block indefinitely, depending on the service provider’s implementation. If
the application cannot tolerate blocking in a WSAIoctl() call, overlapped I/O would be
advised for ioctls that are especially likely to block including:

SIO_FINDROUTE
SIO_FLUSH
SIO_GET_QOS
SIO_GET_GROUP_QOS
SIO_SET_QOS
SIO_SET_GROUP_QOS
SIO_ROUTING_INTERFACE_CHANGE
SIO_ADDRESS_LIST_CHANGE

Some protocol-specific ioctls may also be especially likely to block. Check the relevant
protocol-specific annex for any available information.

In as much as the dwIoControlCode parameter is now a 32 bit entity, it is possible to
adopt an encoding scheme that preserves the currently defined ioctlsocket() opcodes
while providing a convenient way to partition the opcode identifier space. The
dwIoControlCode parameter is architected to allow for protocol and vendor independence
when adding new control codes, while retaining backward compatibility with the
Windows Sockets 1.1 and Unix control codes. The dwIoControlCode parameter has the
following form:

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
I O V T Vendor/Address Family Code

I is set if the input buffer is valid for the code, as with IOC_IN.

O is set if the output buffer is valid for the code, as with IOC_OUT. Note that for codes
with both input and output parameters, both I and O will be set.

V is set if there are no parameters for the code, as with IOC_VOID.

T is a two-bit quantity which defines the type of ioctl. The following values are defined:

0 - The ioctl is a standard Unix ioctl code, as with FIONREAD, FIONBIO, etc.

1 - The ioctl is a generic Windows Sockets 2 ioctl code. New ioctl codes defined
for Windows Sockets 2 will have T == 1.

2 - The ioctl applies only to a specific address family.

3 - The ioctl applies only to a specific vendor's provider. This type allows
companies to be assigned a vendor number which appears in the
Vendor/Address Family field, and then the vendor can define new ioctls
specific to that vendor without having to register the ioctl with a clearinghouse,
thereby providing vendor flexibility and privacy.

WSAIoctl 135

Vendor/Address Family- An 11-bit quantity which defines the vendor who owns the
code (if T == 3) or which contains the address family to which the code applies (if T ==
2). If this is a Unix ioctl code (T == 0) then this field has the same value as the code on
Unix. If this is a generic Windows Sockets 2 ioctl (T == 1) then this field can be used as
an extension of the "code" field to provide additional code values.

Code - A 16-bit quantity that contains the specific ioctl code for the operation (i.e. the
command).

The following Unix ioctl codes (commands) are supported:

Command Semantics

FIONBIO Enable or disable non-blocking mode on socket s. lpvInBuffer points at
an unsigned long, which is non-zero if non-blocking mode is to be
enabled and zero if it is to be disabled. When a socket is created, it
operates in blocking mode (i.e. non-blocking mode is disabled). This is
consistent with BSD sockets.

The WSAAsyncSelect() or WSAEventSelect() routine automatically
sets a socket to nonblocking mode. If WSAAsyncSelect() or
WSAEventSelect() has been issued on a socket, then any attempt to
use WSAIoctl() to set the socket back to blocking mode will fail with
WSAEINVAL. To set the socket back to blocking mode, an
application must first disable WSAAsyncSelect() by calling
WSAAsyncSelect() with the lEvent parameter equal to 0, or disable
WSAEventSelect() by calling WSAEventSelect() with the
lNetworkEvents parameter equal to 0.

FIONREAD Determine the amount of data which can be read atomically from socket
s. lpvOutBuffer points at an unsigned long in which WSAIoctl() stores
the result. If s is stream-oriented (e.g., type SOCK_STREAM),
FIONREAD returns the total amount of data which may be read in a
single receive operation; this is normally the same as the total amount
of data queued on the socket, but since data stream is byte-oriented, this
is not guaranteed. If s is message-oriented (e.g., type SOCK_DGRAM),
FIONREAD returns the size of the first datagram (message) queued on
the socket.

SIOCATMARK Determine whether or not all out-of-band data has been read. This
applies only to a socket of stream style (e.g., type SOCK_STREAM)
which has been configured for in-line reception of any out-of-band data
(SO_OOBINLINE). If no out-of-band data is waiting to be read, the
operation returns TRUE. Otherwise it returns FALSE, and the next
receive operation performed on the socket will retrieve some or all of
the data preceding the "mark"; the application should use the
SIOCATMARK operation to determine whether any remains. If there is
any normal data preceding the "urgent" (out of band) data, it will be
received in order. (Note that receive operations will never mix out-of-
band and normal data in the same call.) lpvOutBuffer points at a BOOL
in which WSAIoctl() stores the result.

The following WinSock 2 commands are supported:

136 WSAIoctl

Command Semantics

SIO_ASSOCIATE_HANDLE (opcode setting: I, T==1)
Associate this socket with the specified handle of a companion
interface. The input buffer contains the integer value corresponding to
the manifest constant for the companion interface (e.g., TH_NETDEV,
TH_TAPI, etc.), followed by a value which is a handle of the specified
companion interface, along with any other required information. Refer
to the appropriate section in the Windows Sockets 2 Protocol-Specific
Annex for details specific to a particular companion interface. The total
size is reflected in the input buffer length. No output buffer is required.
The WSAENOPROTOOPT error code is indicated for service
providers which do not support this ioctl. The handle associated by this
ioctl can be retrieved using SIO_TRANSLATE_HANDLE.

A companion interface might be used, for example, if a particular
provider provides (1) a great deal of additional controls over the
behavior of a socket and (2) the controls are provider-specific enough
that they don’t map to existing WinSock functions or ones likely to be
defined in the future. It is recommend that the Component Object
Model (COM) be used instead of this ioctl to discover and track other
interfaces that might be supported by a socket. This ioctl is present for
(reverse) compatibility with systems where COM is not available or
cannot be used for some other reason.

SIO_ENABLE_CIRCULAR_QUEUEING (opcode setting: V, T==1)
Indicates to the underlying message-oriented service provider that a
newly arrived message should never be dropped because of a buffer
queue overflow. Instead, the oldest message in the queue should be
eliminated in order to accommodate the newly arrived message. No
input and output buffers are required. Note that this ioctl is only valid
for sockets associated with unreliable, message-oriented protocols. The
WSAENOPROTOOPT error code is indicated for service providers
which do not support this ioctl.

SIO_FIND_ROUTE (opcode setting: O, T==1)
When issued, this ioctl requests that the route to the remote address
specified as a sockaddr in the input buffer be discovered. If the address
already exists in the local cache, its entry is invalidated. In the case of
Novell’s IPX, this call initiates an IPX GetLocalTarget (GLT), which
queries the network for the given remote address.

SIO_FLUSH (opcode setting: V, T==1)
Discards current contents of the sending queue associated with this
socket. No input and output buffers are required. The
WSAENOPROTOOPT error code is indicated for service providers
which do not support this ioctl.

SIO_GET_BROADCAST_ADDRESS (opcode setting: O, T==1)
This ioctl fills the output buffer with a sockaddr struct containing a
suitable broadcast address for use with sendto()/WSASendTo().

SIO_GET_EXTENSION_FUNCTION_POINTER (opcode setting: O, I, T==1)
Retrieve a pointer to the specified extension function supported by the
associated service provider. The input buffer contains a globally

WSAIoctl 137

unique identifier (GUID) whose value identifies the extension function
in question. The pointer to the desired function is returned in the output
buffer. Extension function identifiers are established by service
provider vendors and should be included in vendor documentation that
describes extension function capabilities and semantics.

SIO_GET_QOS (opcode setting: O, I,T==1)
Retrieve the QOS structure associated with the socket. The input buffer
is optional. Some protocols (e.g. RSVP) allow the input buffer to be
used to qualify a QOS request. The QOS structure will be copied into
the output buffer. The output buffer must be sized large enough to be
able to contain the full QOS struct. The WSAENOPROTOOPT error
code is indicated for service providers which do not support QOS.

SIO_GET_GROUP_QOS (opcode setting: O, I,T==1)
Reserved for future use with socket groups: Retrieve the QOS structure
associated with the socket group to which this socket belongs. The
input buffer is optional. Some protocols (e.g. RSVP) allow the input
buffer to be used to qualify a QOS request. The QOS structure will be
copied into the output buffer. If this socket does not belong to an
appropriate socket group, the SendingFlowspec and ReceivingFlowspec
fields of the returned QOS struct are set to NULL. The
WSAENOPROTOOPT error code is indicated for service providers
which do not support QOS.

SIO_MULTIPOINT_LOOPBACK (opcode setting: I, T==1)
Controls whether data sent in a multipoint session will also be received
by the same socket on the local host. A value of TRUE causes
loopback reception to occur while a value of FALSE prohibits this. By
default, loopback is enabled.

SIO_MULTICAST_SCOPE (opcode setting: I, T==1)
Specifies the scope over which multicast transmissions will occur.
Scope is defined as the number of routed network segments to be
covered. A scope of zero would indicate that the multicast transmission
would not be placed “on the wire” but could be disseminated across
sockets within the local host. A scope value of one (the default)
indicates that the transmission will be placed on the wire, but will not
cross any routers. Higher scope values determine the number of routers
that may be crossed. Note that this corresponds to the time-to-live
(TTL) parameter in IP multicasting. By default, scope is 1.

SIO_SET_QOS (opcode setting: I, T==1)
Associate the supplied QOS structure with the socket. No output buffer
is required, the QOS structure will be obtained from the input buffer.
The WSAENOPROTOOPT error code is indicated for service
providers which do not support QOS.

SIO_SET_GROUP_QOS (opcode setting: I, T==1)
Reserved for future use with socket groups: Establish the supplied QOS
structure with the socket group to which this socket belongs. No output
buffer is required, the QOS structure will be obtained from the input
buffer. The WSAENOPROTOOPT error code is indicated for service
providers which do not support QOS, or if the socket descriptor
specified is not the creator of the associated socket group.

138 WSAIoctl

SIO_TRANSLATE_HANDLE (opcode setting: I, O, T==1)
To obtain a corresponding handle for socket s that is valid in the
context of a companion interface (e.g., TH_NETDEV, TH_TAPI, etc.).
A manifest constant identifying the companion interface along with any
other needed parameters are specified in the input buffer. The
corresponding handle will be available in the output buffer upon
completion of this function. Refer to the appropriate section in the
Windows Sockets 2 Protocol-Specific Annex for details specific to a
particular companion interface. The WSAENOPROTOOPT error code
is indicated for service providers which do not support this ioctl for the
specified companion interface. This ioctl retrieves the handle associated
using SIO_TRANSLATE_HANDLE.

It is recommend that the Component Object Model (COM) be used
instead of this ioctl to discover and track other interfaces that might be
supported by a socket. This ioctl is present for (reverse) compatibility
with systems where COM is not available or cannot be used for some
other reason.

SIO_ROUTING_INTERFACE_QUERY (opcode setting: I, O, T==1)
To obtain the address of the local interface (represented as
SOCKADDR structure) which should be used to send to the remote
address specified in the input buffer (as SOCKADDR). Remote
multicast addresses may be submitted in the input buffer to get the
address of the preferred interface for multicast transmission. In any
case, the interface address returned may be used by the application in a
subsequent bind() request.

Note that routes are subject to change. Therefore, applications cannot
rely on the information returned by
SIO_ROUTING_INTERFACE_QUERY to be persistent. Applications
may register for routing change notifications via the
SIO_ROUTING_INTERFACE_CHANGE IOCTL which provides for
notification via either overlapped IO or
FD_ROUTING_INTERFACE_CHANGE event. The following
sequence of actions can be used to guarantee that the application always
has current routing interface information for a given destination:

• issue SIO_ROUTING_INTERFACE_CHANGE IOCTL
• issue SIO_ROUTING_INTERFACE_QUERY IOCTL
• whenever SIO_ROUTING_INTERFACE_CHANGE IOCTL

notifies the application of routing change (either via overlapped IO
or by signaling FD_ROUTING_INTERFACE_CHANGE event),
the whole sequence of actions should be repeated.

If output buffer is not large enough to contain the interface address,
SOCKET_ERROR is returned as the result of this IOCTL and
WSAGetLastError() returns WSAEFAULT. The required size of the
output buffer will be returned in lpcbBytesReturned in this case. Note
the WSAEFAULT error code is also returned if the lpvInBuffer,
lpvOutBuffer or lpcbBytesReturned parameter is not totally contained in
a valid part of the user address space.

WSAIoctl 139

If the destination address specified in the input buffer cannot be reached
via any of the available interfaces, SOCKET_ERROR is returned as the
result of this IOCTL and WSAGetLastError() returns
WSAENETUNREACH or even WSAENETDOWN if all of the
network connectivity is lost.

SIO_ROUTING_INTERFACE_CHANGE (opcode setting: I, T==1)
To receive notification of the interface change that should be used to
reach the remote address in the input buffer (specified as a
SOCKADDR structure). No output information will be provided upon
completion of this IOCTL; the completion merely indicates that routing
interface for a given destination has changed and should be queried
again via SIO_ROUTING_INTERFACE_QUERY.

It is assumed (although not required) that the application uses
overlapped IO to be notified of routing interface change via completion
of SIO_ROUTING_INTERFACE_CHANGE request. Alternatively, if
the SIO_ROUTING_INTERFACE_CHANGE IOCTL is issued on
non-blocking socket AND without overlapped parameters
(lpOverlapped / CompletionRoutine are set NULL), it will complete
immediately with error WSAEWOULDBLOCK, and the application
can then wait for routing change events via call to WSAEventSelect()
or WSAAsyncSelect() with FD_ROUTING_INTERFACE_CHANGE
bit set in the network event bitmask

It is recognized that routing information remains stable in most cases so
that requiring the application to keep multiple outstanding IOCTLs to
get notifications about all destinations that it is interested in as well as
having service provider to keep track of all them will unnecessarily tie
significant system resources. This situation can be avoided by
extending the meaning of the input parameters and relaxing the service
provider requirements as follows:
• the application can specify a protocol family specific wildcard

address (same as one used in bind() call when requesting to bind to
any available address) to request notifications of any routing
changes. This allows the application to keep only one outstanding
SIO_ROUTING_INTERFACE_CHANGE for all the
sockets/destinations it has and then use
SIO_ROUTING_INTERFACE_QUERY to get the actual routing
information

• service provider can opt to ignore the information supplied by the
application in the input buffer of the
SIO_ROUTING_INTERFACE_CHANGE (as though the
application specified a wildcard address) and complete the
SIO_ROUTING_INTERFACE_CHANGE IOCTL or signal
FD_ROUTING_INTERFACE_CHANGE event in the event of any
routing information change (not just the route to the destination
specified in the input buffer).

SIO_ADDRESS_LIST_QUERY (opcode setting: I, O, T==1)
To obtain a list of local transport addresses of socket’s protocol family
to which the application can bind. The list returned in the output buffer
using the following format:
typedef struct _SOCKET_ADDRESS_LIST {

140 WSAIoctl

INT iAddressCount;
SOCKET_ADDRESS Address[1];

} SOCKET_ADDRESS_LIST, FAR *
LPSOCKET_ADDRESS_LIST;
Members:

iAddressCount - number of address structures in the list;
Address - array of protocol family specific address

structures.

Note that in Win32 Plug-n-Play environments addresses can be
added/removed dynamically. Therefore, applications cannot rely on the
information returned by SIO_ADDRESS_LIST_QUERY to be
persistent. Applications may register for address change notifications
via the SIO_ADDRESS_LIST_CHANGE IOCTL which provides for
notification via either overlapped IO or
FD_ADDRESS_LIST_CHANGE event. The following sequence of
actions can be used to guarantee that the application always has current
address list information:
• issue SIO_ADDRESS_LIST_CHANGE IOCTL
• issue SIO_ADDRESS_LIST_QUERY IOCTL
• whenever SIO_ADDRESS_LIST_CHANGE IOCTL notifies the

application of address list change (either via overlapped IO or by
signaling FD_ADDRESS_LIST_CHANGE event), the whole
sequence of actions should be repeated.

If output buffer is not large enough to contain the address list,
SOCKET_ERROR is returned as the result of this IOCTL and
WSAGetLastError() returns WSAEFAULT. The required size of the
output buffer will be returned in lpcbBytesReturned in this case. Note
the WSAEFAULT error code is also returned if the lpvInBuffer,
lpvOutBuffer or lpcbBytesReturned parameter is not totally contained in
a valid part of the user address space.

SIO_ADDRESS_LIST_CHANGE (opcode setting: T==1)
To receive notification of changes in the list of local transport addresses
of socket’s protocol family to which the application can bind. No
output information will be provided upon completion of this IOCTL;
the completion merely indicates that list of available local address has
changed and should be queried again via
SIO_ADDRESS_LIST_QUERY.

It is assumed (although not required) that the application uses
overlapped IO to be notified of change via completion of
SIO_ADDRESS_LIST_CHANGE request. Alternatively, if the
SIO_ADDRESS_LIST_CHANGE IOCTL is issued on non-blocking
socket AND without overlapped parameters (lpOverlapped /
lpCompletionRoutine are set to NULL), it will complete immediately
with error WSAEWOULDBLOCK. The application can then wait for
address list change events via call to WSAEventSelect() or
WSAAsyncSelect() with FD_ADDRESS_LIST_CHANGE bit set in
the network event bitmask.

WSAIoctl 141

If an overlapped operation completes immediately, this function returns a value of zero
and the lpcbBytesReturned parameter is updated with the number of bytes in the output
buffer. If the overlapped operation is successfully initiated and will complete later, this
function returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In
this case, lpcbBytesReturned is not updated. When the overlapped operation completes
the amount of data in the output buffer is indicated either via the cbTransferred parameter
in the completion routine (if specified), or via the lpcbTransfer parameter in
WSAGetOverlappedResult().

When called with an overlapped socket, the lpOverlapped parameter must be valid for the
duration of the overlapped operation. The WSAOVERLAPPED structure has the
following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // reserved
DWORD OffsetHigh; // reserved
WSAEVENT hEvent;

} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a
non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the
same overlapped IO request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is
undefined, and attempting to wait on the hEvent field would produce unpredictable
results.

The prototype of the completion routine is as follows:

void CALLBACK
CompletionRoutine(

IN DWORD dwError,
IN DWORD cbTransferred,
IN LPWSAOVERLAPPED lpOverlapped,
IN DWORD dwFlags

);

CompletionRoutine is a placeholder for an application-defined or library-defined
function. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes returned.
Currently there are no flag values defined and dwFlags will be zero. This function does
not return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. The completion routines may be called in any order, not necessarily in the
same order the overlapped operations are completed.

142 WSAIoctl

Compatibility The ioctl codes with T == 0 are a subset of the ioctl codes used in Berkeley sockets. In
particular, there is no command which is equivalent to FIOASYNC.

Return Value Upon successful completion, the WSAIoctl () returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpvInBuffer, lpvOutBuffer lpcbBytesReturned,
lpOverlapped, or lpCompletionRoutine argument is
not totally contained in a valid part of the user
address space, or the cbInBuffer or cbOutBuffer
argument is too small.

WSAEINVAL dwIoControlCode is not a valid command, or a
supplied input parameter is not acceptable, or the
command is not applicable to the type of socket
supplied.

WSAEINPROGRESS The function is invoked when a callback is in
progress.

WSAENOTSOCK The descriptor s is not a socket.

WSAEOPNOTSUPP The specified ioctl command cannot be realized, e.g.,
the flow specs specified in SIO_SET_QOS or
SIO_SET_GROUP_QOS cannot be satisfied.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSAEWOULDBLOCK The socket is marked as non-blocking and the
requested operation would block.

See Also socket(), ioctlsocket(), WSASocket(), setsockopt(), getsockopt().

WSAIsBlocking 143

4.39. WSAIsBlocking()
Description Determine if a blocking call is in progress. WSAIsBlocking() is only available for

WinSock 1.1 apps (that is, if at least one thread within the process negotiates version 1.0
or 1.1 at WSAStartup()).

Important Note: This function is for backwards compatibility with WinSock 1.1 and is
not considered part of the WinSock 2 specification. WinSock 2 applications should not
use this function.

 #include <winsock2.h>

 BOOL WSAAPI WSAIsBlocking (void);

Remarks This function allows a WinSock 1.1 application to determine if it is executing while
waiting for a previous blocking call to complete.

Return Value The return value is TRUE if there is an outstanding blocking function awaiting
completion in the current thread. Otherwise, it is FALSE.

Comments In 16-bit WinSock 1.1 environments, although a call issued on a blocking socket appears
to an application program as though it "blocks", the WinSock DLL has to relinquish the
processor to allow other applications to run. This means that it is possible for the
application which issued the blocking call to be re-entered, depending on the message(s)
it receives. In this instance, the WSAIsBlocking() function can be used to ascertain
whether the task has been re-entered while waiting for an outstanding blocking call to
complete. Note that WinSock 1.1 prohibits more than one outstanding call per thread.

See Also WSACancelBlockingCall(), WSASetBlockingHook(), WSAUnhookBlockingHook()

144 WSAJoinLeaf

4.40. WSAJoinLeaf()
Description Join a leaf node into a multipoint session, exchange connect data, and specify needed

quality of service based on the supplied flow specs.

 #include <winsock2.h>

 SOCKET WSAAPI
WSAJoinLeaf (

IN SOCKET s,
IN const struct sockaddr FAR * name,
IN int namelen,
IN LPWSABUF lpCallerData,
OUT LPWSABUF lpCalleeData,
IN LPQOS lpSQOS,
IN LPQOS lpGQOS,
IN DWORD dwFlags

);

s A descriptor identifying a multipoint socket.

name The name of the peer to which the socket is to be joined.

namelen The length of the name.

lpCallerData A pointer to the user data that is to be transferred to the peer during
multipoint session establishment.

lpCalleeData A pointer to the user data that is to be transferred back from the peer
during multipoint session establishment.

lpSQOS A pointer to the flow specs for socket s, one for each direction.

lpGQOS Reserved for future use with socket groups: A pointer to the flow specs
for the socket group (if applicable).

dwFlags Flags to indicate that the socket is acting as a sender, receiver, or both.

Remarks This function is used to join a leaf node to a multipoint session, and to perform a number
of other ancillary operations that occur at session join time as well. If the socket, s, is
unbound, unique values are assigned to the local association by the system, and the socket
is marked as bound.

WSAJoinLeaf() has the same parameters and semantics as WSAConnect() except that it
returns a socket descriptor (as in WSAAccept()), and it has an additional dwFlags
parameter. Only multipoint sockets created using WSASocket() with appropriate
multipoint flags set may be used for input parameter s in this function. The returned
socket descriptor will not be useable until after the join operation completes (e.g. if the
socket is in non-blocking mode, after a corresponding FD_CONNECT indication has
been received from WSAAsyncSelect() or WSAEventSelect() on the original socket s),
except that closesocket() may be invoked on this new socket descriptor to cancel a
pending join operation. A root application in a multipoint session may call
WSAJoinLeaf() one or more times in order to add a number of leaf nodes, however at

WSAJoinLeaf 145

most one multipoint connection request may be outstanding at a time. Refer to Appendix
B. Multipoint and Multicast Semantics for additional information.

For non-blocking sockets it is often not possible to complete the connection immediately.
In such a case, this function returns an as-yet unusable socket descriptor and the operation
proceeds. There is no error code such as WSAEWOULDBLOCK in this case, since the
function has effectively returned a “successful start” indication. When the final outcome
success or failure becomes known, it may be reported through WSAAsyncSelect() or
WSAEventSelect() depending on how the client registers for notification on the original
socket s. In either case, the notification is announced with FD_CONNECT and the error
code associated with the FD_CONNECT indicates either success or a specific reason for
failure. Note that select() cannot be used to detect completion notification for
WSAJoinLeaf().

The socket descriptor returned by WSAJoinLeaf() is different depending on whether the
input socket descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the
name parameter designates a particular leaf node to be added and the returned socket
descriptor is a c_leaf socket corresponding to the newly added leaf node. The newly
created socket has the same properties as s including asynchronous events registered with
WSAAsyncSelect() or with WSAEventSelect(), but not including the c_root socket’s
group ID, if any. It is not intended to be used for exchange of multipoint data, but rather
is used to receive network event indications (e.g. FD_CLOSE) for the connection that
exists to the particular c_leaf. Some multipoint implementations may also allow this
socket to be used for “side chats” between the root and an individual leaf node. An
FD_CLOSE indication will be received for this socket if the corresponding leaf node calls
closesocket() to drop out of the multipoint session. Symmetrically, invoking
closesocket() on the c_leaf socket returned from WSAJoinLeaf() will cause the socket in
the corresponding leaf node to get FD_CLOSE notification.

When WSAJoinLeaf() is invoked with a c_leaf socket, the name parameter contains the
address of the root application (for a rooted control scheme) or an existing multipoint
session (non-rooted control scheme), and the returned socket descriptor is the same as the
input socket descriptor. In other words, a new socket descriptor is not allocated. In a
rooted control scheme, the root application would put its c_root socket in the listening
mode by calling listen(). The standard FD_ACCEPT notification will be delivered when
the leaf node requests to join itself to the multipoint session. The root application uses the
usual accept()/WSAAccept() functions to admit the new leaf node. The value returned
from either accept() or WSAAccept() is also a c_leaf socket descriptor just like those
returned from WSAJoinLeaf(). To accommodate multipoint schemes that allow both
root-initiated and leaf-initiated joins, it is acceptable for a c_root socket that is already in
listening mode to be used as an input to WSAJoinLeaf().

The application is responsible for allocating any memory space pointed to directly or
indirectly by any of the parameters it specifies.

The lpCallerData is a value parameter which contains any user data that is to be sent
along with the multipoint session join request. If lpCallerData is NULL, no user data
will be passed to the peer. The lpCalleeData is a result parameter which will contain any
user data passed back from the peer as part of the multipoint session establishment.
lpCalleeData->len initially contains the length of the buffer allocated by the application
and pointed to by lpCalleeData->buf. lpCalleeData->len will be set to 0 if no user data
has been passed back. The lpCalleeData information will be valid when the multipoint
join operation is complete. For blocking sockets, this will be when the WSAJoinLeaf()
function returns. For non-blocking sockets, this will be after the join operation has

146 WSAJoinLeaf

completed (e.g. after FD_CONNECT notification has occurred on the original socket s).
If lpCalleeData is NULL, no user data will be passed back. The exact format of the user
data is specific to the address family to which the socket belongs.

At multipoint session establishment time, an application may use the lpSQOS and/or
lpGQOS parameters to override any previous QOS specification made for the socket via
WSAIoctl() with either the SIO_SET_QOS or SIO_SET_GROUP_QOS opcodes.

lpSQOS specifies the flow specs for socket s, one for each direction, followed by any
additional provider-specific parameters. If either the associated transport provider in
general or the specific type of socket in particular cannot honor the QOS request, an error
will be returned as indicated below. The sending or receiving flow spec values will be
ignored, respectively, for any unidirectional sockets. If no provider-specific parameters
are supplied, the buf and len fields of lpSQOS->ProviderSpecific should be set to NULL
and 0, respectively. A NULL value for lpSQOS indicates no application supplied QOS.

Reserved for future use with socket groups: lpGQOS specifies the flow specs for the
socket group (if applicable), one for each direction, followed by any additional provider-
specific parameters. If no provider-specific parameters are supplied, the buf and len
fields of lpGQOS->ProviderSpecific should be set to NULL and 0, respectively. A NULL
value for lpGQOS indicates no application-supplied group QOS. This parameter will be
ignored if s is not the creator of the socket group.

The dwFlags parameter is used to indicate whether the socket will be acting only as a
sender (JL_SENDER_ONLY), only as a receiver (JL_RECEIVER_ONLY), or both
(JL_BOTH).

Comments When connected sockets break (i.e. become closed for whatever reason), they should be
discarded and recreated. It is safest to assume that when things go awry for any reason
on a connected socket, the application must discard and recreate the needed sockets in
order to return to a stable point.

Return Value If no error occurs, WSAJoinLeaf() returns a value of type SOCKET which is a descriptor
for the newly created multipoint socket. Otherwise, a value of INVALID_SOCKET is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

On a blocking socket, the return value indicates success or failure of the join operation.

With a non-blocking socket, successful initiation of a join operation is indicated by a
return of a valid socket descriptor. Subsequently, an FD_CONNECT indication will be
given on the original socket s when the join operation completes, either successfully or
otherwise. The application must use either WSAAsyncSelect() or WSAEventSelect()
with interest registered for the FD_CONNECT event in order to determine when the join
operation has completed and check the associated error code to determine the success or
failure of the operation. Note that the select() function cannot be used to determine when
the join operation completes.

 Also, until the multipoint session join attempt completes all subsequent calls to
WSAJoinLeaf() on the same socket will fail with the error code WSAEALREADY.
After the WSAJoinLeaf() completes successfully a subsequent attempt will usually fail
with the error code WSAEISCONN. An exception to the WSAEISCONN rule occurs for
a c_root socket that allows root-initiated joins. In such a case another join may be
initiated after a prior WSAJoinLeaf() completes.

WSAJoinLeaf 147

If the return error code indicates the multipoint session join attempt failed (i.e.
WSAECONNREFUSED, WSAENETUNREACH, WSAETIMEDOUT) the application
may call WSAJoinLeaf() again for the same socket.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEADDRINUSE The socket’s local address is already in use and the
socket was not marked to allow address reuse with
SO_REUSEADDR. This error usually occurs at the
time of bind(), but could be delayed until this
function if the bind() was to a partially wild-card
address (involving ADDR_ANY) and if a specific
address needs to be “committed” at the time of this
function.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEALREADY A non-blocking WSAJoinLeaf() call is in progress
on the specified socket.

WSAEADDRNOTAVAIL The remote address is not a valid address (e.g.,
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAECONNREFUSED The attempt to join was forcefully rejected.

WSAEFAULT The name or the namelen argument is not a valid part
of the user address space, the namelen argument is
too small, the buffer length for lpCalleeData,
lpSQOS, and lpGQOS are too small, or the buffer
length for lpCallerData is too large.

WSAEISCONN The socket is already member of the multipoint
session.

WSAENETUNREACH The network can't be reached from this host at this
time.

WSAENOBUFS No buffer space is available. The socket cannot be
joined.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The flow specs specified in lpSQOS and lpGQOS
cannot be satisfied.

148 WSAJoinLeaf

WSAEPROTONOSUPPORT The lpCallerData argument is not supported by the
service provider.

WSAETIMEDOUT Attempt to join timed out without establishing a
multipoint session.

See Also accept(), bind(), select(), WSAAccept(), WSAAsyncSelect(), WSAEventSelect(),
WSASocket().

WSANtohl 149

4.41. WSANtohl()
Description Convert a u_long from network byte order to host byte order.

 #include <winsock2.h>

 int WSAAPI
WSANtohl (

IN SOCKET s,
IN u_long netlong,
OUT u_long FAR * lphostlong

);

s A descriptor identifying a socket.

netlong A 32-bit number in network byte order.

lphostlong A pointer to a 32-bit number in host byte order.

Remarks This routine takes a 32-bit number in the network byte order associated with socket s and
returns a 32-bit number pointed to by the lphostlong parameter in host byte order.

Return Value If no error occurs, WSANtohl() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lphostlong argument is not totally contained in a
valid part of the user address space.

See Also ntohl(), htonl(), htons(), ntohs(), WSAHtonl(), WSAHtons(), WSANtohs().

150 WSANtohs

4.42. WSANtohs()
Description Convert a u_short from network byte order to host byte order.

 #include <winsock2.h>

 int WSAAPI
WSANtohs (

IN SOCKET s,
IN u_short netshort,
OUT u_short FAR * lphostshort

);

s A descriptor identifying a socket.

netshort A 16-bit number in network byte order.

lphostshort A pointer to a 16-bit number in host byte order.

Remarks This routine takes a 16-bit number in the network byte order associated with socket s and
returns a 16-bit number pointed to by the lphostshort parameter in host byte order.

Return Value If no error occurs, WSANtohs() returns 0. Otherwise, a value of SOCKET_ERROR is
returned, and a specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lphostshort argument is not totally contained in a
valid part of the user address space.

See Also htonl(), htons(), ntohs(), ntohl(), WSAHtonl(), WSAHtons(), WSANtohl().

WSARecv 151

4.43. WSARecv()
Description Receive data from a connected socket

 #include <winsock2.h>

 int WSAAPI
WSARecv (

IN SOCKET s,
IN OUT LPWSABUF lpBuffers,
IN DWORD dwBufferCount,
OUT LPDWORD lpNumberOfBytesRecvd,
IN OUT LPDWORD lpFlags,
IN LPWSAOVERLAPPED lpOverlapped,
IN LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompletionRoutine
);

s A descriptor identifying a connected socket.

lpBuffers A pointer to an array of WSABUF structures. Each WSABUF
structure contains a pointer to a buffer and the length of the
buffer.

typedef struct __WSABUF {
u_long len; // buffer length
char FAR * buf; // pointer to buffer

} WSABUF, FAR * LPWSABUF;

dwBufferCount The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd A pointer to the number of bytes received by this call if the
receive operation completes immediately.

lpFlags A pointer to flags.

lpOverlapped A pointer to a WSAOVERLAPPED structure (ignored for
non-overlapped sockets).

lpCompletionRoutine A pointer to the completion routine called when the receive
operation has been completed (ignored for non-overlapped
sockets).

Remarks This function provides functionality over and above the standard recv() function in three
important areas:
• It can be used in conjunction with overlapped sockets to perform overlapped receive

operations.
• It allows multiple receive buffers to be specified making it applicable to the

scatter/gather type of I/O.
• The lpFlags parameter is both an INPUT and an OUTPUT parameter, allowing

applications to sense the output state of the MSG_PARTIAL flag bit. Note however,
that the MSG_PARTIAL flag bit is not supported by all protocols.

152 WSARecv

WSARecv() is used on connected sockets or bound connectionless sockets specified by
the s parameter and is used to read incoming data. The socket’s local address must be
known. For server applications, this is usually done explicitly through bind() or
implicitly through accept() or WSAAccept(). Explicit binding is discouraged for client
applications. For client applications the socket can become bound implicitly to a local
address through connect(), WSAConnect(), sendto(), WSASendTo(), or
WSAJoinLeaf().

For connected, connectionless sockets, this function restricts the addresses from which
received messages are accepted. The function only returns messages from the remote
address specified in the connection. Messages from other addresses are (silently)
discarded.

For overlapped sockets WSARecv() is used to post one or more buffers into which
incoming data will be placed as it becomes available, after which the application-
specified completion indication (invocation of the completion routine or setting of an
event object) occurs. If the operation does not complete immediately, the final completion
status is retrieved via the completion routine or WSAGetOverlappedResult().

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will
be treated as a non-overlapped socket.

For non-overlapped sockets, the blocking semantics are identical to that of the standard
recv() function and the lpOverlapped and lpCompletionRoutine parameters are ignored.
Any data which has already been received and buffered by the transport will be copied
into the supplied user buffers. For the case of a blocking socket with no data currently
having been received and buffered by the transport, the call will block until data is
received. WinSock 2 does not define any standard blocking timeout mechanism for this
function. For protocols acting as byte-stream protocols the stack tries to return as much
data as possible subject to the supplied buffer space and amount of received data
available. However, receipt of a single byte is sufficient to unblock the caller. There is
no guarantee that more than a single byte will be returned. For protocols acting as
message-oriented, a full message is required to unblock the caller.

Whether or not a protocol is acting as byte-stream is determined by the setting of
XP1_MESSAGE_ORIENTED and XP1_PSEUDO_STREAM in its
WSAPROTOCOL_INFO structure and the setting of the MSG_PARTIAL flag passed in
to this function (for protocols that support it). The relevant combinations are summarized
in the following table (an asterisk (*) indicates that the setting of this bit does not matter
in this case).

XP1_MESSAGE_
ORIENTED

XP1_PSEUDO_
STREAM

MSG_PARTIAL Acts as

not set * * byte-stream
* set * byte-stream
set not set set byte-stream
set not set not set message-oriented

The supplied buffers are filled in the order in which they appear in the array pointed to by
lpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider’s

WSARecv 153

responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into
the buffers until the buffers are filled, the connection is closed, or internally buffered data
is exhausted. Regardless of whether or not the incoming data fills all the buffers, the
completion indication occurs for overlapped sockets.

For message-oriented sockets (e.g., type SOCK_DGRAM), an incoming message is
placed into the supplied buffers, up to the total size of the buffers supplied, and the
completion indication occurs for overlapped sockets. If the message is larger than the
buffers supplied, the buffers are filled with the first part of the message. If the
MSG_PARTIAL feature is supported by the underlying service provider, the
MSG_PARTIAL flag is set in lpFlags and subsequent receive operation(s) will retrieve
the rest of the message. If MSG_PARTIAL is not supported but the protocol is reliable,
WSARecv() generates the error WSAEMSGSIZE and a subsequent receive operation
with a larger buffer can be used to retrieve the entire message. Otherwise (i.e. the
protocol is unreliable and does not support MSG_PARTIAL), the excess data is lost, and
WSARecv() generates the error WSAEMSGSIZE.

For connection-oriented sockets, WSARecv() can indicate the graceful termination of the
virtual circuit in one of two ways, depending on whether the socket is a byte stream or
message-oriented. For byte streams, zero bytes having been read (as indicated by zero
return value to indicate success, and lpNumberOfBytesRecvd value of zero) indicates
graceful closure and that no more bytes will ever be read. For message-oriented sockets,
where a zero byte message is often allowable, a failure with an error code of
WSAEDISCON is used to indicate graceful closure. In any case, a failure with an error
code of WSAECONNRESET indicates an abortive close has occurred.

lpFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the lpFlags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning
MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not

removed from the input queue. This flag is valid only for non-
overlapped sockets.

MSG_OOB Process out-of-band data (See section 3.5. Out-Of-Band data for a
discussion of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only. On output, indicates
that the data supplied is a portion of the message transmitted by the
sender. Remaining portions of the message will be supplied in
subsequent receive operations. A subsequent receive operation with
MSG_PARTIAL flag cleared indicates end of sender’s message.

As an input parameter, this flag indicates that the receive operation
should complete even if only part of a message has been received by the
service provider.

154 WSARecv

For message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a
partial message is received. If a complete message is received, MSG_PARTIAL is
cleared in lpFlags. In the case of delayed completion, the value pointed to by lpFlags is
not updated. When completion has been indicated the application should call
WSAGetOverlappedResult() and examine the flags pointed to by the lpdwFlags
parameter.

Overlapped socket I/O:
If an overlapped operation completes immediately, WSARecv() returns a value of zero
and the lpNumberOfBytesRecvd parameter is updated with the number of bytes received
and the flag bits pointed by the lpFlags parameter are also updated. If the overlapped
operation is successfully initiated and will complete later, WSARecv() returns
SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
lpNumberOfBytesRecvd and lpFlags are not updated. When the overlapped operation
completes the amount of data transferred is indicated either via the cbTransferred
parameter in the completion routine (if specified), or via the lpcbTransfer parameter in
WSAGetOverlappedResult(). Flag values are obtained by examining the lpdwFlags
parameter of WSAGetOverlappedResult().

This function may be called from within the completion routine of a previous
WSARecv(), WSARecvFrom(), WSASend() or WSASendTo() function. For a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a separate
overlapped structure. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // reserved
DWORD OffsetHigh; // reserved
WSAEVENT hEvent;

} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a
non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the
same overlapped IO request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is
undefined, and attempting to wait on the hEvent field would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable
wait state such as can occur when the function WSAWaitForMultipleEvents() with the
fAlertable parameter set to TRUE is invoked.

WSARecv 155

Transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK
CompletionRoutine(
IN DWORD dwError,
IN DWORD cbTransferred,
IN LPWSAOVERLAPPED lpOverlapped,
IN DWORD dwFlags
);

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes received.
dwFlags contains information that would have appeared in lpFlags if the receive
operation had completed immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. When using WSAWaitForMultipleEvents(), all waiting completion
routines are called before the alertable thread’s wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be filled in the same order they are supplied.

Return Value If no error occurs and the receive operation has completed immediately, WSARecv()
returns 0. Note that in this case the completion routine will have already been scheduled,
and to be called once the calling thread is in the alertable state. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError(). The error code WSA_IO_PENDING indicates that the
overlapped operation has been successfully initiated and that completion will be indicated
at a later time. Any other error code indicates that the overlapped operation was not
successfully initiated and no completion indication will occur.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOTCONN The socket is not connected.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

156 WSARecv

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpBuffers argument is not totally contained in a
valid part of the user address space.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSARecv() on a socket after shutdown() has been
invoked with how set to SD_RECEIVE or
SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many outstanding
overlapped I/O requests. Non-overlapped sockets:
The socket is marked as non-blocking and the receive
operation cannot be completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and (for unreliable protocols only) any trailing
portion of the message that did not fit into the buffer
has been discarded.

WSAEINVAL The socket has not been bound (e.g., with bind()),.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEDISCON Socket s is message oriented and the virtual circuit
was gracefully closed by the remote side.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket.

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSARecvDisconnect 157

4.44. WSARecvDisconnect()
Description Terminate reception on a socket, and retrieve the disconnect data if the socket is

connection-oriented.

 #include <winsock2.h>

 int WSAAPI
WSARecvDisconnect (

IN SOCKET s,
OUT LPWSABUF lpInboundDisconnectData

);

s A descriptor identifying a socket.

lpInboundDisconnectData A pointer to the incoming disconnect data.

Remarks WSARecvDisconnect() is used on connection-oriented sockets to disable reception, and
retrieve any incoming disconnect data from the remote party. This is equivalent to a
shutdown(SD_RECV), except that WSASendDisconnect() also allows receipt of
disconnect data (in protocols that support it).

After this function has been successfully issued, subsequent receives on the socket will be
disallowed. This has no effect on the lower protocol layers. For TCP sockets, if there is
still data queued on the socket waiting to be received, or data arrives subsequently, the
connection is reset, since the data cannot be delivered to the user. For UDP, incoming
datagrams are accepted and queued. In no case will an ICMP error packet be generated.

To successfully receive incoming disconnect data, an application must use other
mechanisms to determine that the circuit has been closed. For example, an application
needs to receive an FD_CLOSE notification, or get a 0 return value, or a WSAEDISCON
or WSAECONNRESET error code from recv()/WSARecv().

Note that WSARecvDisconnect() does not close the socket, and resources attached to the
socket will not be freed until closesocket() is invoked.

Comments WSARecvDisconnect() does not block regardless of the SO_LINGER setting on the
socket.

An application should not rely on being able to re-use a socket after it has been
WSARecvDisconnect()ed. In particular, a WinSock provider is not required to support
the use of connect()/WSAConnect() on such a socket.

Return Value If no error occurs, WSARecvDisconnect() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

158 WSARecvDisconnect

WSAEFAULT The buffer referenced by the parameter
lpInboundDisconnectData is too small.

WSAENOPROTOOPT The disconnect data is not supported by the indicated
protocol family.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

See Also connect(), socket().

WSARecvFrom 159

4.45. WSARecvFrom()
Description Receive a datagram and store the source address.

 #include <winsock2.h>

int WSAAPI
WSARecvFrom (

IN SOCKET s,
IN OUT LPWSABUF lpBuffers,
IN DWORD dwBufferCount,
OUT LPDWORD lpNumberOfBytesRecvd,
IN OUT LPDWORD lpFlags,
OUT struct sockaddr FAR * lpFrom,
IN OUT LPINT lpFromlen,
IN LPWSAOVERLAPPED lpOverlapped,
IN LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompletionRoutine
);

s A descriptor identifying a socket

lpBuffers A pointer to an array of WSABUF structures. Each WSABUF
structure contains a pointer to a buffer and the length of the
buffer.

typedef struct __WSABUF {
u_long len; // buffer length
char FAR * buf; // pointer to buffer

} WSABUF, FAR * LPWSABUF;

dwBufferCount The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesRecvd A pointer to the number of bytes received by this call if the
receive operation completes immediately.

lpFlags A pointer to flags.

lpFrom An optional pointer to a buffer which will hold the source
address upon the completion of the overlapped operation.

lpFromlen A pointer to the size of the from buffer, required only if
lpFrom is specified.

lpOverlapped A pointer to a WSAOVERLAPPED structure (ignored for
non-overlapped sockets).

lpCompletionRoutine A pointer to the completion routine called when the receive
operation has been completed (ignored for non-overlapped
sockets).

Remarks This function provides functionality over and above the standard recvfrom() function in
three important areas:

160 WSARecvFrom

• It can be used in conjunction with overlapped sockets to perform overlapped receive
operations.

• It allows multiple receive buffers to be specified making it applicable to the
scatter/gather type of I/O.

• The lpFlags parameter is both an INPUT and an OUTPUT parameter, allowing
applications to sense the output state of the MSG_PARTIAL flag bit. Note however,
that the MSG_PARTIAL flag bit is not supported by all protocols.

WSARecvFrom() is used primarily on a connectionless socket specified by s. The socket
must not be connected. The socket’s local address must be known. For server
applications, this is usually done explicitly through bind(). Explicit binding is
discouraged for client applications. For client applications using this function the socket
can become bound implicitly to a local address through sendto(), WSASendTo(), or
WSAJoinLeaf().

For overlapped sockets, this function is used to post one or more buffers into which
incoming data will be placed as it becomes available on a (possibly connected) socket,
after which the application-specified completion indication (invocation of the completion
routine or setting of an event object) occurs. If the operation does not complete
immediately, the final completion status is retrieved via the completion routine or
WSAGetOverlappedResult(). Also note that the values pointed to by lpFrom and
lpFromlen are not updated until completion is indicated. Applications must not use or
disturb these values until they have been updated, therefore the application must not use
automatic (i.e. stack-based) variables for these parameters.

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will
be treated as a non-overlapped socket.

For non-overlapped sockets, the blocking semantics are identical to that of the standard
WSARecv() function and the lpOverlapped and lpCompletionRoutine parameters are
ignored. Any data which has already been received and buffered by the transport will be
copied into the supplied user buffers. For the case of a blocking socket with no data
currently having been received and buffered by the transport, the call will block until data
is received.

The supplied buffers are filled in the order in which they appear in the array pointed to by
lpBuffers, and the buffers are packed so that no holes are created.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider’s
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For connectionless socket types, the address from which the data originated is copied to
the buffer pointed by lpFrom. The value pointed to by lpFromlen is initialized to the size
of this buffer, and is modified on completion to indicate the actual size of the address
stored there. As noted previously for overlapped sockets, the lpFrom and lpFromlen
parameters are not updated until after the overlapped I/O has completed. The memory
pointed to by these parameters must, therefore, remain available to the service provider
and cannot be allocated on the application’s stack frame. The lpFrom and lpFromlen
parameters are ignored for connection-oriented sockets.

For byte stream style sockets (e.g., type SOCK_STREAM), incoming data is placed into
the buffers until the buffers are filled, the connection is closed, or internally buffered data

WSARecvFrom 161

is exhausted. Regardless of whether or not the incoming data fills all the buffers, the
completion indication occurs for overlapped sockets. For message-oriented sockets, an
incoming message is placed into the supplied buffers, up to the total size of the buffers
supplied, and the completion indication occurs for overlapped sockets. If the message is
larger than the buffers supplied, the buffers are filled with the first part of the message. If
the MSG_PARTIAL feature is supported by the underlying service provider, the
MSG_PARTIAL flag is set in lpFlags and subsequent receive operation(s) will retrieve
the rest of the message. If MSG_PARTIAL is not supported but the protocol is reliable,
WSARecvFrom() generates the error WSAEMSGSIZE and a subsequent receive
operation with a larger buffer can be used to retrieve the entire message. Otherwise (i.e.
the protocol is unreliable and does not support MSG_PARTIAL), the excess data is lost,
and WSARecvFrom() generates the error WSAEMSGSIZE.

lpFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the lpFlags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning
MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not

removed from the input queue. This flag is valid only for non-
overlapped sockets.

MSG_OOB Process out-of-band data (See section 3.5. Out-Of-Band data for a
discussion of this topic.)

MSG_PARTIAL This flag is for message-oriented sockets only. On output, indicates
that the data supplied is a portion of the message transmitted by the
sender. Remaining portions of the message will be supplied in
subsequent receive operations. A subsequent receive operation with
MSG_PARTIAL flag cleared indicates end of sender’s message.

As an input parameter indicates that the receive operation should
complete even if only part of a message has been received by the
service provider.

For message-oriented sockets, the MSG_PARTIAL bit is set in the lpFlags parameter if a
partial message is received. If a complete message is received, MSG_PARTIAL is
cleared in lpFlags. In the case of delayed completion, the value pointed to by lpFlags is
not updated. When completion has been indicated the application should call
WSAGetOverlappedResult() and examine the flags pointed to by the lpdwFlags
parameter.

Overlapped socket I/O:
If an overlapped operation completes immediately, WSARecvFrom() returns a value of
zero and the lpNumberOfBytesRecvd parameter is updated with the number of bytes
received and the flag bits pointed by the lpFlags parameter are also updated. If the
overlapped operation is successfully initiated and will complete later, WSARecvFrom)
returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
lpNumberOfBytesRecvd and lpFlags is not updated. When the overlapped operation
completes the amount of data transferred is indicated either via the cbTransferred

162 WSARecvFrom

parameter in the completion routine (if specified), or via the lpcbTransfer parameter in
WSAGetOverlappedResult(). Flag values are obtained either via the dwFlags parameter
of the completion routine, or by examining the lpdwFlags parameter of
WSAGetOverlappedResult().

This function may be called from within the completion routine of a previous
WSARecv(), WSARecvFrom(), WSASend() or WSASendTo() function. For a given
socket, I/O completion routines will not be nested. This permits time sensitive data
transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a separate
overlapped structure. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // reserved
DWORD OffsetHigh; // reserved
WSAEVENT hEvent;

} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a
non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the
same overlapped IO request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is
undefined, and attempting to wait on the hEvent field would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable
wait state such as can occur when the function WSAWaitForMultipleEvents() with the
fAlertable parameter set to TRUE is invoked.

Transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK
CompletionRoutine(

IN DWORD dwError,
IN DWORD cbTransferred,
IN LPWSAOVERLAPPED lpOverlapped,
IN DWORD dwFlags

);

WSARecvFrom 163

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes received.
dwFlags contains information that would have appeared in lpFlags if the receive
operation had completed immediately. This function does not return a value.

Returning from this function allows invocation of another pending completion routine for
this socket. When using WSAWaitForMultipleEvents(), all waiting completion routines
are called before the alertable thread’s wait is satisfied with a return code of
WSA_IO_COMPLETION. The completion routines may be called in any order, not
necessarily in the same order the overlapped operations are completed. However, the
posted buffers are guaranteed to be filled in the same order they are supplied.

Return Value If no error occurs and the receive operation has completed immediately,
WSARecvFrom() returns 0. Note that in this case the completion routine will have
already been scheduled, and to be called once the calling thread is in the alertable state.
Otherwise, a value of SOCKET_ERROR is returned, and a specific error code may be
retrieved by calling WSAGetLastError(). The error code WSA_IO_PENDING
indicates that the overlapped operation has been successfully initiated and that completion
will be indicated at a later time. Any other error code indicates that the overlapped
operation was not successfully initiated and no completion indication will occur.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEFAULT The lpBuffers, lpNumberOfBytesRecvd, lpFlags,
lpFrom, lpFromlen, lpOverlapped, or
lpCompletionRoutine argument is not totally
contained in a valid part of the user address space: the
lpFrom buffer was too small to accommodate the
peer address.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINVAL The socket has not been bound (e.g., with bind()).

WSAEISCONN The socket is connected. This function is not
permitted with a connected socket, whether the socket
is connection-oriented or connectionless.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOTSOCK The descriptor is not a socket.

164 WSARecvFrom

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, or the socket is
unidirectional and supports only send operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSARecvFrom() on a socket after shutdown() has
been invoked with how set to SD_RECEIVE or
SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many outstanding
overlapped I/O requests. Non-overlapped sockets:
The socket is marked as non-blocking and the receive
operation cannot be completed immediately.

WSAEMSGSIZE The message was too large to fit into the specified
buffer and (for unreliable protocols only) any trailing
portion of the message that did not fit into the buffer
has been discarded.

WSAECONNRESET The virtual circuit was reset by the remote side
executing a “hard” or “abortive” close. The
application should close the socket as it is no longer
useable. On a UDP datagram socket this error would
indicate that a previous send operation resulted in an
ICMP "Port Unreachable" message.

WSAEDISCON Socket s is message oriented and the virtual circuit
was gracefully closed by the remote side.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket.

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSAResetEvent 165

4.46. WSAResetEvent()
Description Resets the state of the specified event object to nonsignaled.

#include <winsock2.h>

BOOL WSAAPI
WSAResetEvent(

IN WSAEVENT hEvent
);

hEvent Identifies an open event object handle.

Remarks The state of the event object is set to be nonsignaled.

Return Value If the function succeeds, the return value is TRUE. If the function fails, the return value is
FALSE. To get extended error information, call WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSA_INVALID_HANDLE hEvent is not a valid event object handle.

See Also WSACreateEvent(), WSASetEvent(), WSACloseEvent().

166 WSASend

4.47. WSASend()
Description Send data on a connected socket

 #include <winsock2.h>

int WSAAPI
WSASend (

IN SOCKET s,
IN LPWSABUF lpBuffers,
IN DWORD dwBufferCount,
OUT LPDWORD lpNumberOfBytesSent,
IN DWORD dwFlags,
IN LPWSAOVERLAPPED lpOverlapped,
IN LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompletionRoutine
);

s A descriptor identifying a connected socket.

lpBuffers A pointer to an array of WSABUF structures. Each WSABUF
structure contains a pointer to a buffer and the length of the
buffer. This array must remain valid for the duration of the
send operation.

typedef struct __WSABUF {
u_long len; // buffer length
char FAR * buf; // pointer to buffer

} WSABUF, FAR * LPWSABUF;

dwBufferCount The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent A pointer to the number of bytes sent by this call if the I/O
operation completes immediately.

dwFlags Specifies the way in which the call is made.

lpOverlapped A pointer to a WSAOVERLAPPED structure (ignored for
non-overlapped sockets).

lpCompletionRoutine A pointer to the completion routine called when the send
operation has been completed (ignored for non-overlapped
sockets).

Remarks This function provides functionality over and above the standard send() function in two
important areas:
• It can be used in conjunction with overlapped sockets to perform overlapped send

operations.
• It allows multiple send buffers to be specified making it applicable to the

scatter/gather type of I/O.

WSASend() is used to write outgoing data from one or more buffers on a connection-
oriented socket specified by s. It may also be used, however, on connectionless sockets

WSASend 167

which have a stipulated default peer address established via the connect() or
WSAConnect() function.

For overlapped sockets (created using WSASocket() with flag
WSA_FLAG_OVERLAPPED) this will occur using overlapped I/O, unless both
lpOverlapped and lpCompletionRoutine are NULL in which case the socket is treated as a
non-overlapped socket. A completion indication will occur (invocation of the completion
routine or setting of an event object) when the supplied buffer(s) have been consumed by
the transport. If the operation does not complete immediately, the final completion status
is retrieved via the completion routine or WSAGetOverlappedResult().

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will
be treated as a non-overlapped socket.

For non-overlapped sockets, the last two parameters (lpOverlapped,
lpCompletionRoutine) are ignored and WSASend() adopts the same blocking semantics
as send(). Data is copied from the supplied buffer(s) into the transport’s buffer. If the
socket is non-blocking and stream-oriented, and there is not sufficient space in the
transport’s buffer, WSASend() will return with only part of the application’s buffers
having been consumed. Given the same buffer situation and a blocking socket,
WSASend() will block until all of the application’s buffer contents have been consumed.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider’s
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum message
size of the underlying provider, which can be obtained by getting the value of socket
option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the
underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSASend() does not indicate that the data was
successfully delivered.

dwFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the dwFlags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing. A WinSock
service provider may choose to ignore this flag.

MSG_OOB Send out-of-band data (stream style socket such as SOCK_STREAM
only).

MSG_PARTIAL Specifies that lpBuffers only contains a partial message. Note that the
error code WSAEOPNOTSUPP will be returned by transports which
do not support partial message transmissions.

168 WSASend

Overlapped socket I/O:
If an overlapped operation completes immediately, WSASend() returns a value of zero
and the lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the
overlapped operation is successfully initiated and will complete later, WSASend() returns
SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
lpNumberOfBytesSent is not updated. When the overlapped operation completes the
amount of data transferred is indicated either via the cbTransferred parameter in the
completion routine (if specified), or via the lpcbTransfer parameter in
WSAGetOverlappedResult().

This function may be called from within the completion routine of a previous
WSARecv(), WSARecvFrom(), WSASend() or WSASendTo() function. This permits
time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a separate
overlapped structure. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // reserved
DWORD OffsetHigh; // reserved
WSAEVENT hEvent;

} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a
non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the
same overlapped IO request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is
undefined, and attempting to wait on the hEvent field would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable
wait state such as can occur when the function WSAWaitForMultipleEvents() with the
fAlertable parameter set to TRUE is invoked.

Transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK
CompletionRoutine(

IN DWORD dwError,

WSASend 169

IN DWORD cbTransferred,
IN LPWSAOVERLAPPED lpOverlapped,
IN DWORD dwFlags

);

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes sent. Currently
there are no flag values defined and dwFlags will be zero. This function does not return a
value.

Returning from this function allows invocation of another pending completion routine for
this socket. All waiting completion routines are called before the alertable thread’s wait
is satisfied with a return code of WSA_IO_COMPLETION. The completion routines
may be called in any order, not necessarily in the same order the overlapped operations
are completed. However, the posted buffers are guaranteed to be sent in the same order
they are supplied.

Return Value If no error occurs and the send operation has completed immediately, WSASend() returns
0. Note that in this case the completion routine will have already been scheduled, and to
be called once the calling thread is in the alertable state. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError(). The error code WSA_IO_PENDING indicates that the
overlapped operation has been successfully initiated and that completion will be indicated
at a later time. Any other error code indicates that the overlapped operation was not
successfully initiated and no completion indication will occur.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEFAULT The lpBuffers, lpNumberOfBytesSent, lpOverlapped,
lpCompletionRoutine argument is not totally
contained in a valid part of the user address space.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOBUFS The WinSock provider reports a buffer deadlock.

170 WSASend

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, MSG_PARTIAL
is not supported, or the socket is unidirectional and
supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSASend() on a socket after shutdown() has been
invoked with how set to SD_SEND or SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many outstanding
overlapped I/O requests. Non-overlapped sockets:
The socket is marked as non-blocking and the send
operation cannot be completed immediately.

WSAEMSGSIZE The socket is message-oriented, and the message is
larger than the maximum supported by the underlying
transport.

WSAEINVAL The socket has not been bound with bind(), or the
socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket, or the execution of the
SIO_FLUSH command in WSAIoctl().

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSASendDisconnect 171

4.48. WSASendDisconnect()
Description Initiate termination of the connection for the socket and send disconnect data.

 #include <winsock2.h>

int WSAAPI
WSASendDisconnect (

IN SOCKET s,
IN LPWSABUF lpOutboundDisconnectData

);

s A descriptor identifying a socket.

lpOutboundDisconnectData A pointer to the outgoing disconnect data.

Remarks WSASendDisconnect() is used on connection-oriented sockets to disable transmission,
and to initiate termination of the connection along with the transmission of disconnect
data, if any. This is equivalent to a shutdown(SD_SEND), except that
WSASendDisconnect() also allows sending disconnect data (in protocols that support
it).

After this function has been successfully issued, subsequent sends are disallowed.

lpOutboundDisconnectData, if not NULL, points to a buffer containing the outgoing
disconnect data to be sent to the remote party for retrieval by using
WSARecvDisconnect().

Note that WSASendDisconnect() does not close the socket, and resources attached to the
socket will not be freed until closesocket() is invoked.

Comments WSASendDisconnect() does not block regardless of the SO_LINGER setting on the
socket.

An application should not rely on being able to re-use a socket after it has been
WSASendDisconnect()ed. In particular, a WinSock provider is not required to support
the use of connect()/WSAConnect() on such a socket.

Return Value If no error occurs, WSASendDisconnect() returns 0. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAENOPROTOOPT The parameter lpOutboundDisconnectData is not
NULL, and the disconnect data is not supported by
the service provider.

172 WSASendDisconnect

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only).

WSAENOTSOCK The descriptor is not a socket.

WSAEFAULT The lpOutboundDisconnectData argument is not
totally contained in a valid part of the user address
space.

See Also connect(), socket().

WSASendTo 173

4.49. WSASendTo()
Description Send data to a specific destination, using overlapped I/O where applicable.

 #include <winsock2.h>

int WSAAPI
WSASendTo (

IN SOCKET s,
IN LPWSABUF lpBuffers,
IN DWORD dwBufferCount,
OUT LPDWORD lpNumberOfBytesSent,
IN DWORD dwFlags,
IN const struct sockaddr FAR * lpTo,
IN int iToLen,
IN LPWSAOVERLAPPED lpOverlapped,
IN LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompletionRoutine
);

s A descriptor identifying a (possibly connected) socket

lpBuffers A pointer to an array of WSABUF structures. Each WSABUF
structure contains a pointer to a buffer and the length of the
buffer. This array must remain valid for the duration of the
send operation.

typedef struct __WSABUF {
u_long len; // buffer length
char FAR * buf; // pointer to buffer

} WSABUF, FAR * LPWSABUF;

dwBufferCount The number of WSABUF structures in the lpBuffers array.

lpNumberOfBytesSent A pointer to the number of bytes sent by this call if the I/O
operation completes immediately.

dwFlags Specifies the way in which the call is made.

lpTo An optional pointer to the address of the target socket.

iToLen The size of the address in lpTo.

lpOverlapped A pointer to a WSAOVERLAPPED structure (ignored for
non-overlapped sockets).

lpCompletionRoutine A pointer to the completion routine called when the send
operation has been completed (ignored for non-overlapped
sockets).

Remarks This function provides functionality over and above the standard sendto() function in two
important areas:
• It can be used in conjunction with overlapped sockets to perform overlapped send

operations.

174 WSASendTo

• It allows multiple send buffers to be specified making it applicable to the
scatter/gather type of I/O.

WSASendTo() is normally used on a connectionless socket specified by s to send a
datagram contained in one or more buffers to a specific peer socket identified by the lpTo
parameter. Even if the connectionless socket has been previously connect()ed to a
specific address, lpTo overrides the destination address for that particular datagram only.
On a connection-oriented socket, the lpTo and iToLen parameters are ignored; in this case
the WSASendTo() is equivalent to WSASend().

For overlapped sockets (created using WSASocket() with flag
WSA_FLAG_OVERLAPPED) this will occur using overlapped I/O, unless both
lpOverlapped and lpCompletionRoutine are NULL in which case the socket is treated as a
non-overlapped socket. A completion indication will occur (invocation of the completion
routine or setting of an event object) when the supplied buffer(s) have been consumed by
the transport. If the operation does not complete immediately, the final completion status
is retrieved via the completion routine or WSAGetOverlappedResult().

If both lpOverlapped and lpCompletionRoutine are NULL, the socket in this function will
be treated as a non-overlapped socket.

For non-overlapped sockets, the last two parameters (lpOverlapped,
lpCompletionRoutine) are ignored and WSASendTo() adopts the same blocking
semantics as send(). Data is copied from the supplied buffer(s) into the transport’s buffer.
If the socket is non-blocking and stream-oriented, and there is not sufficient space in the
transport’s buffer, WSASendTo() will return with only part of the application’s buffers
having been consumed. Given the same buffer situation and a blocking socket,
WSASendTo() will block until all of the application’s buffer contents have been
consumed.

The array of WSABUF structures pointed to by the lpBuffers parameter is transient. If
this operation completes in an overlapped manner, it is the service provider’s
responsibility to capture these WSABUF structures before returning from this call. This
enables applications to build stack-based WSABUF arrays.

For message-oriented sockets, care must be taken not to exceed the maximum message
size of the underlying transport, which can be obtained by getting the value of socket
option SO_MAX_MSG_SIZE. If the data is too long to pass atomically through the
underlying protocol the error WSAEMSGSIZE is returned, and no data is transmitted.

Note that the successful completion of a WSASendTo() does not indicate that the data
was successfully delivered.

dwFlags may be used to influence the behavior of the function invocation beyond the
options specified for the associated socket. That is, the semantics of this function are
determined by the socket options and the dwFlags parameter. The latter is constructed by
or-ing any of the following values:

Value Meaning
MSG_DONTROUTE

Specifies that the data should not be subject to routing. A WinSock
service provider may choose to ignore this flag.

WSASendTo 175

MSG_OOB Send out-of-band data (stream style socket such as SOCK_STREAM
only).

MSG_PARTIAL Specifies that lpBuffers only contains a partial message. Note that the
error code WSAEOPNOTSUPP will be returned by transports which
do not support partial message transmissions.

Overlapped socket I/O:
If an overlapped operation completes immediately, WSASendTo() returns a value of zero
and the lpNumberOfBytesSent parameter is updated with the number of bytes sent. If the
overlapped operation is successfully initiated and will complete later, WSASendTo()
returns SOCKET_ERROR and indicates error code WSA_IO_PENDING. In this case,
lpNumberOfBytesSent is not updated. When the overlapped operation completes the
amount of data transferred is indicated either via the cbTransferred parameter in the
completion routine (if specified), or via the lpcbTransfer parameter in
WSAGetOverlappedResult().

This function may be called from within the completion routine of a previous
WSARecv(), WSARecvFrom(), WSASend() or WSASendTo() function. This permits
time-sensitive data transmissions to occur entirely within a preemptive context.

The lpOverlapped parameter must be valid for the duration of the overlapped operation.
If multiple I/O operations are simultaneously outstanding, each must reference a separate
overlapped structure. The WSAOVERLAPPED structure has the following form:

typedef struct _WSAOVERLAPPED {
DWORD Internal; // reserved
DWORD InternalHigh; // reserved
DWORD Offset; // reserved
DWORD OffsetHigh; // reserved
WSAEVENT hEvent;

} WSAOVERLAPPED, FAR * LPWSAOVERLAPPED;

If the lpCompletionRoutine parameter is NULL, the hEvent field of lpOverlapped is
signaled when the overlapped operation completes if it contains a valid event object
handle. An application can use WSAWaitForMultipleEvents() or
WSAGetOverlappedResult() to wait or poll on the event object.

If lpCompletionRoutine is not NULL, the hEvent field is ignored and can be used by the
application to pass context information to the completion routine. A caller that passes a
non-NULL lpCompletionRoutine and later calls WSAGetOverlappedResult() for the
same overlapped IO request may not set the fWait parameter for that invocation of
WSAGetOverlappedResult() to TRUE. In this case the usage of the hEvent field is
undefined, and attempting to wait on the hEvent field would produce unpredictable
results.

The completion routine follows the same rules as stipulated for Win32 file I/O completion
routines. The completion routine will not be invoked until the thread is in an alertable
wait state such as can occur when the function WSAWaitForMultipleEvents() with the
fAlertable parameter set to TRUE is invoked.

176 WSASendTo

Transport providers allow an application to invoke send and receive operations from
within the context of the socket I/O completion routine, and guarantee that, for a given
socket, I/O completion routines will not be nested. This permits time-sensitive data
transmissions to occur entirely within a preemptive context.

The prototype of the completion routine is as follows:

void CALLBACK
CompletionRoutine(

IN DWORD dwError,
IN DWORD cbTransferred,
IN LPWSAOVERLAPPED lpOverlapped,
IN DWORD dwFlags

);

CompletionRoutine is a placeholder for an application-defined or library-defined
function name. dwError specifies the completion status for the overlapped operation as
indicated by lpOverlapped. cbTransferred specifies the number of bytes sent. Currently
there are no flag values defined and dwFlags will be zero. This function does not return a
value.

Returning from this function allows invocation of another pending completion routine for
this socket. All waiting completion routines are called before the alertable thread’s wait
is satisfied with a return code of WSA_IO_COMPLETION. The completion routines
may be called in any order, not necessarily in the same order the overlapped operations
are completed. However, the posted buffers are guaranteed to be sent in the same order
they are supplied.

Return Value If no error occurs and the send operation has completed immediately, WSASendTo()
returns 0. Note that in this case the completion routine will have already been scheduled,
and to be called once the calling thread is in the alertable state. Otherwise, a value of
SOCKET_ERROR is returned, and a specific error code may be retrieved by calling
WSAGetLastError(). The error code WSA_IO_PENDING indicates that the
overlapped operation has been successfully initiated and that completion will be indicated
at a later time. Any other error code indicates that the overlapped operation was not
successfully initiated and no completion indication will occur.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEACCES The requested address is a broadcast address, but the
appropriate flag was not set.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSASendTo 177

WSAEFAULT The lpBuffers, lpTo, lpNumberOfBytesSent,
lpOverlapped, or lpCompletionRoutine parameters
are not part of the user address space, or the lpTo
argument is too small.

WSAENETRESET The connection has been broken due to “keep-alive”
activity detecting a failure while the operation was in
progress.

WSAENOBUFS The WinSock provider reports a buffer deadlock.

WSAENOTCONN The socket is not connected (connection-oriented
sockets only)

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not
stream style such as type SOCK_STREAM, out-of-
band data is not supported in the communication
domain associated with this socket, MSG_PARTIAL
is not supported, or the socket is unidirectional and
supports only receive operations.

WSAESHUTDOWN The socket has been shutdown; it is not possible to
WSASendTo() on a socket after shutdown() has
been invoked with how set to SD_SEND or
SD_BOTH.

WSAEWOULDBLOCK Overlapped sockets: There are too many outstanding
overlapped I/O requests. Non-overlapped sockets:
The socket is marked as non-blocking and the send
operation cannot be completed immediately.

WSAEMSGSIZE The socket is message-oriented, and the message is
larger than the maximum supported by the underlying
transport.

WSAEINVAL The socket has not been bound with bind(), or the
socket is not created with the overlapped flag.

WSAECONNABORTED The virtual circuit was aborted due to timeout or
other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL The remote address is not a valid address (e.g.,
ADDR_ANY).

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with
this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network can't be reached from this host at this
time.

178 WSASendTo

WSA_IO_PENDING An overlapped operation was successfully initiated
and completion will be indicated at a later time.

WSA_OPERATION_ABORTED The overlapped operation has been canceled due to
the closure of the socket, or the execution of the
SIO_FLUSH command in WSAIoctl().

See Also WSACloseEvent(),WSACreateEvent(), WSAGetOverlappedResult(), WSASocket(),
WSAWaitForMultipleEvents()

WSASetBlockingHook 179

4.50. WSASetBlockingHook()
Description Establish an application-supplied blocking hook function. WSASetBlockingHook() is

only available for WinSock 1.1 apps (that is, if at least one thread within the process
negotiates version 1.0 or 1.1 at WSAStartup()).

Important Note: This function is for backwards compatibility with WinSock 1.1 and is
not considered part of the WinSock 2 specification. WinSock 2 applications should not
use this function.

 #include <winsock2.h>

 FARPROC WSAAPI
WSASetBlockingHook (

IN FARPROC lpBlockFunc
);

lpBlockFunc A pointer to the procedure instance address of the blocking function to
be installed.

Remarks This function installs a new function which a WinSock implementation should use to
implement blocking socket function calls.

A WinSock implementation includes a default mechanism by which blocking socket
functions are implemented. The function WSASetBlockingHook() gives the application
the ability to execute its own function at "blocking" time in place of the default function.
Note: the application blocking hook function must be exported.

When an application invokes a blocking WinSock operation, WinSock initiates the
operation and then enters a loop which is similar to the following pseudo code:

for(;;) {
 /* Look for WinSock implementation’s messages (only */
 /* necessary if WinSock uses messages internally) */
 if (PeekMessage(&msg,hMyWnd,MYFIRST,MYLAST,PM_REMOVE) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 /* flush messages for good user response */
 BlockingHook();

 /* check for WSACancelBlockingCall() */
 if(operation_cancelled())
 break;
 /* check to see if operation completed */
 if(operation_complete())
 break; /* normal completion */
}

Note that WinSock implementations may perform the above steps in a different order; for
example, the check for operation complete may occur before calling the blocking hook.
The default BlockingHook() function is equivalent to:

180 WSASetBlockingHook

BOOL DefaultBlockingHook(void) {
 MSG msg;
 BOOL ret;
 /* get the next message if any */
 ret = (BOOL)PeekMessage(&msg,NULL,0,0,PM_REMOVE);
 /* if we got one, process it */
 if (ret) {/* TRUE if we got a message */
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 return ret;
}

The WSASetBlockingHook() function is provided to support those applications which
require more complex message processing - for example, those employing the MDI
(multiple document interface) model. It is not intended as a mechanism for performing
general applications functions. In particular, the only WinSock function which may be
issued from a custom blocking hook function is WSACancelBlockingCall(), which will
cause the blocking loop to terminate.

This function is implemented on a per-task basis for non-multithreaded versions of
Windows and on a per-thread basis for multithreaded versions of Windows such as
Windows NT. It thus provides for a particular task or thread to replace the blocking
mechanism without affecting other tasks or threads.

In multithreaded versions of Windows, there is no default blocking hook--blocking calls
block the thread that makes the call. However, an application may install a specific
blocking hook by calling WSASetBlockingHook().
This allows easy portability of applications that depend on the blocking hook behavior.

Return Value The return value is a pointer to the procedure-instance of the previously installed blocking
function. The application or library that calls the WSASetBlockingHook () function
should save this return value so that it can be restored if necessary. (If "nesting" is not
important, the application may simply discard the value returned by
WSASetBlockingHook() and eventually use WSAUnhookBlockingHook() to restore
the default mechanism.) If the operation fails, a NULL pointer is returned, and a specific
error number may be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEFAULT lpBlockFunc is not in a valid part of the process
address space.

WSAEOPNOTSUPP The caller is not a WinSock 1.0 or 1.1 client.

See Also WSAUnhookBlockingHook(), WSAIsBlocking(), WSACancelBlockingCall()

WSASetEvent 181

4.51. WSASetEvent()
Description Sets the state of the specified event object to signaled.

#include <winsock2.h>

BOOL WSAAPI
WSASetEvent(

IN WSAEVENT hEvent
);

hEvent Identifies an open event object handle.

Remarks The state of the event object is set to be signaled.

Return Value If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSA_INVALID_HANDLE hEvent is not a valid event object handle.

See Also WSACreateEvent(), WSAResetEvent(), WSACloseEvent().

182 WSASetLastError

4.52. WSASetLastError()
Description Set the error code which can be retrieved by WSAGetLastError().

 #include <winsock2.h>

 void WSAAPI
WSASetLastError (

IN int iError
);

iError Specifies the error code to be returned by a subsequent
WSAGetLastError() call.

Remarks This function allows an application to set the error code to be returned by a subsequent
WSAGetLastError() call for the current thread. Note that any subsequent WinSock
routine called by the application will override the error code as set by this routine.

The error code set by WSASetLastError() is different from the error code reset by
getsockopt() SO_ERROR.

Return Value None.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

See Also WSAGetLastError(), getsockopt()

WSASocket 183

4.53. WSASocket()
Description Create a socket which is bound to a specific transport service provider, optionally create

and/or join a socket group.

 #include <winsock2.h>

 SOCKET WSAAPI
WSASocket (

IN int af,
IN int type,
IN int protocol,
IN LPWSAPROTOCOL_INFO lpProtocolInfo,
IN GROUP g,
IN DWORD dwFlags

);

af An address family specification.

type A type specification for the new socket.

protocol A particular protocol to be used with the socket which is specific to the
indicated address family.

lpProtocolInfo A pointer to a WSAPROTOCOL_INFO struct that defines the
characteristics of the socket to be created.

g Reserved for future use with socket groups: The identifier of the socket
group.

dwFlags The socket attribute specification.

Remarks This function causes a socket descriptor and any related resources to be allocated and
associated with a transport service provider. By default, the created socket will not have
the overlapped attribute. If lpProtocolInfo is NULL, the WinSock 2 DLL uses the first
three parameters (af, type, protocol) to determine which service provider is used by
selecting the first transport provider able to support the stipulated address family, socket
type and protocol values. If the lpProtocolInfo is not NULL, the socket will be bound to
the provider associated with the indicated WSAPROTOCOL_INFO struct. In this
instance, the application may supply the manifest constant FROM_PROTOCOL_INFO as
the value for any of af, type or protocol. This indicates that the corresponding values from
the indicated WSAPROTOCOL_INFO struct (iAddressFamily, iSocketType, iProtocol)
are to be assumed. In any case, the values supplied for af, type and protocol are supplied
unmodified to the transport service provider via the corresponding parameters to the
WSPSocket() function in the SPI.

When selecting a protocol and its supporting service provider based on af, type and
protocol this procedure will only choose a base protocol or a protocol chain, not a
protocol layer by itself. Unchained protocol layers are not considered to have "partial
matches" on type or af either. That is, they do not lead to an error code of
WSAEAFNOSUPPORT or WSAEPROTONOSUPPORT if no suitable protocol is found.

184 WSASocket

Note: the manifest constant AF_UNSPEC continues to be defined in the header file but
its use is strongly discouraged, as this may cause ambiguity in interpreting the value of
the protocol parameter.

Reserved for future use with socket groups: Parameter g is used to indicate the
appropriate actions on socket groups:

if g is an existing socket group ID, join the new socket to this group, provided
all the requirements set by this group are met; or

if g = SG_UNCONSTRAINED_GROUP, create an unconstrained socket
group and have the new socket be the first member; or

if g = SG_CONSTRAINED_GROUP, create a constrained socket group and
have the new socket be the first member; or

if g = zero, no group operation is performed
For unconstrained groups, any set of sockets may be grouped together as long as they are
supported by a single service provider. A constrained socket group may consist only of
connection-oriented sockets, and requires that connections on all grouped sockets be to
the same address on the same host. For newly created socket groups, the new group ID
can be retrieved by using getsockopt() with option SO_GROUP_ID, if this operation
completes successfully. A socket group and its associated ID remain valid until the last
socket belonging to this socket group is closed. Socket group IDs are unique across all
processes for a given service provider.

The dwFlags parameter may be used to specify the attributes of the socket by or-ing any
of the following Flags:

Flag Meaning
WSA_FLAG_OVERLAPPED

This flag causes an overlapped socket to be created. Overlapped
sockets may utilize WSASend(), WSASendTo(), WSARecv(),
WSARecvFrom() and WSAIoctl() for overlapped I/O operations,
which allows multiple these operations to be initiated and in progress
simultaneously. All functions that allow overlapped operation
(WSASend(), WSARecv(),WSASendTo(), WSARecvFrom(),
WSAIoctl()) also support non-overlapped usage on an overlapped
socket if the values for parameters related to overlapped operation are
NULL.

WSA_FLAG_MULTIPOINT_C_ROOT
Indicates that the socket created will be a c_root in a multipoint session.
Only allowed if a rooted control plane is indicated in the protocol’s
WSAPROTOCOL_INFO struct. Refer to Appendix B. Multipoint and
Multicast Semantics for additional information.

WSA_FLAG_MULTIPOINT_C_LEAF
Indicates that the socket created will be a c_leaf in a multicast session.
Only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the
protocol’s WSAPROTOCOL_INFO struct. Refer to Appendix B.
Multipoint and Multicast Semantics for additional information.

WSA_FLAG_MULTIPOINT_D_ROOT
Indicates that the socket created will be a d_root in a multipoint session.
Only allowed if a rooted data plane is indicated in the protocol’s
WSAPROTOCOL_INFO struct. Refer to Appendix B. Multipoint and
Multicast Semantics for additional information.

WSASocket 185

WSA_FLAG_MULTIPOINT_D_LEAF
Indicates that the socket created will be a d_leaf in a multipoint session.
Only allowed if XP1_SUPPORT_MULTIPOINT is indicated in the
protocol’s WSAPROTOCOL_INFO struct. Refer to Appendix B.
Multipoint and Multicast Semantics for additional information.

Important note: for multipoint sockets, exactly one of
WSA_FLAG_MULTIPOINT_C_ROOT or WSA_FLAG_MULTIPOINT_C_LEAF
must be specified, and exactly one of WSA_FLAG_MULTIPOINT_D_ROOT or
WSA_FLAG_MULTIPOINT_D_LEAF must be specified. Refer to Appendix B.
Multipoint and Multicast Semantics for additional information.

Connection-oriented sockets such as SOCK_STREAM provide full-duplex connections,
and must be in a connected state before any data may be sent or received on them. A
connection to another socket is created with a connect()/WSAConnect() call. Once
connected, data may be transferred using send()/WSASend() and recv()/WSARecv()
calls. When a session has been completed, a closesocket() must be performed.

The communications protocols used to implement a reliable, connection-oriented socket
ensure that data is not lost or duplicated. If data for which the peer protocol has buffer
space cannot be successfully transmitted within a reasonable length of time, the
connection is considered broken and subsequent calls will fail with the error code set to
WSAETIMEDOUT.

Connectionless, message-oriented sockets allow sending and receiving of datagrams to
and from arbitrary peers using sendto()/WSASendTo() and
recvfrom()/WSARecvFrom(). If such a socket is connect()ed to a specific peer,
datagrams may be sent to that peer using send()/WSASend() and may be received from
(only) this peer using recv()/WSARecv().

Support for sockets with type RAW is not required but service providers are encouraged
to support raw sockets whenever it makes sense to do so.

Shared Sockets When a special WSAPROTOCOL_INFO struct (obtained via the
WSADuplicateSocket() function and used to create additional descriptors for a shared
socket) is passed as an input parameter to WSASocket(), the g and dwFlags parameters
are ignored. Such a WSAPROTOCOL_INFO struct may only be used once, otherwise
the error code WSAEINVAL will result.

Return Value If no error occurs, WSASocket() returns a descriptor referencing the new socket.
Otherwise, a value of INVALID_SOCKET is returned, and a specific error code may be
retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

186 WSASocket

WSAEMFILE No more socket descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be
created.

WSAEPROTONOSUPPORT The specified protocol is not supported

WSAEPROTOTYPE The specified protocol is the wrong type for this
socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this
address family.

WSAEINVAL The parameter g specified is not valid, or the
WSAPROTOCOL_INFO structure that
lpProtocolInfo points to is incomplete, the contents
are invalid or the WSAPROTOCOL_INFO struct has
already been used in an earlier duplicate socket
operation.

WSAEFAULT lpProtocolInfo argument is not in a valid part of the
process address space.

WSAINVALIDPROVIDER The service provider returned a version other than 2.2

WSAINVALIDPROCTABLE The service provider returned an invalid or
incomplete procedure table to the WSPStartup

See Also accept(), bind(), connect(), getsockname(), getsockopt(), setsockopt(), listen(), recv(),
recvfrom(), select(), send(), sendto(), shutdown(), ioctlsocket().

WSAStartup 187

4.54. WSAStartup()
Description Initiate use of the WinSock DLL by a process.

 #include <winsock2.h>

 int WSAAPI
WSAStartup (

IN WORD wVersionRequested,
OUT LPWSADATA lpWSAData

);

wVersionRequested The highest version of WinSock support that the caller can
use. The high order byte specifies the minor version (revision)
number; the low-order byte specifies the major version
number.

lpWSAData A pointer to the WSADATA data structure that is to receive
details of the WinSock implementation.

Remarks This function MUST be the first WinSock function called by an application or DLL. It
allows an application or DLL to specify the version of WinSock required and to retrieve
details of the specific WinSock implementation. The application or DLL may only issue
further WinSock functions after a successful WSAStartup() invocation.

In order to support future WinSock implementations and applications which may have
functionality differences from current version of WinSock, a negotiation takes place in
WSAStartup(). The caller of WSAStartup() and the WinSock DLL indicate to each
other the highest version that they can support, and each confirms that the other's highest
version is acceptable. Upon entry to WSAStartup(), the WinSock DLL examines the
version requested by the application. If this version is equal to or higher than the lowest
version supported by the DLL, the call succeeds and the DLL returns in wHighVersion
the highest version it supports and in wVersion the minimum of its high version and
wVersionRequested. The WinSock DLL then assumes that the application will use
wVersion. If the wVersion field of the WSADATA structure is unacceptable to the caller,
it should call WSACleanup() and either search for another WinSock DLL or fail to
initialize.

Note that it is legal and possible for an application written to this version of the
specification to successfully negotiate a higher version number than the version of this
specification. In such a case, the application is only guaranteed access to higher-version
functionality that fits within the syntax defined in this version, such as new Ioctl codes
and new behavior of existing functions. New functions, for example, may be inaccessible.
To be guaranteed full access to new syntax of a future version, the application must fully
conform to that future version, such as compiling against a new header file, linking to a
new library, etc.

This negotiation allows both a WinSock DLL and a WinSock application to support a
range of WinSock versions. An application can successfully utilize a WinSock DLL if
there is any overlap in the version ranges. The following chart gives examples of how
WSAStartup() works in conjunction with different application and WinSock DLL
versions:

App versions DLL Versions wVersionRequested wVersion wHighVersion End Result

188 WSAStartup

1.1 1.1 1.1 1.1 1.1 use 1.1
1.0 1.1 1.0 1.1 1.0 1.0 use 1.0
1.0 1.0 1.1 1.0 1.0 1.1 use 1.0
1.1 1.0 1.1 1.1 1.1 1.1 use 1.1
1.1 1.0 1.1 1.0 1.0 Application fails
1.0 1.1 1.0 --- --- WSAVERNOTSUPPORTED
1.0 1.1 1.0 1.1 1.1 1.1 1.1 use 1.1
1.1 2.0 1.1 2.0 1.1 1.1 use 1.1
2.0 2.0 2.0 2.0 2.0 use 2.0

The following code fragment demonstrates how an application which supports only
version 2.2 of WinSock makes a WSAStartup() call:

WORD wVersionRequested;
WSADATA wsaData;
int err;

wVersionRequested = MAKEWORD(2, 2);

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0) {
 /* Tell the user that we couldn't find a useable */
 /* WinSock DLL. */
 return;
}

/* Confirm that the WinSock DLL supports 2.2.*/
/* Note that if the DLL supports versions greater */
/* than 2.2 in addition to 2.2, it will still return */
/* 2.2 in wVersion since that is the version we */
/* requested. */

if (LOBYTE(wsaData.wVersion) != 2 ||
 HIBYTE(wsaData.wVersion) != 2) {
 /* Tell the user that we couldn't find a useable */
 /* WinSock DLL. */
 WSACleanup();
 return;
}

/* The WinSock DLL is acceptable. Proceed. */

Once an application or DLL has made a successful WSAStartup() call, it may proceed to
make other WinSock calls as needed. When it has finished using the services of the
WinSock DLL, the application or DLL must call WSACleanup() in order to allow the
WinSock DLL to free any resources for the application.

Details of the actual WinSock implementation are described in the WSAData structure
defined as follows:

struct WSAData {
WORD wVersion;
WORD wHighVersion;
char szDescription[WSADESCRIPTION_LEN+1];
char szSystemStatus[WSASYSSTATUS_LEN+1];
unsigned short iMaxSockets;
unsigned short iMaxUdpDg;
char FAR * lpVendorInfo;

};

WSAStartup 189

The members of this structure are:
Element Usage
wVersion The version of the WinSock specification that the WinSock DLL

expects the caller to use.
wHighVersion The highest version of the WinSock specification that this DLL can

support (also encoded as above). Normally this will be the same as
wVersion.

szDescription A null-terminated ASCII string into which the WinSock DLL copies a
description of the WinSock implementation. The text (up to 256
characters in length) may contain any characters except control and
formatting characters: the most likely use that an application will put
this to is to display it (possibly truncated) in a status message.

szSystemStatus A null-terminated ASCII string into which the WinSock DLL copies
relevant status or configuration information. The WinSock DLL should
use this field only if the information might be useful to the user or
support staff: it should not be considered as an extension of the
szDescription field.

iMaxSockets This field is retained for backwards compatibility, but should be
ignored for version 2.0 and onward as no single value can be
appropriate for all underlying service providers.

iMaxUdpDg This value should be ignored for version 2.0 and onward. It is
retained for compatibility with Windows Sockets specification 1.1, but
should not be used when developing new applications. For the actual
maximum message size specific to a particular WinSock service
provider and socket type, applications should use getsockopt() to
retrieve the value of option SO_MAX_MSG_SIZE after a socket has
been created.

lpVendorInfo This value should be ignored for version 2.0 and onward. It is
retained for compatibility with Windows Sockets specification 1.1.
Applications needing to access vendor-specific configuration
information should use getsockopt() to retrieve the value of option
PVD_CONFIG. The definition of this value (if utilized) is beyond the
scope of this specification.

Note that an application should ignore the iMaxsockets, iMaxUdpDg, and lpVendorInfo
fields in WSAData if the value in wVersion after a successful call to WSAStartup() is at
least 2.0. This is because the architecture of WinSock has been changed in version 2.0 to
support multiple providers, and WSAData no longer applies to a single vendor’s stack.
Two new socket options are introduced to supply provider-specific information:
SO_MAX_MSG_SIZE (replaces the iMaxUdpDg element) and PVD_CONFIG (allows
any other provider-specific configuration to occur).

An application or DLL may call WSAStartup() more than once if it needs to obtain the
WSAData structure information more than once. On each such call the application may
specify any version number supported by the DLL.

There must be one WSACleanup() call corresponding to every successful
WSAStartup() call to allow third-party DLLs to make use of a WinSock DLL on behalf
of an application. This means, for example, that if an application calls WSAStartup()
three times, it must call WSACleanup() three times. The first two calls to
WSACleanup() do nothing except decrement an internal counter; the final
WSACleanup() call for the task does all necessary resource deallocation for the task.

190 WSAStartup

Return Value WSAStartup() returns zero if successful. Otherwise it returns one of the error codes
listed below. Note that the normal mechanism whereby the application calls
WSAGetLastError() to determine the error code cannot be used, since the WinSock
DLL may not have established the client data area where the "last error" information is
stored.

Error Codes WSASYSNOTREADY Indicates that the underlying network subsystem is
not ready for network communication.

WSAVERNOTSUPPORTED The version of WinSock support requested is not
provided by this particular WinSock implementation.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEPROCLIM Limit on the number of tasks supported by the
Windows Sockets implementation has been reached.

WSAEFAULT The lpWSAData is not a valid pointer.

See Also send(), sendto(), WSACleanup()

WSAUnhookBlockingHook 191

4.55. WSAUnhookBlockingHook()
Description Restore the default blocking hook function. WSAUnhookBlockingHook() is only

available for WinSock 1.1 apps (that is, if at least one thread within the process negotiates
version 1.0 or 1.1 at WSAStartup()).

Important Note: This function is for backwards compatibility with WinSock 1.1 and is
not considered part of the WinSock 2 specification. WinSock 2 applications should not
use this function.

 #include <winsock2.h>

 int WSAAPI WSAUnhookBlockingHook (void);

Remarks This function removes any previous blocking hook that has been installed and reinstalls
the default blocking mechanism.

WSAUnhookBlockingHook() will always install the default mechanism, not the previous
mechanism. If an application wish to nest blocking hooks - i.e. to establish a temporary
blocking hook function and then revert to the previous mechanism (whether the default or
one established by an earlier WSASetBlockingHook()) - it must save and restore the
value returned by WSASetBlockingHook(); it cannot use
WSAUnhookBlockingHook().

In multithreaded versions of Windows such as Windows NT, there is no default blocking
hook. Calling WSAUnhookBlockingHook() disables any blocking hook installed by the
application and any blocking calls made block the thread which made the call.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAEINPROGRESS A blocking Windows Sockets operation is in
progress.

WSAEOPNOTSUPP The caller is not a WinSock 1.0 or 1.1 client.

See Also WSASetBlockingHook(), WSAIsBlocking(), WSACancelBlockingCall()

192 WSAWaitForMultipleEvents

4.56. WSAWaitForMultipleEvents()
Description Returns either when any one or all of the specified event objects are in the signaled state,

or when the timeout interval expires.

#include <winsock2.h>

DWORD WSAAPI
WSAWaitForMultipleEvents(

IN DWORD cEvents,
IN const WSAEVENT FAR * lphEvents,
IN BOOL fWaitAll,
IN DWORD dwTimeout,
IN BOOL fAlertable

);

cEvents Specifies the number of event object handles in the array pointed to by
lphEvents. The maximum number of event object handles is
WSA_MAXIMUM_WAIT_EVENTS. One or more events must be
specified.

lphEvents Points to an array of event object handles.

fWaitAll Specifies the wait type. If TRUE, the function returns when all event
objects in the lphEvents array are signaled at the same time. If FALSE,
the function returns when any one of the event objects is signaled. In
the latter case, the return value indicates the event object whose state
caused the function to return.

dwTimeout Specifies the time-out interval, in milliseconds. The function returns if
the interval expires, even if conditions specified by the fWaitAll
parameter are not satisfied. If dwTimeout is zero, the function tests the
state of the specified event objects and returns immediately. If
dwTimeout is WSA_INFINITE, the function's time-out interval never
expires.

fAlertable Specifies whether the function returns when the system queues an I/O
completion routine for execution by the calling thread. If TRUE, the
completion routine is executed and the function returns. If FALSE, the
completion routine is not executed when the function returns.

Remarks WSAWaitForMultipleEvents() returns either when any one or when all of the specified
objects are in the signaled state, or when the time-out interval elapses. This function is
also used to perform an alertable wait by setting the parameter fAltertable to be TRUE.
This enables the function to return when the system queues an I/O completion routine to
be executed by the calling thread.

When fWaitAll is TRUE, the function’s wait condition is satisfied only when the state of
all objects is signaled at the same time. The function does not modify the state of the
specified objects until all objects are simultaneously signaled.

Applications that simply need to enter an alertable wait state without waiting for any
event objects to be signaled should use the Win32 SleepEx() function.

WSAWaitForMultipleEvents 193

Return Value If the function succeeds, the return value indicates the event object that caused the
function to return.

If the function fails, the return value is WSA_WAIT_FAILED. To get extended error
information, call WSAGetLastError().

The return value upon success is one of the following values:

Value Meaning

WSA_WAIT_EVENT_0 to (WSA_WAIT_EVENT_0 + cEvents - 1)
If fWaitAll is TRUE, the return value indicates that the state of all
specified event objects is signaled. If fWaitAll is FALSE, the return
value minus WSA_WAIT_EVENT_0 indicates the lphEvents array
index of the object that satisfied the wait.

WAIT_IO_COMPLETION
One or more I/O completion routines are queued for execution.

WSA_WAIT_TIMEOUT
The time-out interval elapsed and the conditions specified by the
fWaitAll parameter are not satisfied.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSA_NOT_ENOUGH_MEMORY Not enough free memory available to complete the
operation.

WSA_INVALID_HANDLE One or more of the values in the lphEvents array is
not a valid event object handle.

WSA_INVALID_PARAMETER The cEvents parameter does not contain a valid
handle count.

See Also WSACreateEvent(), WSACloseEvent().

194 WSAWaitForMultipleEvents

4.57. WSAProviderConfigChange()
Description Notifies the application when the provider configuration is changed

#include <winsock2.h>

int WSAAPI
WSAProviderConfigChange(

IN OUTLPHANDLE lpNotificationHandle,
IN LPWSAOVERLAPPED lpOverlapped,
IN LPWSAOVERLAPPED_COMPLETION_ROUTINE

lpCompletionRoutine
);

lpNotificationHandle A pointer to notification handle; if the notification handle is set
to NULL (the handle value not the pointer itself), this function
returns notification handle in the location pointed by
lpNotificationHandle

lpOverlapped A pointer to a WSAOVERLAPPED structure.

lpCompletionRoutine A pointer to the completion routine called when the provider
change notification is received

Remarks WSAProviderConfigChange () notifies the application of provider (both transport and
name space) installation or removal in Win32 operating environments that support such
configuration change without requiring a restart. When called for the first time
(lpNotificationHandle parameter points to NULL handle), this function completes
immediately and returns notification handle in the location pointed by
lpNotificationHandle that can be used in subsequent calls to receive notifications of
provider installation and removal. The second and any subsequent calls only complete
when provider information changes since the time the call was made It is expected (but
not required) that that application uses overlapped IO on second and subsequent calls to
WSAProviderConfigChange(), in which case the call will return immediately and
application will be notified of provider configuration changes using the completion
mechanism chosen through specified overlapped completion parameters.

Notification handle returned by WSAProtocolConfigChange() is like any regular
operating system handle that should be closed (when no longer needed) using Win32
CloseHandle() call.

The following sequence of actions can be used to guarantee that application always has
current protocol configuration information:
• call WSAProviderConfigChange
• call WSAEnumProtocols and/or WSAEnumNameSpaces
• whenever WSAProtocolConfigChange notifies application of provider configuration

change (via blocking or overlapped IO), the whole sequence of actions should be
repeated

Return Value If no error occurs the WSAProviderConfigChange() returns 0. Otherwise, a value of
SOCKET_ERROR is returned and a specific error code may be retrieved by calling
WSAGetLastError(). The error code WSA_IO_PENDING indicates that the overlapped
operation has been successfully initiated and that completion (and thus change event) will
be indicated at a later time

WSAWaitForMultipleEvents 195

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSA_NOT_ENOUGH_MEMORY Not enough free memory available to complete the
operation.

WSA_INVALID_HANDLE Value pointed by lpNotificationHandle parameter is
not a valid notification handle.

WSAEOPNOTSUPP Current operating system environment does not
support provider installation/removal without restart..

196 Name Resolution and Registration

5. Name Resolution and Registration
WinSock 2 includes a new set of API functions that standardize the way applications access and use the
various network naming services. When using these new functions, WinSock 2 applications need not be
cognizant of the widely differing protocols associated with name services such as DNS, NIS, X.500, SAP,
etc. To maintain full backwards compatibility with WinSock 1.1, all of the existing getXbyY() and
asynchronous WSAAsyncGetXbyY() database lookup functions continue to be supported, but are
implemented in the WinSock service provider interface in terms of the new name resolution capabilities.
See section 4.3.4 getservbyname() and getservbyport..

5.1. Protocol-Independent Name Resolution
In developing a protocol-independent client/server application, there are two basic requirements that exist
with respect to name resolution and registration:

• The ability of the server half of the application (hereafter referred to as a service) to register
its existence within (or become accessible to) one or more name spaces

• The ability of the client application to find the service within a name space and obtain the

required transport protocol and addressing information

For those accustomed to developing TCP/IP based applications, this may seem to involve little more than
looking up a host address and then using an agreed upon port number. Other networking schemes,
however, allow the location of the service, the protocol used for the service, and other attributes to be
discovered at run time. To accommodate the broad diversity of capabilities found in existing name
services, the WinSock 2 interface adopts the model described below.

5.1.1. Name Resolution Model
A name space refers to some capability to associate (as a minimum) the protocol and addressing attributes
of a network service with one or more human-friendly names. Many name spaces are currently in wide use
including the Internet’s Domain Name System(DNS), the bindery and Netware Directory Services (NDS)
from Novell, X.500, etc. These name spaces vary widely in how they are organized and implemented.
Some of their properties are particularly important to understand from the perspective of WinSock name
resolution.

5.1.1.1. Types of Name Spaces
There are three different types of name spaces in which a service could be registered:
• dynamic
• static
• persistent

Dynamic name spaces allow services to register with the name space on the fly, and for clients to discover
the available services at run time. Dynamic name spaces frequently rely on broadcasts to indicate the
continued availability of a network service. Examples of dynamic name spaces include the SAP name space
used within a Netware environment and the NBP name space used by Appletalk.

Static name spaces require all of the services to be registered ahead of time, i.e. when the name space is
created. The DNS is an example of a static name space. Although there is a programmatic way to resolve
names, there is no programmatic way to register names.

Persistent name spaces allow services to register with the name space on the fly. Unlike dynamic name
spaces however, persistent name spaces retain the registration information in non-volatile storage where it
remains until such time as the service requests that it be removed. Persistent name spaces are typified by
directory services such as X.500 and the NDS (Netware Directory Service). These environments allow the
adding, deleting, and modification of service properties. In addition, the service object representing the

Name Resolution and Registration 197

service within the directory service could have a variety of attributes associated with the service. The most
important attribute for client applications is the service’s addressing information.

5.1.1.2. Name Space Organization
Many name spaces are arranged hierarchically. Some, such as X.500 and NDS, allow unlimited nesting.
Others allow services to be combined into a single level of hierarchy or “group.” This is typically referred
to as a workgroup. When constructing a query, it is often necessary to establish a context point within a
name space hierarchy from which the search will begin.

5.1.1.3. Name Space Provider Architecture
Naturally, the programmatic interfaces used to query the various types of name spaces and to register
information within a name space (if supported) differ widely. A name space provider is a locally-resident
piece of software that knows how to map between WinSock’s name space SPI and some existing name
space (which could be implemented locally or be accessed via the network). This is illustrated as follows:

Note that it is possible for a given name space, say DNS, to have more than one name space provider
installed on a given machine.

As mentioned above, the generic term service refers to the server-half of a client/server application. In
WinSock, a service is associated with a service class, and each instance of a particular service has a service
name which must be unique within the service class. Examples of service classes include FTP Server, SQL
Server, XYZ Corp. Employee Info Server, etc. As the example attempts to illustrate, some service classes
are “well known” while others are very unique and specific to a particular vertical application. In either
case, every service class is represented by both a class name and a class ID. The class name does not
necessarily need to be unique, but the class ID must be. Globally Unique Identifiers (GUIDs) are used to
represent service class IDs. For well-known services, class names and class ID’s (GUIDs) have been pre-
allocated, and macros are available to convert between, for example, TCP port numbers (in host byte order)
and the corresponding class ID GUIDs. For other services, the developer chooses the class name and uses
the UUIDGEN.EXE utility to generate a GUID for the class ID.

The notion of a service class exists to allow a set of attributes to be established that are held in common by
all instances of a particular service. This set of attributes is provided at the time the service class is defined
to WinSock, and is referred to as the service class schema information. When a service is installed and
made available on a host machine, that service is considered instantiated, and its service name is used to
distinguish a particular instance of the service from other instances which may be known to the name space.

WinSock 2 DLL

Name Space
Provider

Name Space
Provider

Name Space
SPI

Local NS
Interface

Locally
Implemented
Name Space

Transport
SPI

Transport
Service
Provider

Transport
Service
Provider

Figure 4 Name Space Provider Architecture

198 Name Resolution and Registration

Note that the installation of a service class only needs to occur on machines where the service executes, not
on all of the clients which may utilize the service. Where possible, the WinSock 2 DLL will provide service
class schema information to a name space provider at the time an instantiation of a service is to be
registered or a service query is initiated. The WinSock 2 DLL does not, of course, store this information
itself, but attempts to retrieve it from a name space provider that has indicated its ability to supply this data.
Since there is no guarantee that the WinSock 2 DLL will be able to supply the service class schema, name
space providers that need this information must have a fallback mechanism to obtain it through name space-
specific means.

As noted above, the Internet has adopted what can be termed a host-centric service model. Applications
needing to locate the transport address of a service generally must first resolve the address of a specific host
known to host the service. To this address they add in the well-known port number and thus create a
complete transport address. To facilitate the resolution of host names, a special service class identifier has
been pre-allocated (SVCID_HOSTNAME). A query that specifies SVCID_HOSTNAME as the service
class and uses the host name the service instance name will, if the query is successful, return host address
information.

In WinSock 2, applications that are protocol-independent wish to avoid the need to comprehend the internal
details of a transport address. Thus the need to first get a host address and then add in the port is
problematic. To avoid this, queries may also include the well-known name of a particular service and the
protocol over which the service operates, such as “ftp/tcp”. In this case, a successful query will return a
complete transport address for the specified service on the indicated host, and the application will not be
required to “crack open” a sockaddr structure. This is described in more detail below.

The Internet’s Domain Name System does not have a well-defined means to store service class schema
information. As a result, DNS name space providers will only be able to accommodate well-known TCP/IP
services for which a service class GUID has been preallocated. In practice this is not a serious limitation
since service class GUIDs have been preallocated for the entire set of TCP and UDP ports, and macros are
available to retrieve the GUID associated with any TCP or UDP port (with the port expressed in host byte
order). Thus all of the familiar services such as ftp, telnet, whois, etc. are well supported.

Continuing with our service class example, instance names of the ftp service may be “alder.intel.com” or
“rhino.microsoft.com” while an instance of the XYZ Corp. Employee Info Server might be named “XYZ
Corp. Employee Info Server Version 3.5”. In the first two cases, the combination of the service class GUID
for ftp and the machine name (supplied as the service instance name) uniquely identify the desired service.
In the third case, the host name where the service resides can be discovered at service query time, so the
service instance name does not need to include a host name.

5.1.2. Summary of Name Resolution Functions
The name resolution functions can be grouped into three categories: Service installation, client queries, and
helper functions (and macros). The sections that follow identify the functions in each category and briefly
describe their intended use. Key data structures are also described.

5.1.2.1. Service Installation
• WSAInstallServiceClass()
• WSARemoveServiceClass()
• WSASetService()

When the required service class does not already exist, an application uses WSAInstallServiceClass() to
install a new service class by supplying a service class name, a GUID for the service class ID, and a series
of WSANSCLASSINFO structures. These structures are each specific to a particular name space, and
supply common values such as recommended TCP port numbers or Netware SAP Identifiers. A service

Name Resolution and Registration 199

class can be removed by calling WSARemoveServiceClass() and supplying the GUID corresponding to the
class ID.

Once a service class exists, specific instances of a service can be installed or removed via
WSASetService(). This function takes a WSAQUERYSET structure as an input parameter along with an
operation code and operation flags. The operation code indicates whether the service is being installed or
removed. The WSAQUERYSET structure provides all of the relevant information about the service
including service class ID, service name (for this instance), applicable name space identifier and protocol
information, and a set of transport addresses at which the service listens. Services should invoke
WSASetService() when they initialize in order to advertise their presence in dynamic name spaces.

5.1.2.2. Client Query
• WSAEnumNameSpaceProviders()
• WSALookupServiceBegin()
• WSALookupServiceNext()
• WSALookupServiceEnd()

The WSAEnumNameSpaceProviders() function allows an application to discover which name spaces are
accessible via WinSock’s name resolution facilities. It also allows an application to determine whether a
given name space is supported by more than one name space provider, and to discover the provider ID for
any particular name space provider. Using a provider ID, the application can restrict a query operation to a
specified name space provider.

WinSock’s name space query operations involves a series of calls: WSALookupServiceBegin(), followed
by one or more calls to WSALookupServiceNext() and ending with a call to WSALookupServiceEnd().
WSALookupServiceBegin() takes a WSAQUERYSET structure as input in order to define the query
parameters along with a set of flags to provide additional control over the search operation. It returns a
query handle which is used in the subsequent calls to WSALookupServiceNext() and
WSALookupServiceEnd().

The application invokes WSALookupServiceNext() to obtain query results, with results supplied in an
application-supplied WSAQUERYSET buffer. The application continues to call
WSALookupServiceNext() until the error code WSA_E_NO_MORE is returned indicating that all results
have been retrieved. The search is then terminated by a call to WSALookupServiceEnd(). The
WSALookupServiceEnd() function can also be used to cancel a currently pending
WSALookupServiceNext() when called from another thread.

In WinSock 2, conflicting error codes are defined for WSAENOMORE (10102) and WSA_E_NO_MORE
(10110). The error code WSAENOMORE will be removed in a future version and only
WSA_E_NO_MORE will remain. For WinSock 2, however, applications should check for both
WSAENOMORE and WSA_E_NO_MORE for the widest possible compatibility with Name Space
Providers that use either one.

5.1.2.3. Helper Functions
• WSAGetServiceClassNameByClassId()
• WSAAddressToString()
• WSAStringToAddress()
• WSAGetServiceClassInfo()

The name resolution helper functions include a function to retrieve a service class name given a service
class ID, a pair of functions used to translate a transport address between a sockaddr struct and an ASCII
string representation, a function to retrieve the service class schema information for a given service class,
and a set of macros for mapping well known services to pre-allocated GUIDs.

200 Name Resolution and Registration

The following macros from winsock2.h aid in mapping between well known service classes and these name
spaces.

SVCID_TCP(Port)
SVCID_UDP(Port)
SVCID_NETWARE(Object Type)

Given a port for TCP/IP or UDP/IP or the object
type in the case of Netware, return the GUID
(NOTE: the port number must be in host order)

IS_SVCID_TCP(GUID)
IS_SVCID_UDP(GUID)
IS_SVCID_NETWARE(GUID)

Returns TRUE if the GUID is within the allowable
range

SET_TCP_SVCID(GUID, port)
SET_UDP_SVCID(GUID, port)

Initializes a GUID structure with the GUID
equivalent for a TCP or UDP port number (NOTE:
the port number must be in host order)

PORT_FROM_SVCID_TCP(GUID)
PORT_FROM_SVCID_UDP(GUID)
SAPID_FROM_SVCID_NETWARE(GUID)

Returns the port or object type associated with the
GUID (NOTE: the port number is in host order)

5.1.3. Name Resolution Data Structures
There are several important data structures that are used extensively throughout the name resolution
functions. These are described below.

5.1.3.1. Query-Related Data Structures
The WSAQUERYSET structure is used to form queries for WSALookupServiceBegin(), and used to
deliver query results for WSALookupServiceNext(). It is a complex structure since it contains pointers to
several other structures, some of which reference still other structures. The relationship between
WSAQUERYSET and the structures it references is illustrated as follows:

WSAQUERYSET

dwOutputFlags
lpszServiceInstanceName
lpServiceClassId
lpVersion
lpszComment
dwNamesSpace
lpNSProviderId
lpszContext
dwNumberOfProtocols
lpafpProtocols

dwNumberOfCsAddrs
lpcsaBuffer
lpBlob

CSADDR_INFO
LocalAddr
RemoteAddr
iSocketType
iProtocol

SOCKET_ADDRESS
lpSockaddr
iSockaddrLength

WSAECOMPARATOR
dwVersion
ecHow (equals, or not less than)

WSAQUERYSETService Instance Name

WSAQUERYSETService Class ID (GUID)

SOCKADDR
sa_family
sa_data

lpszQueryString

WSAQUERYSETContext String

WSAQUERYSETNS Provider ID (GUID)

WSAQUERYSETComment String

WSAQUERYSETQuery String

AFPROTOCOLS []
iAddressFamily
iProtocol

dwSize

Figure 5 WSAQUERYSET and Friends

Within the WSAQUERYSET structure, most of the fields are self explanatory, but some deserve additional
explanation. The dwSize field must always be filled in with sizeof(WSAQUERYSET), as this is used by
name space providers to detect and adapt to different versions of the WSAQUERYSET structure that may
appear over time.

The dwOutputFlags field is used by a name space provider to provide additional information about query
results. For details, see WSALookupServiceNext().

The WSAECOMPARATOR structure referenced by lpversion is used for both query constraint and results.
For queries, the dwVersion field indicates the desired version of the service. The ecHow field is an
enumerated type which specifies how the comparison will be made. The choices are COMP_EQUALS
which requires that an exact match in version occurs, or COMP_NOTLESS which specifies that the
service’s version number be no less than the value of dwVersion.

The interpretation of dwNameSpace and lpNSProviderId depends upon how the structure is being used and
is described further in the individual function descriptions that utilize this structure.

The lpszContext field applies to hierarchical name spaces, and specifies the starting point of a query or the
location within the hierarchy where the service resides. The general rules are:

Name Resolution and Registration 201

• A value of NULL, blank (“”) will start the search at the default context.
• A value of “\” starts the search at the top of the name space.
• Any other value starts the search at the designated point.

Providers that do not support containment may return an error if anything other than “” or “\” is specified.
Providers that support limited containment, such as groups, should accept “”, ‘\”, or a designated point.
Contexts are name space specific. If dwNameSpace is NS_ALL, then only “” or “\” should be passed as the
context since these are recognized by all name spaces.

The lpszQueryString field is used to supply additional, name space-specific query information such as a
string describing a well-known service and transport protocol name, as in “ftp/tcp”.

The AFPROTOCOLS structure referenced by lpafpProtocols is used for query purposes only, and supplies
a list of protocols to constrain the query. These protocols are represented as (address family, protocol)
pairs, since protocol values only have meaning within the context of an address family.

The array of CSADDR_INFO structure referenced by lpcsaBuffer contain all of the information needed to
for either a service to use in establishing a listen, or a client to use in establishing a connection to the
service. The LocalAddr and RemoteAddr fields both directly contain a SOCKET_ADDRESS structure. A
service would create a socket using the tuple (LocalAddr.lpSockaddr->sa_family, iSocketType, iProtocol).
It would bind the socket to a local address using LocalAddr.lpSockaddr, and LocalAddr.lpSockaddrLength.
The client creates its socket with the tuple (RemoteAddr.lpSockaddr->sa_family, iSocketType, iProtocol),
and uses the combination of RemoteAddr.lpSockaddr, and RemoteAddr.lpSockaddrLength when making a
remote connection.

5.1.3.2. Service Class Data Structures
When a new service class is installed, a WSASERVICECLASSINFO structure must be prepared and
supplied. This structure also consists of substructures which contain a series of parameters that apply to
specific name spaces.

WSASERVICECLASSINFO
lpServiceClassId
lpszServiceClassName
dwCount
lpClassInfos

WSANSCLASSINFO
lpszName
dwNameSpace
dwValueType
dwValueSize

WSAQUERYSETService Class ID (GUID)

WSAQUERYSETService Class Name

lpValue

WSAQUERYSETItem Name

WSAQUERYSETItem Value

Figure 6 Class Info Data Structures

For each service class, there is a single WSASERVICECLASSINFO structure. Within the
WSASERVICECLASSINFO structure, the service class’ unique identifier is contained in lpServiceClassId,
and an associated display string is referenced by lpServiceClassName. This is the string that will be
returned by WSAGetServiceClassNameByServiceClassId().

The lpClassInfos field in the WSASERVICECLASSINFO structure references an array of
WSANSCLASSINFO structures, each of which supplies a named and typed parameter that applies to a
specified name space. Examples of values for the lpszName field include: “SapId”, “TcpPort”, “UdpPort”,
etc. These strings are generally specific to the name space identified in dwNameSpace. Typical values for
dwValueType might be REG_DWORD, REG_SZ, etc. The dwValueSize field indicates the length of the
data item pointed to by lpValue.

The entire collection of data represented in a WSASERVICECLASSINFO structure is provided to each
name space provider when WSAInstallServiceClass() is invoked. Each individual name space provider
then sifts through the list of WSANSCLASSINFO structures and retain the information applicable to it.

202 Name Resolution and Registration

WSAAddressToString 203

5.2. Name Resolution Function Reference

5.2.1. WSAAddressToString()

Description WSAAddressToString() converts all components of a SOCKADDR structure into a
human-readable numeric string representation of the address. This is intended to be used
mainly for display purposes. If the caller wishes the translation to be done by a particular
provider, it should supply the corresponding WSAPROTOCOL_INFO struct in the
lpProtocolInfo parameter.

INT WSAAPI
WSAAddressToString(

IN LPSOCKADDR lpsaAddress,
IN DWORD dwAddressLength,
IN LPWSAPROTOCOL_INFO lpProtocolInfo,
OUT LPTSTR lpszAddressString,
IN OUT LPDWORD lpdwAddressStringLength

);

lpsaAddress points to a SOCKADDR structure to translate into a string.

dwAddressLength the length of the Address SOCKADDR (which may vary in
size with different protocols)

lpProtocolInfo (optional) a WSAPROTOCOL_INFO struct associated with
the provider to be used. If this is NULL, the call is routed to
the provider of the first protocol supporting the address family
indicated in lpsaAddress.

lpszAddressString a buffer which receives the human-readable address string.

lpdwAddressStringLength on input, the length of the AddressString buffer. On output,
returns the length of the string actually copied into the
buffer. If the supplied buffer is not large enough, the function
fails with a specific error of WSAEFAULT and this parameter
is updated with the required size in bytes.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSAEFAULT The specified lpcsAddress, lpProtocolInfo,
lpszAddressString are not all in the process’ address
space, or the lpszAddressString buffer is too small.
Pass in a larger buffer

WSAEINVAL The specified Address is not a valid socket address,
or there was no transport provider supporting its
indicated address family.

204 WSAAddressToString

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

WSAEnumNameSpaceProviders 205

5.2.2. WSAEnumNameSpaceProviders()

Description Retrieve information about available name spaces.

INT WSAAPI
WSAEnumNameSpaceProviders (

IN OUT LPDWORD lpdwBufferLength,
OUT LPWSANAMESPACE_INFO lpnspBuffer

);

lpdwBufferLength on input, the number of bytes contained in the buffer pointed
to by lpnspBuffer. On output (if the API fails, and the error is
WSAEFAULT), the minimum number of bytes to pass for the
lpnspBuffer to retrieve all the requested information. The passed-in
buffer must be sufficient to hold all of the name space information.

lpnspBuffer A buffer which is filled with WSANAMESPACE_INFO structures
described below. The returned structures are located consecutively at
the head of the buffer. Variable sized information referenced by
pointers in the structures point to locations within the buffer located
between the end of the fixed sized structures and the end of the buffer.
The number of structures filled in is the return value of
WSAEnumNameSpaceProviders().

Data Types The following data types are used in this call.
The WSANAMESPACE_INFO structure contains all of the registration information for
a name space provider.

typedef struct _WSANAMESPACE_INFO {
GUID NSProviderId;
DWORD dwNameSpace;
BOOL fActive;
DWORD dwVersion;
LPTSTR lpszIdentifier;
} WSANAMESPACE_INFO, *PWSANAMESPACE_INFO,

*LPWSANAMESPACE_INFO;

NSProviderId The unique identifier for this name space provider.

dwNameSpace Specifies the name space supported by this implementation of
the provider.

fActive If TRUE, indicates that this provider is active. If FALSE, the
provider is inactive and is not accessible for queries, even if
the query specifically references this provider.

dwVersion Name Space version identifier.

lpszIdentifier Display string for the provider.

206 WSAEnumNameSpaceProviders

Return Value WSAEnumNameSpaceProviders() returns the number of WSANAMESPACE_INFO
structures copied into lpnspBuffer. Otherwise the value SOCKET_ERROR is returned,
and a specific error number may be retrieved by calling WSAGetLastError().

Errors WSAEFAULT the buffer length was too small to receive all the
relevant WSANAMESPACE_INFO structures and
associated information. Pass in a buffer at least as
large as the value returned in lpdwBufferLength.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

WSAGetServiceClassInfo 207

5.2.3. WSAGetServiceClassInfo
Description WSAGetServiceClassInfo() is used to retrieve all of the class information (schema)

pertaining to a specified service class from a specified name space provider.

INT WSAAPI
WSAGetServiceClassInfo(

IN LPGUID lpProviderId,
IN LPGUID lpServiceClassId,
IN OUT LPDWORD lpdwBufferLength,
OUT LPWSASERVICECLASSINFO lpServiceClassInfo

);

lpProviderId Pointer to a GUID which identifies a specific name space provider

lpServiceClassId Pointer to a GUID identifying the service class in question

lpdwBufferLength on input, the number of bytes contained in the buffer pointed
to by lpServiceClassInfos. On output - if the API fails, and the error is
WSAEFAULT, then it contains the minimum number of bytes to pass
for the lpServiceClassInfo to retrieve the record.

lpServiceClasslnfo returns service class information from the indicated name
space provider for the specified service class.

Remarks The service class information retrieved from a particular name space provider may not
necessarily be the complete set of class information that was supplied when the service
class was installed. Individual name space providers are only required to retain service
class information that is applicable to the name spaces that they support. See section
5.1.3.2. Service Class Data Structuresfor more information.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSAEACCES The calling routine does not have sufficient privileges
to access the information.

WSAEFAULT The buffer referenced by lpServiceClassInfo is too
small. Pass in a larger buffer.

WSAEINVAL the specified service class ID or name space provider
ID is invalid.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSATYPE_NOT_FOUND The specified class was not found.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

208 WSAGetServiceClassNameByClassId

5.2.4. WSAGetServiceClassNameByClassId()

Description This API will return the name of the service associated with the given type. This name is
the generic service name, like FTP, or SNA, and not the name of a specific instance of
that service.

INT WSAAPI
WSAGetServiceClassNameByClassId(

IN LPGUID lpServiceClassId,
OUT LPTSTR lpszServiceClassName,
IN OUT LPDWORD lpdwBufferLength

);

lpServiceClassId pointer to the GUID for the service class.

lpszServiceClassName service name.

lpdwBufferLength on input length of buffer returned by lpszServiceClassName.
On output, the length of the service name copied into
lpszServiceClassName.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSAEFAULT The specified ServiceClassName buffer is too small.
Pass in a larger buffer

WSAEINVAL the specified ServiceClassId is invalid.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

WSAInstallServiceClass 209

5.2.5. WSAInstallServiceClass()

Description WSAInstallServiceClass() is used to register a service class schema within a name
space. This schema includes the class name, class id, and any name space specific
information that is common to all instances of the service, such as the SAP ID or object
ID.

INT WSAAPI
WSAInstallServiceClass(

IN LPWSASERVICECLASSINFO lpServiceClassInfo,
);

lpServiceClasslnfo contains service class to name space specific type mapping
information. Multiple mappings can be handled at one time.

See section 5.1.3.2. Service Class Data Structures for a description of pertinent data
structures.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSAEACCES The calling routine does not have sufficient privileges
to install the Service.

WSAEALREADY Service class information has already been registered
for this service class ID. To modify service class
info, first use WSARemoveServiceClass(), and then
re-install with updated class info data.

WSAEINVAL The service class information was invalid or
improperly structured.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

210 WSALookupServiceBegin

5.2.6. WSALookupServiceBegin()
Description WSALookupServiceBegin() is used to initiate a client query that is constrained by the

information contained within a WSAQUERYSET structure. WSALookupServiceBegin()
only returns a handle, which should be used by subsequent calls to
WSALookupServiceNext() to get the actual results.

INT WSAAPI
WSALookupServiceBegin (

IN LPWSAQUERYSET lpqsRestrictions,
IN DWORD dwControlFlags,
OUT LPHANDLE lphLookup

);

lpqsRestrictions contains the search criteria. See below for details.

dwControlFlags controls the depth of the search.

LUP_DEEP Query deep as opposed to just the first level.
LUP_CONTAINERS Return containers only
LUP_NOCONTAINERS Don’t return any containers
LUP_FLUSHCACHE If the provider has been caching information,

ignore the cache and go query the name space
itself.

LUP_FLUSHPREVIOUS Used as a value for the dwControlFlags
argument in WSALookupServiceNext().
Setting this flag instructs the provider to
discard the last result set, which was too large
for the supplied buffer, and move on to the
next result set.

LUP_NEAREST If possible, return results in the order of
distance. The measure of distance is provider
specific.

LUP_RES_SERVICE indicates whether prime response is in the
remote or local part of CSADDR_INFO
structure. The other part needs to be
"useable" in either case.

LUP_RETURN_ALIASES Any available alias information is to be
returned in successive calls to
WSALookupServiceNext(), and each alias
returned will have the RESULT_IS_ALIAS
flag set.

LUP_RETURN_NAME Retrieve the name as lpszServiceInstanceName
LUP_RETURN_TYPE Retrieve the type as lpServiceClassId
LUP_RETURN_VERSION Retrieve the version as lpVersion
LUP_RETURN_COMMENT Retrieve the comment as lpszComment
LUP_RETURN_ADDR Retrieve the addresses as lpcsaBuffer
LUP_RETURN_BLOB Retrieve the private data as lpBlob
LUP_RETURN_QUERY_STRING Retrieve unparsed remainder of the service

instance name as lpszQueryString
LUP_RETURN_ALL Retrieve all of the information

lphLookup Handle to be used when calling WSALookupServiceNext in order to
start retrieving the results set.

WSALookupServiceBegin 211

Remarks If LUP_CONTAINERS is specified in a call, all other restriction values should be
avoided. If any are supplied, it is up to the name service provider to decide if it can
support this restriction over the containers. If it cannot, it should return an error.

Some name service providers may have other means of finding containers. For example,
containers might all be of some well-known type, or of a set of well-known types, and
therefore a query restriction may be created for finding them. No matter what other means
the name service provider has for locating containers, LUP_CONTAINERS and
LUP_NOCONTAINERS take precedence. Hence, if a query restriction is given that
includes containers, specifying LUP_NOCONTAINERS will prevent the container items
from being returned. Similarly, no matter the query restriction, if LUP_CONTAINERS is
given, only containers should be returned. If a name space does not support containers,
and LUP_CONTAINERS is specified, it should simply return WSANO_DATA.

The preferred method of obtaining the containers within another container, is the call:

dwStatus = WSALookupServiceBegin(
lpqsRestrictions,
LUP_CONTAINERS,
lphLookup);

followed by the requisite number of WSALookupServiceNext calls. This will return all
containers contained immediately within the starting context; that is, it is not a deep
query. With this, one can map the address space structure by walking the hierarchy,
perhaps enumerating the content of selected containers. Subsequent uses of
WSALookupServiceBegin use the containers returned from a previous call.

Forming Queries
As mentioned above, a WSAQUERYSET structure is used as an input parameter to
WSALookupBegin() in order to qualify the query. The following table indicates how the
WSAQUERYSET is used to construct a query. When a field is marked as (Optional) a
NULL pointer may be supplied, indicating that the field will not be used as a search
criteria. See section 5.1.3.1. Query-Related Data Structures for additional information.

WSAQUERYSET Field Name Query Interpretation

dwSize Must be set to sizeof(WSAQUERYSET). This is a
versioning mechanism.

DwOuputFlags Ignored for queries

lpszServiceInstanceName (Optional) Referenced string contains service name. The
semantics for wildcarding within the string are not defined,
but may be supported by certain name space providers.

LpServiceClassId (Required) The GUID corresponding to the service class.

lpVersion (Optional) References desired version number and provides
version comparison semantics (i.e. version must match
exactly, or version must be not less than the value supplied).

LpszComment Ignored for queries.

DwNameSpace Identifier of a single name space in which to constrain the
search, or NS_ALL to include all name spaces. See
important note below.

LpNSProviderId (Optional) References the GUID of a specific name space

212 WSALookupServiceBegin

provider, and limits the query to this provider only.

LpszContext (Optional) Specifies the starting point of the query in a
hierarchical name space.

DwNumberOfProtocols Size of the protocol constraint array, may be zero.

LpafpProtocols (Optional) References an array of AFPROTOCOLS
structure. Only services that utilize these protocols will be
returned.

LpszQueryString (Optional) Some namespaces (such as whois++) support
enriched SQL like queries which are contained in a simple
text string. This parameter is used to specify that string.

DwNumberOfCsAddrs Ignored for queries.

LpcsaBuffer Ignored for queries.

LpBlob (Optional) This is a pointer to a provider-specific entity.

Important Note:
In most instances, applications interested in only a particular transport protocol should
constrain their query by address family and protocol rather than by name space. This
would allow an application that wishes to locate a TCP/IP service, for example, to have
its query processed by all available name spaces such as the local hosts file, DNS, NIS,
etc.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors
WSAEINVAL One or more parameters were invalid for this provider

or missing.

WSANO_DATA The name was found in the database but no data
matching the given restrictions was located..

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSASERVICE_NOT_FOUND No such service is known. The service cannot be
found in the specified name space.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

WSALookupServiceEnd 213

5.2.7. WSALookupServiceEnd()

Description WSALookupServiceEnd() is called to free the handle after previous calls to
WSALookupServiceBegin() and WSALookupServiceNext(). Note that if you call
WSALookupServiceEnd() from another thread while an existing
WSALookupServiceNext() is blocked, then the end call will have the same effect as a
cancel, and will cause the WSALookupServiceNext() call to return immediately.

INT WSAAPI
WSALookupServiceEnd (

IN HANDLE hLookup,
);

hLookup Handle previously obtained by calling WSALookupServiceBegin().

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSA_INVALID_HANDLE The Handle is not valid

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

214 WSALookupServiceNext

5.2.8. WSALookupServiceNext()

Description WSALookupServiceNext() is called after obtaining a Handle from a previous call to
WSALookupServiceBegin() in order to retrieve the requested service information. The
provider will pass back a WSAQUERYSET structure in the lpqsResults buffer. The
client should continue to call this API until it returns WSA_E_NOMORE, indicating that
all of the WSAQUERYSET have been returned.

INT WSAAPI
WSALookupServiceNext (

IN HANDLE hLookup,
IN DWORD dwControlFlags,
IN OUT LPDWORD lpdwBufferLength,
OUT LPWSAQUERYSET lpqsResults

);

hLookup Handle returned from the previous call to
WSALookupServiceBegin().

dwControlFlags Flags to control the next operation. Currently only
LUP_FLUSHPREVIOUS is defined as a means to cope with a result set
which is too large. If an application does not wish to (or cannot) supply
a large enough buffer, setting LUP_FLUSHPREVIOUS instructs the
provider to discard the last result set - which was too large - and move
on to the next set for this call.

lpdwBufferLength on input, the number of bytes contained in the buffer pointed
to by lpqsResults. On output - if the API fails, and the error is
WSAEFAULT, then it contains the minimum number of bytes to pass
for the lpqsResults to retrieve the record.

lpqsResults a pointer to a block of memory, which will contain one result set in a
WSAQUERYSET structure on return.

Remarks The dwControlFlags specified in this function and the ones specified at the time of
WSALookupServiceBegin() are treated as “restrictions” for the purpose of combination.
The restrictions are combined between the ones at WSALookupServiceBegin() time and
the ones at WSALookupServiceNext() time. Therefore the flags at
WSALookupServiceNext() can never increase the amount of data returned beyond what
was requested at WSALookupServiceBegin(), although it is NOT an error to specify
more or fewer flags. The flags specified at a given WSALookupServiceNext() apply
only to that call.

The dwControlFlags LUP_FLUSHPREVIOUS and LUP_RES_SERVICE are exceptions
to the “combined restrictions” rule (because they are “behavior” flags instead of
“restriction” flags). If either of these flags are used in WSALookupServiceNext() they
have their defined effect regardless of the setting of the same flags at
WSALookupServiceBegin().

For example, if LUP_RETURN_VERSION is specified at WSALookupServiceBegin()
the service provider retrieves records including the “version”. If
LUP_RETURN_VERSION is NOT specified at WSALookupServiceNext(), the
returned information does not include the “version”, even though it was available. No
error is generated.

WSALookupServiceNext 215

Also for example, if LUP_RETURN_BLOB is NOT specified at
WSALookupServiceBegin() but is specified at WSALookupServiceNext(), the returned
information does not include the private data. No error is generated.

Query Results
The following table describes how the query results are represented in the
WSAQUERYSET structure. Refer to section 5.1.3.1. Query-Related Data Structures for
additional information.

WSAQUERYSET Field Name Result Interpretation

dwSize Will be set to sizeof(WSAQUERYSET). This is used as a
versioning mechanism.

DwOuputFlags RESULT_IS_ALIAS flag indicates this is an alias result.

lpszServiceInstanceName Referenced string contains service name.

LpServiceClassId The GUID corresponding to the service class.

lpVersion References version number of the particular service instance.

LpszComment Optional comment string supplied by service instance.

DwNameSpace Name space in which the service instance was found.

LpNSProviderId Identifies the specific name space provider that supplied this
query result.

lpszContext Specifies the context point in a hierarchical name space at
which the service is located.

DwNumberOfProtocols Undefined for results.

LpafpProtocols Undefined for results, all needed protocol information is in
the CSADDR_INFO structures.

LpszQueryString When dwControlFlags includes
LUP_RETURN_QUERY_STRING, this field returns the
unparsed remainder of the lpszServiceInstanceName
specified in the original query. For example, in a name
space that identifies services by hierarchical names that
specify a host name and a file path within that host, the
address returned might be the host address and the unparsed
remainder might be the file path. If the
lpszServiceInstanceName is fully parsed and
LUP_RETURN_QUERY_STRING is used, this field is
NULL or points to a zero-length string.

DwNumberOfCsAddrs Indicates the number of elements in the array of
CSADDR_INFO structures.

LpcsaBuffer A pointer to an array of CSADDR_INFO structures, with
one complete transport address contained within each
element.

LpBlob (Optional) This is a pointer to a provider-specific entity.

216 WSALookupServiceNext

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSA_E_NO_MORE There is no more data available.

In WinSock 2, conflicting error codes are defined for
WSAENOMORE (10102) and WSA_E_NO_MORE
(10110). The error code WSAENOMORE will be
removed in a future version and only
WSA_E_NO_MORE will remain. For WinSock 2,
however, applications should check for both
WSAENOMORE and WSA_E_NO_MORE for the
widest possible compatibility with Name Space
Providers that use either one.

WSA_E_CANCELLED A call to WSALookupServiceEnd() was made while
this call was still processing. The call has been
canceled. The data in the lpqsResults buffer is
undefined.

In WinSock 2, conflicting error codes are defined for
WSAECANCELLED (10103) and
WSA_E_CANCELLED (10111). The error code
WSAECANCELLED will be removed in a future
version and only WSA_E_CANCELLED will
remain. For WinSock 2, however, applications
should check for both WSAECANCELLED and
WSA_E_CANCELLED for the widest possible
compatibility with Name Space Providers that use
either one.

WSAEFAULT The lpqsResults buffer was too small to contain a
WSAQUERYSET set.

WSAEINVAL One or more required parameters were invalid or
missing.

WSA_INVALID_HANDLE The specified Lookup handle is invalid.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSANO_DATA The name was found in the database but no data
matching the given restrictions was located..

WSASERVICE_NOT_FOUND No such service is known. The service cannot be
found in the specified name space.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

WSARemoveServiceClass 217

5.2.9. WSARemoveServiceClass()

Description WSARemoveServiceClass() is used to permanently unregister service class schema.

INT WSAAPI
WSARemoveServiceClass(

IN LPGUID lpServiceClassId
);

lpServiceClassId Pointer to the GUID for the service class that you wish to remove.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSATYPE_NOT_FOUND The specified class was not found.

WSAEACCES The calling routine does not have sufficient privileges
to remove the Service.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSAEINVAL The specified GUID was not valid.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

218 WSASetService

4.2.10. WSASetService()

Description WSASetService() is used to register or deregister a service instance within one or more
name spaces. This function may be used to affect a specific name space provider, all
providers associated with a specific name space, or all providers across all name spaces.

INT WSAAPI
WSASetService(

IN LPWSAQUERYSET lpqsRegInfo,
IN WSAESETSERVICEOP essOperation,
IN DWORD dwControlFlags

);

lpqsRegInfo specifies service information for registration, identifies service for
deregistration.

essOperation an enumeration whose values include:

RNRSERVICE_REGISTER register the service. For SAP, this means sending out
a periodic broadcast. This is a NOP for the DNS name space. For
persistent data stores this means updating the address information.

RNRSERVICE_DEREGISTER deregister the service. For SAP, this means stop
sending out the periodic broadcast. This is a NOP for the DNS name
space. For persistent data stores this means deleting address
information.

RNRSERVICE_DELETE delete the service from dynamic name and persistent
spaces. For services represented by multiple CSADDR_INFO
structures (using the SERVICE_MULTIPLE flag), only the supplied
address will be deleted, and this much match exactly the corresponding
CSADD_INFO structure that was supplied when the service was
registered.

dwControlFlags A set of flags whose values include:

SERVICE_MULTIPLE Controls scope of operation. When clear, service
addresses are managed as a group. A register or deregister invalidates
all existing addresses before adding the given address set. When set, the
action is only performed on the given address set. A register does not
invalidate existing addresses and a deregister only invalidates the given
set of addresses.

The available values for essOperation and dwControlFlags combine to give meanings as
shown in the following table:

Operation Flags Service already exists Service does not exist
RNRSERVICE_
REGISTER

none Overwrite the object.
Use only addresses
specified. Object is
REGISTERED.

Create a new object. Use
only addresses specified.
Object is
REGISTERED.

RNRSERVICE_
REGISTER

SERVICE_
MULTIPLE

Update object. Add new
addresses to existing set.
Object is

Create a new object. Use
all addresses specified.
Object is

WSASetService 219

REGISTERED. REGISTERED.
RNRSERVICE_
DEREGISTER

none Remove all addresses,
but do not remove object
from name space.
Object is
DEREGISTERED.

WSASERVICE_NOT_F
OUND

RNRSERVICE_
DEREGISTER

SERVICE_
MULTIPLE

Update object. Remove
only addresses that are
specified. Only mark
object as
DEREGISTERED if no
addresses present. Do
not remove from the
name space.

WSASERVICE_NOT_F
OUND

RNRSERVICE_
DELETE

none Remove object from the
name space.

WSASERVICE_NOT_F
OUND

RNRSERVICE_
DELETE

SERVICE_
MULTIPLE

Remove only addresses
that are specified. Only
remove object from the
name space if no
addresses remain.

WSASERVICE_NOT_F
OUND

Remarks SERVICE_MULTIPLE lets an application manage its addresses independently. This is
useful when the application wants to manage its protocols individually or when the
service resides on more than one machine. For instance, when a service uses more than
one protocol, it may find that one listening socket aborts but the others remain
operational. In this case, the service could deregister the aborted address without
affecting the other addresses.

When using SERVICE_MULTIPLE, an application must not let stale addresses remain in
the object. This can happen if the application aborts without issuing a DEREGISTER
request. When a service registers, it should store its addresses. On its next invocation,
the service should explicitly deregister these old stale addresses before registering new
addresses.

Service Properties
The following table describes how service property data is represented in a
WSAQUERYSET structure. Fields labeled as (Optional) may be supplied with a NULL
pointer.

WSAQUERYSET
Field Name

Service Property Description

dwSize Must be set to sizeof(WSAQUERYSET). This is a
versioning mechanism.

DwOuputFlags Not applicable and ignored.

LpszServiceInstanceName Referenced string contains the service instance name.

LpServiceClassId The GUID corresponding to this service class.

lpVersion (Optional) Supplies service instance version number.

LpszComment (Optional) An optional comment string.

DwNameSpace See table below.

220 WSASetService

LpNSProviderId See table below.

LpszContext (Optional) Specifies the starting point of the query in a
hierarchical name space.

DwNumberOfProtocols Ignored.

LpafpProtocols Ignored.

LpszQueryString Ignored.

DwNumberOfCsAddrs The number of elements in the array of CSADDRO_INFO
structs referenced by lpcsaBuffer.

LpcsaBuffer A pointer to an array of CSADDRO_INFO structs which
contain the address[es] that the service is listening on.

lpBlob (Optional) This is a pointer to a provider-specific entity.

As illustrated below, the combination of the dwNameSpace and lpNSProviderId
parameters determine which name space providers are affected by this function.

DwNameSpace lpNSProviderId Scope of Impact

Ignored Non-NULL The specified name space provider

a valid name space ID NULL All name space providers that support the
indicated name space

NS_ALL NULL All name space providers

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSAEACCES The calling routine does not have sufficient privileges
to install the Service.

WSAEINVAL One or more required parameters were invalid or
missing.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

WSASERVICE_NOT_FOUND No such service is known. The service cannot be
found in the specified name space.

WSAStringToAddress 221

5.2.10. WSAStringToAddress()

Description WSAStringToAddress() converts a human-readable numeric string to a socket address
structure (SOCKADDR) suitable for passing to Windows Sockets routines which take
such a structure. Any missing components of the address will be defaulted to a reasonable
value if possible. For example, a missing port number will be defaulted to zero. If the
caller wishes the translation to be done by a particular provider, it should supply the
corresponding WSAPROTOCOL_INFO struct in the lpProtocolInfo parameter.

INT WSAAPI
WSAStringToAddress(

IN LPTSTR AddressString,
IN INT AddressFamily,
IN LPWSAPROTOCOL_INFO lpProtocolInfo,
OUT LPSOCKADDR lpAddress,
IN OUT LPINT lpAddressLength

);

AddressString points to the zero-terminated human-readable string to convert.

AddressFamily the address family to which the string belongs.

lpProtocolInfo (optional) the WSAPROTOCOL_INFO struct associated with the
provider to be used. If this is NULL, the call is routed to the provider
of the first protocol supporting the indicated AddressFamily.

Address a buffer which is filled with a single SOCKADDR structure.

lpAddressLength The length of the Address buffer. Returns the size of the resultant
SOCKADDR structure. If the supplied buffer is not large enough, the
function fails with a specific error of WSAEFAULT and this parameter
is updated with the required size in bytes.

Return Value The return value is 0 if the operation was successful. Otherwise the value
SOCKET_ERROR is returned, and a specific error number may be retrieved by calling
WSAGetLastError().

Errors WSAEFAULT The specified Address buffer is too small. Pass in a
larger buffer.

WSAEINVAL Unable to translate the string into a SOCKADDR or
there was no transport provider supporting the
indicated address family.

WSANOTINITIALIZED The Winsock 2 DLL has not been initialized. The
application must first call WSAStartup() before
calling any WinSock functions.

WSA_NOT_ENOUGH_MEMORY
There was insufficient memory to perform the
operation.

222 WinSock 1.1 Compatible Name Resolution for TCP/IP

5.3. WinSock 1.1 Compatibile Name Resolution for TCP/IP
5.3.1. Introduction
Windows Sockets 1.1 defined a number of routines that were used for name resolution with TCP/IP (IP
version 4) networks. These are customarily referred to as the getXbyY() functions and include the
following:

• gethostname()
• gethostbyaddr()
• gethostbyname()
• getprotobyname()
• getprotobynumber()
• getservbyname()
• getservbyport()

Asynchronous versions of these functions were also defined:

• WSAAsyncGetHostByAddr()
• WSAAsyncGetHostByName()
• WSAAsyncGetProtoByName()
• WSAAsyncGetProtoByNumber()
• WSAAsyncGetServByName()
• WSAAsyncGetSetvByPort()

There are also two functions (now implemented in the WinSock 2 DLL) used to convert dotted IPv4
internet address notation to and from string and binary representations, respectively:

• inet_addr()
• inet_ntoa()

All of these functions are specific to IPv4 TCP/IP networks and developers of protocol-independent
applications are discouraged from continuing to utilize these transport-specific functions. However, in order
to retain strict backwards compatibility with WinSock 1.1, all of the above functions continue to be
supported as long as at least one name space provider is present that supports the AF_INET address family
(these functions are not relevant to IP version 6, denoted by AF_INET6).

The WinSock 2 DLL implements these compatibility functions in terms of the new, protocol-independent
name resolution facilities using an appropriate sequence of WSALookupServiceBegin/Next/End()
function calls. The details of how the getXbyY() functions are mapped to name resolution functions are
provided below. Note that the WinSock 2 DLL handles the differences between the asynchronous and
synchronous versions of the getXbyY() functions, so only the implementation of the synchronous
getXbyY() functions are discussed.

5.3.2. Basic Approach
Most getXbyY() functions are translated by the WinSock 2 DLL to a
WSAServiceLookupBegin/Next/End() sequence that uses one of a set of special GUIDs as the service
class. These GUIDs identify the type of getXbyYoperation that is being emulated. The query is
constrained to those NSPs that support AF_INET. Whenever a getXbyY function returns a hostent or
servent structure, the WinSock 2 DLL will specify the LUP_RETURN_BLOB flag in
WSALookupServiceBegin() so that the desired information will be returned by the NSP. These structures
must be modified slightly in that the pointers contained within must be replaced with offsets that are relative
to the start of the blob's data. All values referenced by these pointer fields must, of course, be completely
contained within the blob, and all strings are ASCII.

5.3.3. getprotobyname and getprotobynumber
These functions are implemented within the WinSock 2 DLL by consulting a local protocols database.
They do not result in any name resolution query.

WinSock 1.1 Compatible Name Resolution for TCP/IP 223

5.3.4. getservbyname() and getservbyport()
The WSALookupServiceBegin() query uses SVCID_INET_SERVICEBYNAME as the service class
GUID. The lpszServiceInstanceName field references a string which indicates the service name or service
port, and (optionally) the service protocol. The formatting of the string is illustrated as "ftp/tcp" or "21/tcp"
or just "ftp". The string is not case sensitive. The slash mark, if present, separates the protocol identifier
from the preceding part of the string. The WinSock 2 DLL will specify LUP_RETURN_BLOB and the
NSP will place a servent struct in the blob (using offsets instead of pointers as described above). NSPs
should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME -> return the s_name field from servent struct in
lpszServiceInstanceName

LUP_RETURN_TYPE -> return canonical GUID in lpServiceClassId It is understood that a
service identified either as "ftp" or "21" may in fact be on some other port according to locally
established conventions. The s_port field of the servent struct should indicate where the service
can be contacted in the local environment. The canonical GUID returned when
LUP_RETURN_TYPE is set should be one of the predefined GUID from svcs.h that corresponds
to the port number indicated in the servent structure.

5.3.5. gethostbyname()
The WSALookupServiceBegin() query uses SVCID_INET_HOSTADDRBYNAME as the service class
GUID. The host name is supplied in lpszServiceInstanceName. The WinSock 2 DLL specifies
LUP_RETURN_BLOB and the NSP places a hostent struct in the blob (using offsets instead of pointers as
described above). NSPs should honor these other LUP_RETURN_* flags as well:

LUP_RETURN_NAME -> return the h_name field from hostent struct in
lpszServiceInstanceName

LUP_RETURN_ADDR -> return addressing info from hostent in CSADDR_INFO structs, port
information is defaulted to zero. Note that this routine does not resolve host names that consist of
a dotted internet address.

5.3.6. gethostbyaddr()
The WSALookupServiceBegin() query uses SVCID_INET_HOSTNAMEBYADDR as the service class
GUID. The host address is supplied in lpszServiceInstanceName as a dotted internet string (e.g.
"192.9.200.120"). The WinSock 2 DLL specifies LUP_RETURN_BLOB and the NSP places a hostent
struct in the blob (using offsets instead of pointers as described above). NSPs should honor these other
LUP_RETURN_* flags as well:

LUP_RETURN_NAME -> return the h_name field from hostent struct in
lpszServiceInstanceName

LUP_RETURN_ADDR -> return addressing info from hostent in CSADDR_INFO structs, port
information is defaulted to zero

5.3.7. gethostname()
The WSALookupServiceBegin() query uses SVCID_HOSTNAME as the service class GUID. If
lpszServiceInstanceName is NULL or references a NULL string (i.e. ""), the local host is to be resolved.
Otherwise, a lookup on a specified host name shall occur. For the purposes of emulating gethostname() the
WinSock 2 DLL will specify a null pointer for lpszServiceInstanceName, and specify
LUP_RETURN_NAME so that the host name is returned in the lpszServiceInstanceName field. If an
application uses this query and specifies LUP_RETURN_ADDR then the host address will be provided in a
CSADDR_INFO struct. The LUP_RETURN_BLOB action is undefined for this query. Port information
will be defaulted to zero unless the lpszQueryString references a service such as "ftp", in which case the
complete transport address of the indicated service will be supplied.

224 gethostbyaddr

5.4. WinSock 1.1 Compatible Name Resolution Reference

5.4.1. gethostbyaddr()
Description Get host information corresponding to an address.

 #include <winsock2.h>

 struct hostent FAR * WSAAPI
gethostbyaddr (

IN const char FAR * addr,
IN int len,
IN int type

);

addr A pointer to an address in network byte order.

len The length of the address.

type The type of the address.

Remarks gethostbyaddr() returns a pointer to the following structure which contains the name(s)
and address which correspond to the given address. All strings are null terminated.

struct hostent {
char FAR * h_name;
char FAR * FAR * h_aliases;
short h_addrtype;
short h_length;
char FAR * FAR * h_addr_list;

};

The members of this structure are:
Element Usage
h_name Official name of the host (PC).
h_aliases A NULL-terminated array of alternate names.
h_addrtype The type of address being returned.
h_length The length, in bytes, of each address.
h_addr_list A NULL-terminated list of addresses for the host. Addresses are

returned in network byte order.

The macro h_addr is defined to be h_addr_list[0] for compatibility with older software.

The pointer which is returned points to a structure which is allocated by WinSock . The
application must never attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread, and so the application
should copy any information which it needs before issuing any other WinSock API calls.

h_name is the official name of the host. If using the DNS or similar resolution system, it is
the Fully Qualified Domain Name (FQDN) that caused the server to return a reply. If
using a local "hosts" file, it is the first entry after the IP address.

gethostbyaddr 225

Return Value If no error occurs, gethostbyaddr() returns a pointer to the hostent structure described
above. Otherwise it returns a NULL pointer and a specific error number may be retrieved
by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or server failed.

WSANO_RECOVERY Non-recoverable error occurred.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEAFNOSUPPORT The type specified is not supported by the Windows
Sockets implementation.

WSAEFAULT The addr argument is not a valid part of the user
address space, or the len argument is too small.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetHostByAddr(), gethostbyname(),

226 gethostbyname

5.4.2. gethostbyname()
Description Get host information corresponding to a hostname.

 #include <winsock2.h>

 struct hostent FAR *
WSAAPI gethostbyname (

IN const char FAR * name
);

name A pointer to the null terminated name of the host.

Remarks gethostbyname() returns a pointer to a hostent structure as described under
gethostbyaddr(). The contents of this structure correspond to the hostname name.

The pointer which is returned points to a structure which is allocated by WinSock. The
application must never attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread, and so the application
should copy any information which it needs before issuing any other WinSock API calls.

gethostbyname() does not resolve IP address strings passed to it. Such a request is
treated exactly as if an unknown host name were passed. An application with an IP
address string to resolve should use inet_addr() to convert the string to an IP address,
then gethostbyaddr() to obtain the hostent structure.

gethostbyname() will resolve the string returned by a successful call to gethostname().

Return Value If no error occurs, gethostbyname() returns a pointer to the hostent structure described
above. Otherwise it returns a NULL pointer and a specific error number may be retrieved
by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or server failure.

WSANO_RECOVERY Non-recoverable error occurred.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEFAULT The name argument is not a valid part of the user
address space.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

gethostbyname 227

See Also WSAAsyncGetHostByName(), gethostbyaddr()

228 gethostname

5.4.3. gethostname()
Description Return the standard host name for the local machine.

#include <winsock2.h>

int WSAAPI
gethostname (

OUT char FAR * name,
IN int namelen

);

name A pointer to a buffer that will receive the host name.

namelen The length of the buffer.

Remarks This routine returns the name of the local host into the buffer specified by the name
parameter. The host name is returned as a null-terminated string. The form of the host
name is dependent on the WinSock provider--it may be a simple host name, or it may be a
fully qualified domain name. However, it is guaranteed that the name returned will be
successfully parsed by gethostbyname() and WSAAsyncGetHostByName().

Note: If no local host name has been configured gethostname() must succeed and return
a token host name that gethostbyname() or WSAAsyncGetHostByName() can resolve.

Return Value If no error occurs, gethostname() returns 0, otherwise it returns SOCKET_ERROR and a
specific error code may be retrieved by calling WSAGetLastError().

Error Codes WSAEFAULT The name argument is not a valid part of the user
address space, or the buffer size specified by namelen
argument is too small to hold the complete host name.

WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

See Also gethostbyname(), WSAAsyncGetHostByName().

getprotobyname 229

5.4.4. getprotobyname()
Description Get protocol information corresponding to a protocol name.

 #include <winsock2.h>

 struct protoent FAR * WSAAPI
getprotobyname (

IN const char FAR * name
);

name A pointer to a null terminated protocol name.

Remarks getprotobyname() returns a pointer to the following structure which contains the name(s)
and protocol number which correspond to the given protocol name. All strings are null
terminated.

struct protoent {
char FAR * p_name;
char FAR * FAR * p_aliases;
short p_proto;

};

The members of this structure are:
Element Usage
p_name Official name of the protocol.
p_aliases A NULL-terminated array of alternate names.
p_proto The protocol number, in host byte order.

The pointer which is returned points to a structure which is allocated by the WinSock
library. The application must never attempt to modify this structure or to free any of its
components. Furthermore only one copy of this structure is allocated per thread, and so
the application should copy any information which it needs before issuing any other
WinSock API calls.

Return Value If no error occurs, getprotobyname() returns a pointer to the protoent structure described
above. Otherwise it returns a NULL pointer and a specific error number may be retrieved
by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server
failure .

WSANO_RECOVERY Non-recoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

230 getprotobyname

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEFAULT The name argument is not a valid part of the user
address space.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetProtoByName(), getprotobynumber()

getprotobynumber 231

5.4.5. getprotobynumber()
Description Get protocol information corresponding to a protocol number.

 #include <winsock2.h>

 struct protoent FAR * WSAAPI
getprotobynumber (

IN int number
);

number A protocol number, in host byte order.

Remarks This function returns a pointer to a protoent structure as described above in
getprotobyname(). The contents of the structure correspond to the given protocol
number.

The pointer which is returned points to a structure which is allocated by WinSock. The
application must never attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread, and so the application
should copy any information which it needs before issuing any other WinSock API calls.

Return Value If no error occurs, getprotobynumber() returns a pointer to the protoent structure
described above. Otherwise it returns a NULL pointer and a specific error number may
be retrieved by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server
failure .

WSANO_RECOVERY Non-recoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetProtoByNumber(), getprotobyname()

232 getservbyname

5.4.6. getservbyname()
Description Get service information corresponding to a service name and protocol.

 #include <winsock2.h>

 struct servent FAR * WSAAPI
getservbyname (

IN const char FAR* name,
IN const char FAR * proto

);

name A pointer to a null terminated service name.

proto An optional pointer to a null terminated protocol name. If this pointer
is NULL, getservbyname() returns the first service entry for which the
name matches the s_name or one of the s_aliases. Otherwise
getservbyname() matches both the name and the proto.

Remarks getservbyname() returns a pointer to the following structure which contains the name(s)
and service number which correspond to the given service name. All strings are null
terminated.

struct servent {
char FAR * s_name;
char FAR * FAR * s_aliases;
short s_port;
char FAR * s_proto;

};

The members of this structure are:
Element Usage
s_name Official name of the service.
s_aliases A NULL-terminated array of alternate names.
s_port The port number at which the service may be contacted. Port numbers

are returned in network byte order.
s_proto The name of the protocol to use when contacting the service.

The pointer which is returned points to a structure which is allocated by the WinSock
library. The application must never attempt to modify this structure or to free any of its
components. Furthermore only one copy of this structure is allocated per thread, and so
the application should copy any information which it needs before issuing any other
WinSock API calls.

Return Value If no error occurs, getservbyname() returns a pointer to the servent structure described
above. Otherwise it returns a NULL pointer and a specific error number may be retrieved
by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Service not found.

getservbyname 233

WSATRY_AGAIN Non-Authoritative Service not found, or server failure
.

WSANO_RECOVERY Non-recoverable errors, the services database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetServByName(), getservbyport()

234 getservbyport

5.4.7. getservbyport()
Description Get service information corresponding to a port and protocol.

 #include <winsock2.h>

 struct servent FAR * WSAAPI
getservbyport (

IN int port,
IN const char FAR* proto

);

port The port for a service, in network byte order.

proto An optional pointer to a protocol name. If this is NULL,
getservbyport() returns the first service entry for which the port
matches the s_port. Otherwise getservbyport() matches both the port
and the proto.

Remarks getservbyport() returns a pointer to a servent structure as described above for
getservbyname().

The pointer which is returned points to a structure which is allocated by WinSock. The
application must never attempt to modify this structure or to free any of its components.
Furthermore, only one copy of this structure is allocated per thread, and so the application
should copy any information which it needs before issuing any other WinSock API calls.

Return Value If no error occurs, getservbyport() returns a pointer to the servent structure described
above. Otherwise it returns a NULL pointer and a specific error number may be retrieved
by calling WSAGetLastError().

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAHOST_NOT_FOUND Authoritative Answer Service not found.

WSATRY_AGAIN Non-Authoritative Service not found, or server failure
.

WSANO_RECOVERY Non-recoverable errors, the services database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEFAULT The proto argument is not a valid part of the user
address space.

getservbyport 235

WSAEINTR A blocking WinSock 1.1 call was canceled via
WSACancelBlockingCall().

See Also WSAAsyncGetServByPort(), getservbyname()

236 inet_addr

5.4.8. inet_addr()
Description Convert a string containing an (IPv4) Internet Protocol dotted address into an in_addr.

 #include <winsock2.h>

unsigned long WSAAPI
inet_addr (

IN const char FAR * cp
);

cp A null terminated character string representing a number expressed in
the Internet standard ".'' notation.

Remarks This function interprets the character string specified by the cp parameter. This string
represents a numeric Internet address expressed in the Internet standard ".'' notation. The
value returned is a number suitable for use as an Internet address. All Internet addresses
are returned in IP’s network order (bytes ordered from left to right).

Internet Addresses

Values specified using the ".'' notation take one of the following forms:

a.b.c.d a.b.c a.b a

When four parts are specified, each is interpreted as a byte of data and assigned, from left
to right, to the four bytes of an Internet address. Note that when an Internet address is
viewed as a 32-bit integer quantity on the Intel architecture, the bytes referred to above
appear as "d.c.b.a''. That is, the bytes on an Intel processor are ordered from right to left.

Note: The following notations are only used by Berkeley, and nowhere else on the
Internet. In the interests of compatibility with their software, they are supported as
specified.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and
placed in the right most two bytes of the network address. This makes the three part
address format convenient for specifying Class B network addresses as "128.net.host''.

When a two part address is specified, the last part is interpreted as a 24-bit quantity and
placed in the right most three bytes of the network address. This makes the two part
address format convenient for specifying Class A network addresses as "net.host''.

When only one part is given, the value is stored directly in the network address without
any byte rearrangement.

Return Value If no error occurs, inet_addr() returns an unsigned long containing a suitable binary
representation of the Internet address given. If the passed-in string does not contain a
legitimate Internet address, for example if a portion of an "a.b.c.d" address exceeds 255,
inet_addr() returns the value INADDR_NONE.

See Also inet_ntoa()

inet_ntoa 237

5.4.9. inet_ntoa()
Description Convert an (IPv4) Internet network address into a string in dotted format.

 #include <winsock2.h>

 char FAR * WSAAPI
inet_ntoa (

IN struct in_addr in
);

in A structure which represents an Internet host address.

Remarks This function takes an Internet address structure specified by the in parameter. It returns
an ASCII string representing the address in ".'' notation as "a.b.c.d''. Note that the string
returned by inet_ntoa() resides in memory which is allocated by WinSock . The
application should not make any assumptions about the way in which the memory is
allocated. The data is guaranteed to be valid until the next WinSock API call within the
same thread, but no longer.

Return Value If no error occurs, inet_ntoa() returns a char pointer to a static buffer containing the text
address in standard ".'' notation. Otherwise, it returns NULL. The data should be copied
before another WinSock call is made.

See Also inet_addr().

238 WSAAsyncGetHostByAddr

5.4.10. WSAAsyncGetHostByAddr()
Description Get host information corresponding to an address - asynchronous version.

 #include <winsock2.h>

 HANDLE WSAAPI
WSAAsyncGetHostByAddr (

IN HWND hWnd,
IN unsigned int wMsg,
IN const char FAR * addr,
IN int len,
IN int type,
OUT char FAR* buf,
IN int buflen

);

hWnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request completes.

addr A pointer to the network address for the host. Host addresses are stored
in network byte order.

len The length of the address.

type The type of the address.

buf A pointer to the data area to receive the hostent data. Note that this
must be larger than the size of a hostent structure. This is because the
data area supplied is used by WinSock to contain not only a hostent
structure but any and all of the data which is referenced by members of
the hostent structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of gethostbyaddr(), and is used to retrieve host
name and address information corresponding to a network address. WinSock initiates the
operation and returns to the caller immediately, passing back an opaque "asynchronous
task handle" which the application may use to identify the operation. When the operation
is completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of lParam contain any error code.
The error code may be any error as defined in winsock2.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a hostent structure.
To access the elements of this structure, the original buffer address should be cast to a
hostent structure pointer and accessed as appropriate.

WSAAsyncGetHostByAddr 239

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of lParam contain the size of buffer required to
supply ALL the requisite information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetHostByAddr() function call with a buffer
large enough to receive all the desired information (i.e. no smaller than the low 16 bits
of lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock2.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

Return Value The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetHostByAddr() returns a
nonzero value of type HANDLE which is the asynchronous task handle (not to be
confused with a Windows HTASK) for the request. This value can be used in two ways.
It can be used to cancel the operation using WSACancelAsyncRequest(). It can also be
used to match up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByAddr()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments The buffer supplied to this function is used by WinSock to construct a hostent structure
together with the contents of data areas referenced by members of the same hostent
structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock2.h).

Error Codes The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the lParam in the reply message using
the WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT addr or buf is not in a valid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.

WSANO_RECOVERY Non-recoverable errors, FORMERR, REFUSED,
NOTIMP.

240 WSAAsyncGetHostByAddr

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the WinSock implementation.

See Also gethostbyaddr(), WSACancelAsyncRequest()

WSAAsyncGetHostByName 241

5.4.11. WSAAsyncGetHostByName()
Description Get host information corresponding to a hostname - asynchronous version.

 #include <winsock2.h>

 HANDLE WSAAPI
WSAAsyncGetHostByName (

IN HWND hWnd,
IN unsigned int wMsg,
IN const char FAR * name,
OUT char FAR * buf,
IN int buflen

);

hWnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request completes.

name A pointer to the null terminated name of the host.

buf A pointer to the data area to receive the hostent data. Note that this
must be larger than the size of a hostent structure. This is because the
data area supplied is used by WinSock to contain not only a hostent
structure but any and all of the data which is referenced by members of
the hostent structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of gethostbyname(), and is used to retrieve host
name and address information corresponding to a hostname. WinSock initiates the
operation and returns to the caller immediately, passing back an opaque "asynchronous
task handle" which the application may use to identify the operation. When the operation
is completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of lParam contain any error code.
The error code may be any error as defined in winsock2.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a hostent structure.
To access the elements of this structure, the original buffer address should be cast to a
hostent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of lParam contain the size of buffer required to
supply ALL the requisite information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetHostByName() function call with a buffer
large enough to receive all the desired information (i.e. no smaller than the low 16 bits of
lParam).

242 WSAAsyncGetHostByName

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock2.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

WSAAsyncGetHostByName()is guaranteed to resolve the string returned by a successful
call to gethostname().

Return Value The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetHostByName() returns a
nonzero value of type HANDLE which is the asynchronous task handle (not to be
confused with a Windows HTASK) for the request. This value can be used in two ways.
It can be used to cancel the operation using WSACancelAsyncRequest(). It can also be
used to match up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetHostByName()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments The buffer supplied to this function is used by WinSock to construct a hostent structure
together with the contents of data areas referenced by members of the same hostent
structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock2.h).

Error Codes The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the lParam in the reply message using
the WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT name or buf is not in a valid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Host not found, or SERVERFAIL.

WSANO_RECOVERY Non-recoverable errors, FORMERR, REFUSED,
NOTIMP.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSAAsyncGetHostByName 243

WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the WinSock implementation.

See Also gethostbyname(), WSACancelAsyncRequest()

244 WSAAsyncGetProtoByName

5.4.12. WSAAsyncGetProtoByName()
Description Get protocol information corresponding to a protocol name - asynchronous version.

 #include <winsock2.h>

 HANDLE WSAAPI
WSAAsyncGetProtoByName (

IN HWND hWnd,
IN unsigned int wMsg,
IN const char FAR * name,
OUT char FAR * buf,
IN int buflen

);

hWnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request completes.

name A pointer to the null terminated protocol name to be resolved.

buf A pointer to the data area to receive the protoent data. Note that this
must be larger than the size of a protoent structure. This is because the
data area supplied is used by WinSock to contain not only a protoent
structure but any and all of the data which is referenced by members of
the protoent structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getprotobyname(), and is used to retrieve
the protocol name and number corresponding to a protocol name. WinSock initiates the
operation and returns to the caller immediately, passing back an opaque "asynchronous
task handle" which the application may use to identify the operation. When the operation
is completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of lParam contain any error code.
The error code may be any error as defined in winsock2.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a protoent structure.
To access the elements of this structure, the original buffer address should be cast to a
protoent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of lParam contain the size of buffer required to
supply ALL the requisite information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetProtoByName() function call with a buffer
large enough to receive all the desired information (i.e. no smaller than the low 16 bits
of lParam).

WSAAsyncGetProtoByName 245

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock2.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

Return Value The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetProtoByName() returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request
(not to be confused with a Windows HTASK). This value can be used in two ways. It
can be used to cancel the operation using WSACancelAsyncRequest(). It can also be
used to match up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByName()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments The buffer supplied to this function is used by WinSock to construct a protoent structure
together with the contents of data areas referenced by members of the same protoent
structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock2.h).

Error Codes The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the lParam in the reply message using
the WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT name or buf is not in a valid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server
failure .

WSANO_RECOVERY Non-recoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

246 WSAAsyncGetProtoByName

WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the WinSock implementation.

See Also getprotobyname(), WSACancelAsyncRequest()

WSAAsyncGetProtoByNumber 247

5.4.13. WSAAsyncGetProtoByNumber()
Description Get protocol information corresponding to a protocol number - asynchronous version.

 #include <winsock2.h>

 HANDLE WSAAPI
WSAAsyncGetProtoByNumber (

IN HWND hWnd,
IN unsigned int wMsg,
IN int number,
OUT char FAR * buf,
IN int buflen

);

hWnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request completes.

number The protocol number to be resolved, in host byte order.

buf A pointer to the data area to receive the protoent data. Note that this
must be larger than the size of a protoent structure. This is because the
data area supplied is used by WinSock to contain not only a protoent
structure but any and all of the data which is referenced by members of
the protoent structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getprotobynumber(), and is used to retrieve
the protocol name and number corresponding to a protocol number. WinSock initiates
the operation and returns to the caller immediately, passing back an opaque
"asynchronous task handle" which the application may use to identify the operation.
When the operation is completed, the results (if any) are copied into the buffer provided
by the caller and a message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of lParam contain any error code.
The error code may be any error as defined in winsock2.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a protoent structure.
To access the elements of this structure, the original buffer address should be cast to a
protoent structure pointer and accessed as appropriate.

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of lParam contain the size of buffer required to
supply ALL the requisite information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetProtoByNumber() function call with a
buffer large enough to receive all the desired information (i.e. no smaller than the low 16
bits of lParam).

248 WSAAsyncGetProtoByNumber

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock2.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

Return Value The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetProtoByNumber() returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request
(not to be confused with a Windows HTASK). This value can be used in two ways. It
can be used to cancel the operation using WSACancelAsyncRequest(). It can also be
used to match up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetProtoByNumber()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments The buffer supplied to this function is used by WinSock to construct a protoent structure
together with the contents of data areas referenced by members of the same protoent
structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock2.h).

Error Codes The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the lParam in the reply message using
the WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT buf is not in a valid part of the process address space.

WSAHOST_NOT_FOUND Authoritative Answer Protocol not found.

WSATRY_AGAIN Non-Authoritative Protocol not found, or server
failure .

WSANO_RECOVERY Non-recoverable errors, the protocols database is not
accessible.

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAAsyncGetProtoByNumber 249

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the WinSock implementation.

See Also getprotobynumber(), WSACancelAsyncRequest()

250 WSAAsyncGetServByName

5.4.14. WSAAsyncGetServByName()
Description Get service information corresponding to a service name and port - asynchronous version.

 #include <winsock2.h>

 HANDLE WSAAPI
WSAAsyncGetServByName (

IN HWND hWnd,
IN unsigned int wMsg,
IN const char FAR * name,
IN const char FAR * proto,
OUT char FAR * buf,
IN int buflen

);

hWnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request completes.

name A pointer to a null terminated service name.

proto A pointer to a protocol name. This may be NULL, in which case
WSAAsyncGetServByName() will search for the first service entry for
which s_name or one of the s_aliases matches the given name.
Otherwise WSAAsyncGetServByName() matches both name and
proto.

buf A pointer to the data area to receive the servent data. Note that this
must be larger than the size of a servent structure. This is because the
data area supplied is used by WinSock to contain not only a servent
structure but any and all of the data which is referenced by members of
the servent structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getservbyname(), and is used to retrieve
service information corresponding to a service name. WinSock initiates the operation and
returns to the caller immediately, passing back an opaque "asynchronous task handle"
which the application may use to identify the operation. When the operation is
completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of lParam contain any error code.
The error code may be any error as defined in winsock2.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a servent structure.
To access the elements of this structure, the original buffer address should be cast to a
servent structure pointer and accessed as appropriate.

WSAAsyncGetServByName 251

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of lParam contain the size of buffer required to
supply ALL the requisite information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetServByName() function call with a buffer
large enough to receive all the desired information (i.e. no smaller than the low 16 bits of
lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock2.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

Return Value The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetServByName() returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request
(not to be confused with a Windows HTASK). This value can be used in two ways. It
can be used to cancel the operation using WSACancelAsyncRequest(). It can also be
used to match up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncServByName() returns a
zero value, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments The buffer supplied to this function is used by WinSock to construct a servent structure
together with the contents of data areas referenced by members of the same servent
structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock2.h).

Error Codes The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the lParam in the reply message using
the WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT buf is not in a valid part of the process address space.

WSAHOST_NOT_FOUND Authoritative Answer Host not found.

WSATRY_AGAIN Non-Authoritative Service not found, or server failure
.

WSANO_RECOVERY Non-recoverable errors, the services database is not
accessible.

252 WSAAsyncGetServByName

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the WinSock implementation.

See Also getservbyname(), WSACancelAsyncRequest()

WSAAsyncGetServByPort 253

5.4.15. WSAAsyncGetServByPort()
Description Get service information corresponding to a port and protocol - asynchronous version.

 #include <winsock2.h>

 HANDLE WSAAPI
WSAAsyncGetServByPort (

IN HWND hWnd,
IN unsigned int wMsg,
IN int port,
IN const char FAR * proto,
OUT char FAR * buf,
IN int buflen

);

hWnd The handle of the window which should receive a message when the
asynchronous request completes.

wMsg The message to be received when the asynchronous request completes.

port The port for the service, in network byte order.

proto A pointer to a protocol name. This may be NULL, in which case
WSAAsyncGetServByPort() will search for the first service entry for
which s_port match the given port. Otherwise
WSAAsyncGetServByPort() matches both port and proto.

buf A pointer to the data area to receive the servent data. Note that this
must be larger than the size of a servent structure. This is because the
data area supplied is used by WinSock to contain not only a servent
structure but any and all of the data which is referenced by members of
the servent structure. It is recommended that you supply a buffer of
MAXGETHOSTSTRUCT bytes.

buflen The size of data area buf above.

Remarks This function is an asynchronous version of getservbyport(), and is used to retrieve
service information corresponding to a port number. WinSock initiates the operation and
returns to the caller immediately, passing back an opaque "asynchronous task handle"
which the application may use to identify the operation. When the operation is
completed, the results (if any) are copied into the buffer provided by the caller and a
message is sent to the application's window.

When the asynchronous operation is complete the application's window hWnd receives
message wMsg. The wParam argument contains the asynchronous task handle as
returned by the original function call. The high 16 bits of lParam contain any error code.
The error code may be any error as defined in winsock2.h. An error code of zero
indicates successful completion of the asynchronous operation. On successful
completion, the buffer supplied to the original function call contains a servent structure.
To access the elements of this structure, the original buffer address should be cast to a
servent structure pointer and accessed as appropriate.

254 WSAAsyncGetServByPort

Note that if the error code is WSAENOBUFS, it indicates that the size of the buffer
specified by buflen in the original call was too small to contain all the resultant
information. In this case, the low 16 bits of lParam contain the size of buffer required to
supply ALL the requisite information. If the application decides that the partial data is
inadequate, it may reissue the WSAAsyncGetServByPort() function call with a buffer
large enough to receive all the desired information (i.e. no smaller than the low 16 bits of
lParam).

The error code and buffer length should be extracted from the lParam using the macros
WSAGETASYNCERROR and WSAGETASYNCBUFLEN, defined in winsock2.h as:

#define WSAGETASYNCERROR(lParam) HIWORD(lParam)
#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam)

The use of these macros will maximize the portability of the source code for the
application.

Return Value The return value specifies whether or not the asynchronous operation was successfully
initiated. Note that it does not imply success or failure of the operation itself.

If the operation was successfully initiated, WSAAsyncGetServByPort() returns a
nonzero value of type HANDLE which is the asynchronous task handle for the request
(not to be confused with a Windows HTASK). This value can be used in two ways. It
can be used to cancel the operation using WSACancelAsyncRequest(). It can also be
used to match up asynchronous operations and completion messages, by examining the
wParam message argument.

If the asynchronous operation could not be initiated, WSAAsyncGetServByPort()
returns a zero value, and a specific error number may be retrieved by calling
WSAGetLastError().

Comments The buffer supplied to this function is used by WinSock to construct a servent structure
together with the contents of data areas referenced by members of the same servent
structure. To avoid the WSAENOBUFS error noted above, the application should
provide a buffer of at least MAXGETHOSTSTRUCT bytes (as defined in winsock2.h).

Error Codes The following error codes may be set when an application window receives a message.
As described above, they may be extracted from the lParam in the reply message using
the WSAGETASYNCERROR macro.

WSAENETDOWN The network subsystem has failed.

WSAENOBUFS Insufficient buffer space is available.

WSAEFAULT proto or buf is not in a valid part of the process
address space.

WSAHOST_NOT_FOUND Authoritative Answer Port not found.

WSATRY_AGAIN Non-Authoritative Port not found, or server failure .

WSANO_RECOVERY Non-recoverable errors, the services database is not
accessible.

WSAAsyncGetServByPort 255

WSANO_DATA Valid name, no data record of requested type.

The following errors may occur at the time of the function call, and indicate that the
asynchronous operation could not be initiated.

WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEWOULDBLOCK The asynchronous operation cannot be scheduled at
this time due to resource or other constraints within
the WinSock implementation.

See Also getservbyport(), WSACancelAsyncRequest()

256 WSACancelAsyncRequest

5.4.16. WSACancelAsyncRequest()
Description Cancel an incomplete asynchronous operation.

 #include <winsock2.h>

 int WSAAPI
WSACancelAsyncRequest (

IN HANDLE hAsyncTaskHandle
);

hAsyncTaskHandle Specifies the asynchronous operation to be canceled.

Remarks The WSACancelAsyncRequest() function is used to cancel an asynchronous operation
which was initiated by one of the WSAAsyncGetXByY() functions such as
WSAAsyncGetHostByName(). The operation to be canceled is identified by the
hAsyncTaskHandle parameter, which should be set to the asynchronous task handle as
returned by the initiating WSAAsyncGetXByY() function.

Return Value The value returned by WSACancelAsyncRequest() is 0 if the operation was successfully
canceled. Otherwise the value SOCKET_ERROR is returned, and a specific error
number may be retrieved by calling WSAGetLastError().

Comments An attempt to cancel an existing asynchronous WSAAsyncGetXByY() operation can fail
with an error code of WSAEALREADY for two reasons. First, the original operation has
already completed and the application has dealt with the resultant message. Second, the
original operation has already completed but the resultant message is still waiting in the
application window queue.

Note It is unclear whether the application can usefully distinguish between WSAEINVAL and
WSAEALREADY, since in both cases the error indicates that there is no asynchronous
operation in progress with the indicated handle. [Trivial exception: 0 is always an invalid
asynchronous task handle.] The WinSock specification does not prescribe how a
conformant WinSock provider should distinguish between the two cases. For maximum
portability, a WinSock application should treat the two errors as equivalent.

Error Codes WSANOTINITIALISED A successful WSAStartup() must occur before using
this API.

WSAENETDOWN The network subsystem has failed.

WSAEINVAL Indicates that the specified asynchronous task handle
was invalid

WSAEINPROGRESS A blocking WinSock 1.1 call is in progress, or the
service provider is still processing a callback
function.

WSAEALREADY The asynchronous routine being canceled has already
completed.

WSACancelAsyncRequest 257

See Also WSAAsyncGetHostByAddr(), WSAAsyncGetHostByName(),
WSAAsyncGetProtoByNumber(), WSAAsyncGetProtoByName(),
WSAAsyncGetServByPort(), WSAAsyncGetServByName().

258 Appendix A1: Error Codes

Appendix A. Error Codes and Header Files and Data Types

A.1 Error Codes

A.1.1 Error Codes - Brief Description

The following is a list of possible error codes returned by the WSAGetLastError() call, along with their
brief explanations. The error numbers are consistently set across all WinSock-compliant implementations.

Appendix A1: Error Codes 259

WinSock code Berkeley equivalent Error Interpretation

WSAEINTR EINTR 10004 As in standard C
WSAEBADF EBADF 10009 As in standard C
WSAEACCES EACCES 10013 As in standard C
WSAEFAULT EFAULT 10014 As in standard C
WSAEINVAL EINVAL 10022 As in standard C
WSAEMFILE EMFILE 10024 As in standard C
WSAEWOULDBLOCK EWOULDBLOCK 10035 As in BSD
WSAEINPROGRESS EINPROGRESS 10036 This error is returned if any

WinSock function is
called while a blocking function
is
in progress.

WSAEALREADY EALREADY 10037 As in BSD
WSAENOTSOCK ENOTSOCK 10038 As in BSD
WSAEDESTADDRREQ EDESTADDRREQ 10039 As in BSD
WSAEMSGSIZE EMSGSIZE 10040 As in BSD
WSAEPROTOTYPE EPROTOTYPE 10041 As in BSD
WSAENOPROTOOPT ENOPROTOOPT 10042 As in BSD
WSAEPROTONOSUPPORT EPROTONOSUPPORT 10043 As in BSD
WSAESOCKTNOSUPPORT ESOCKTNOSUPPORT 10044 As in BSD
WSAEOPNOTSUPP EOPNOTSUPP 10045 As in BSD
WSAEPFNOSUPPORT EPFNOSUPPORT 10046 As in BSD
WSAEAFNOSUPPORT EAFNOSUPPORT 10047 As in BSD
WSAEADDRINUSE EADDRINUSE 10048 As in BSD
WSAEADDRNOTAVAIL EADDRNOTAVAIL 10049 As in BSD
WSAENETDOWN ENETDOWN 10050 As in BSD. This error may be

reported at any time if the
WinSock implementation detects an
underlying failure.

WSAENETUNREACH ENETUNREACH 10051 As in BSD
WSAENETRESET ENETRESET 10052 As in BSD
WSAECONNABORTED ECONNABORTED 10053 As in BSD
WSAECONNRESET ECONNRESET 10054 As in BSD
WSAENOBUFS ENOBUFS 10055 As in BSD
WSAEISCONN EISCONN 10056 As in BSD
WSAENOTCONN ENOTCONN 10057 As in BSD
WSAESHUTDOWN ESHUTDOWN 10058 As in BSD
WSAETOOMANYREFS ETOOMANYREFS 10059 As in BSD
WSAETIMEDOUT ETIMEDOUT 10060 As in BSD
WSAECONNREFUSED ECONNREFUSED 10061 As in BSD
WSAELOOP ELOOP 10062 As in BSD
WSAENAMETOOLONG ENAMETOOLONG 10063 As in BSD
WSAEHOSTDOWN EHOSTDOWN 10064 As in BSD
WSAEHOSTUNREACH EHOSTUNREACH 10065 As in BSD

Missi
ng
10066
thru
10071

WSASYSNOTREADY 10091 Returned by WSAStartup()
indicating that the network
subsystem is unusable.

WSAVERNOTSUPPORTED 10092 Returned by WSAStartup()
indicating that the WinSock
DLL cannot support this app.

WSANOTINITIALISED 10093 Returned by any function except
WSAStartup() indicating that a
successful WSAStartup() has not
yet been performed.

WSAEDISCON 10010
1

Returned by WSARecv(),
WSARecvFrom() to indicate the
remote party has initiated a
graceful shutdown sequence.

Missi
ng
10102
thru
10112

WSA_OPERATION_ABORTED * An overlapped operation has been
canceled due to the closure of the
socket, or the execution of the
SIO_FLUSH command in WSAIoctl()

WSAHOST_NOT_FOUND HOST_NOT_FOUND 11001 As in BSD.

260 Appendix A1: Error Codes

WSATRY_AGAIN TRY_AGAIN 11002 As in BSD
WSANO_RECOVERY NO_RECOVERY 11003 As in BSD
WSANO_DATA NO_DATA 11004 As in BSD
* varies in different operating systems

The first set of definitions is present to resolve contentions between standard C error codes which may be
defined inconsistently between various C compilers.

The second set of definitions provides WinSock versions of regular Berkeley Sockets error codes.

The third set of definitions consists of extended WinSock-specific error codes.

The fourth set of errors are returned by WinSock getXbyY() and WSAAsyncGetXByY() functions, and
correspond to the errors which in Berkeley software would be returned in the h_errno variable. They
correspond to various failures which may be returned by the Domain Name Service. If the WinSock
provider does not use the DNS, it will use the most appropriate code. In general, a WinSock application
should interpret WSAHOST_NOT_FOUND and WSANO_DATA as indicating that the key (name,
address, etc.) was not found, while WSATRY_AGAIN and WSANO_RECOVERY suggest that the name
service itself is non-operational.

The error numbers are derived from the Winsock2.h header file listed in section A.2.2 , and are based on
the fact that WinSock error numbers are computed by adding 10000 to the "normal" Berkeley error number.

Note that this table does not include all of the error codes defined in Winsock2.h. This is because it
includes only errors which might reasonably be returned by a WinSock implementation: Winsock2.h, on
the other hand, includes a full set of BSD definitions to ensure compatibility with ported software.

A.1.2 Error Codes - Extended Description
The following is a list of possible error codes returned by the WSAGetLastError() call, along with their
extended explanations. Errors are listed in alphabetical order by error macro. Some error codes defined in
WINSOCK2.H are not returned from any function - these have not been listed here.
WSAEACCES (10013) Permission denied.

An attempt was made to access a socket in a way forbidden by its access permissions. An example
is using a broadcast address for sendto() without broadcast permission being set using
setsockopt(SO_BROADCAST).

WSAEADDRINUSE (10048) Address already in use.
Only one usage of each socket address (protocol/IP address/port) is normally permitted. This error
occurs if an application attempts to bind() a socket to an IP address/port that has already been used
for an existing socket, or a socket that wasn't closed properly, or one that is still in the process of
closing. For server applications that need to bind() multiple sockets to the same port number,
consider using setsockopt(SO_REUSEADDR). Client applications usually need not call bind() at
all - connect() will choose an unused port automatically. When the bind() is done to a wild-card
address (involving ADDR_ANY), a WSAEADDRINUSE error could be delayed until the specific
address is “committed”. This could happen in a later function such as connect(), listen(),
WSAConnect(), or WSAJoinLeaf().

WSAEADDRNOTAVAIL (10049) Cannot assign requested address.
The requested address is not valid in its context. Normally results from an attempt to bind() to an
address that is not valid for the local machine. This may also result from connect(), sendto(),
WSAConnect(), WSAJoinLeaf(), or WSASendTo() when the remote address or port is not valid
for a remote machine (e.g. address or port 0).

WSAEAFNOSUPPORT (10047) Address family not supported by protocol family.

Appendix A1: Error Codes 261

An address incompatible with the requested protocol was used. All sockets are created with an
associated "address family" (i.e. AF_INET for Internet Protocols) and a generic protocol type (i.e.
SOCK_STREAM). This error will be returned if an incorrect protocol is explicitly requested in the
socket() call, or if an address of the wrong family is used for a socket, e.g. in sendto().

WSAEALREADY (10037) Operation already in progress.
An operation was attempted on a non-blocking socket that already had an operation in progress -
i.e. calling connect() a second time on a non-blocking socket that is already connecting, or
canceling an asynchronous request (WSAAsyncGetXbyY()) that has already been canceled or
completed.

WSAECONNABORTED (10053) Software caused connection abort.
An established connection was aborted by the software in your host machine, possibly due to a
data transmission timeout or protocol error.

WSAECONNREFUSED (10061) Connection refused.
No connection could be made because the target machine actively refused it. This usually results
from trying to connect to a service that is inactive on the foreign host - i.e. one with no server
application running.

WSAECONNRESET (10054) Connection reset by peer.
A existing connection was forcibly closed by the remote host. This normally results if the peer
application on the remote host is suddenly stopped, the host is rebooted, or the remote host used a
"hard close" (see setsockopt(SO_LINGER)) on the remote socket. This error may also result if a
connection was broken due to “keep-alive” activity detecting a failure while one or more
operations are in progress. Operations that were in progress fail with WSAENETRESET.
Subsequent operations fail with WSAECONNRESET.

WSAEDESTADDRREQ (10039) Destination address required.
A required address was omitted from an operation on a socket. For example, this error will be
returned if sendto() is called with the remote address of ADDR_ANY.

WSAEFAULT (10014) Bad address.
The system detected an invalid pointer address in attempting to use a pointer argument of a call.
This error occurs if an application passes an invalid pointer value, or if the length of the buffer is
too small. For instance, if the length of an argument which is a struct sockaddr is smaller than
sizeof(struct sockaddr).

WSAEHOSTDOWN (10064) Host is down.
A socket operation failed because the destination host was down. A socket operation encountered
a dead host. Networking activity on the local host has not been initiated. These conditions are
more likely to be indicated by the error WSAETIMEDOUT.

WSAEHOSTUNREACH (10065) No route to host.
A socket operation was attempted to an unreachable host. See WSAENETUNREACH

WSAEINPROGRESS (10036) Operation now in progress.
A blocking operation is currently executing. Windows Sockets only allows a single blocking
operation to be outstanding per task (or thread), and if any other function call is made (whether or
not it references that or any other socket) the function fails with the WSAEINPROGRESS error.

WSAEINTR (10004) Interrupted function call.
A blocking operation was interrupted by a call to WSACancelBlockingCall().

WSAEINVAL (10022) Invalid argument.

262 Appendix A1: Error Codes

Some invalid argument was supplied (for example, specifying an invalid level to the setsockopt()
function). In some instances, it also refers to the current state of the socket - for instance, calling
accept() on a socket that is not listen()ing.

WSAEISCONN (10056) Socket is already connected.
A connect request was made on an already connected socket. Some implementations also return
this error if sendto() is called on a connected SOCK_DGRAM socket (For SOCK_STREAM
sockets, the to parameter in sendto() is ignored), although other implementations treat this as a
legal occurrence.

WSAEMFILE (10024) Too many open files.
Too many open sockets. Each implementation may have a maximum number of socket handles
available, either globally, per process or per thread.

WSAEMSGSIZE (10040) Message too long.
A message sent on a datagram socket was larger than the internal message buffer or some other
network limit, or the buffer used to receive a datagram into was smaller than the datagram itself.

WSAENETDOWN (10050) Network is down.
A socket operation encountered a dead network. This could indicate a serious failure of the
network system (i.e. the protocol stack that the WinSock DLL runs over), the network interface, or
the local network itself.

WSAENETRESET (10052) Network dropped connection on reset.
The connection has been broken due to “keep-alive” activity detecting a failure while the operation
was in progress. May also be returned by setsockopt() if an attempt is made to set
SO_KEEPALIVE on a connection that has already failed.

WSAENETUNREACH (10051) Network is unreachable.
A socket operation was attempted to an unreachable network. This usually means the local
software knows no route to reach the remote host.

WSAENOBUFS (10055) No buffer space available.
An operation on a socket could not be performed because the system lacked sufficient buffer space
or because a queue was full.

WSAENOPROTOOPT (10042) Bad protocol option.
An unknown, invalid or unsupported option or level was specified in a getsockopt() or
setsockopt() call.

WSAENOTCONN (10057) Socket is not connected.
A request to send or receive data was disallowed because the socket is not connected and (when
sending on a datagram socket using sendto()) no address was supplied. Any other type of
operation might also return this error - for example, setsockopt() setting SO_KEEPALIVE if the
connection has been reset.

WSAENOTSOCK (10038) Socket operation on non-socket.
An operation was attempted on something that is not a socket. Either the socket handle parameter
did not reference a valid socket, or for select(), a member of an fd_set was not valid.

WSAEOPNOTSUPP (10045) Operation not supported.
The attempted operation is not supported for the type of object referenced. Usually this occurs
when a socket descriptor to a socket that cannot support this operation, for example, trying to
accept a connection on a datagram socket.

Appendix A1: Error Codes 263

WSAEPFNOSUPPORT (10046) Protocol family not supported.
The protocol family has not been configured into the system or no implementation for it exists. Has
a slightly different meaning to WSAEAFNOSUPPORT, but is interchangeable in most cases, and
all Windows Sockets functions that return one of these specify WSAEAFNOSUPPORT.

WSAEPROCLIM (10067) Too many processes.
A Windows Sockets implementation may have a limit on the number of applications that may use
it simultaneously. WSAStartup() may fail with this error if the limit has been reached.

WSAEPROTONOSUPPORT (10043) Protocol not supported.
The requested protocol has not been configured into the system, or no implementation for it exists.
For example, a socket() call requests a SOCK_DGRAM socket, but specifies a stream protocol.

WSAEPROTOTYPE (10041) Protocol wrong type for socket.
A protocol was specified in the socket() function call that does not support the semantics of the
socket type requested. For example, the ARPA Internet UDP protocol cannot be specified with a
socket type of SOCK_STREAM.

WSAESHUTDOWN (10058) Cannot send after socket shutdown.
A request to send or receive data was disallowed because the socket had already been shut down in
that direction with a previous shutdown() call. By calling shutdown() a partial close of a socket
is requested, which is a signal that sending or receiving or both has been discontinued.

WSAESOCKTNOSUPPORT (10044) Socket type not supported.
The support for the specified socket type does not exist in this address family. For example, the
optional type SOCK_RAW might be selected in a socket() call, and the implementation does not
support SOCK_RAW sockets at all.

WSAETIMEDOUT (10060) Connection timed out.
A connection attempt failed because the connected party did not properly respond after a period of
time, or established connection failed because connected host has failed to respond.

WSATYPE_NOT_FOUND (10109) Class type not found
The specified class was not found.

WSAEWOULDBLOCK (10035) Resource temporarily unavailable.
This error is returned from operations on non-blocking sockets that cannot be completed
immediately, for example recv() when no data is queued to be read from the socket. It is a non-
fatal error, and the operation should be retried later. It is normal for WSAEWOULDBLOCK to be
reported as the result from calling connect() on a non-blocking SOCK_STREAM socket, since
some time must elapse for the connection to be established.

WSAHOST_NOT_FOUND (11001) Host not found.
No such host is known. The name is not an official hostname or alias, or it cannot be found in the
database(s) being queried. This error may also be returned for protocol and service queries, and
means the specified name could not be found in the relevant database.

WSA_INVALID_HANDLE (OS dependent) Specified event object handle is invalid.
An application attempts to use an event object, but the specified handle is not valid.

WSA_INVALID_PARAMETER (OS dependent) One or more parameters are invalid.
An application used a WinSock function which directly maps to a Win32 function. The Win32
function is indicating a problem with one or more parameters.

264 Appendix A1: Error Codes

WSAINVALIDPROCTABLE (OS dependent) Invalid procedure table from service provider.
A service provider returned a bogus proc table to WS2_32.DLL. (Usually caused by one or more
of the function pointers being NULL.)

WSAINVALIDPROVIDER (OS dependent) Invalid service provider version number.
A service provider returned a version number other than 2.2.

WSA_IO_INCOMPLETE (OS dependent) Overlapped I/O event object not in signaled state.
The application has tried to determine the status of an overlapped operation which is not yet
completed. Applications that use WSAGetOverlappedResult() (with the fWait flag set to false)
in a polling mode to determine when an overlapped operation has completed will get this error
code until the operation is complete.

WSA_IO_PENDING (OS dependent) Overlapped operations will complete later.
The application has initiated an overlapped operation which cannot be completed immediately. A
completion indication will be given at a later time when the operation has been completed.

WSA_NOT_ENOUGH_MEMORY (OS dependent) Insufficient memory available.
An application used a WinSock function which directly maps to a Win32 function. The Win32
function is indicating a lack of required memory resources.

WSANOTINITIALISED (10093) Successful WSAStartup() not yet performed.
Either the application hasn’t called WSAStartup(), or WSAStartup() failed. The application may
be accessing a socket which the current active task does not own (i.e. trying to share a socket
between tasks), or WSACleanup() has been called too many times.

WSANO_DATA (11004) Valid name, no data record of requested type.
The requested name is valid and was found in the database, but it does not have the correct
associated data being resolved for. The usual example for this is a hostname -> address translation
attempt (using gethostbyname() or WSAAsyncGetHostByName()) which uses the DNS (Domain
Name Server), and an MX record is returned but no A record - indicating the host itself exists, but
is not directly reachable.

WSANO_RECOVERY (11003) This is a non-recoverable error.
This indicates some sort of non-recoverable error occurred during a database lookup. This may be
because the database files (e.g. BSD-compatible HOSTS, SERVICES or PROTOCOLS files)
could not be found, or a DNS request was returned by the server with a severe error.

WSAPROVIDERFAILEDINIT (OS dependent) Unable to initialize a service provider.
Either a service provider's DLL could not be loaded (LoadLibrary() failed) or the provider's
WSPStartup/NSPStartup function failed.

WSASYSCALLFAILURE (OS dependent) System call failure..
Returned when a system call that should never fail does. For example, if a call to
WaitForMultipleObjects() fails or one of the registry APIs fails trying to manipulate the
protocol/namespace catalogs.

WSASYSNOTREADY (10091) Network subsystem is unavailable.
This error is returned by WSAStartup() if the Windows Sockets implementation cannot function
at this time because the underlying system it uses to provide network services is currently
unavailable. Users should check:
• that the appropriate Windows Sockets DLL file is in the current path,

Appendix A1: Error Codes 265

• • that they are not trying to use more than one WinSock implementation simultaneously. If
there is more than one WINSOCK DLL on your system, be sure the first one in the path is
appropriate for the network subsystem currently loaded.

• the WinSock implementation documentation to be sure all necessary components are
currently installed and configured correctly.

WSATRY_AGAIN (11002) Non-authoritative host not found.
This is usually a temporary error during hostname resolution and means that the local server did
not receive a response from an authoritative server. A retry at some time later may be successful.

WSAVERNOTSUPPORTED (10092) WINSOCK.DLL version out of range.
The current WinSock implementation does not support the Windows Sockets specification version
requested by the application. Check that no old Windows Sockets DLL files are being accessed.

WSAEDISCON (10101) Graceful shutdown in progress.
Returned by WSARecv(), WSARecvFrom() to indicate the remote party has initiated a graceful
shutdown sequence.

WSA_OPERATION_ABORTED (OS dependent) Overlapped operation aborted.
An overlapped operation was canceled due to the closure of the socket, or the execution of the
SIO_FLUSH command in WSAIoctl()

266 Header Files

A.2 Header Files
A.2.1 Berkeley Header Files
The WinSock SDK includes a set of vestigial header files with names that match a number of the header
files in the Berkeley software distribution. These files are provided for source code compatibility only, and
each consists of three lines:

#ifndef _WinsockAPI_
#include <Winsock2.h>
#endif

The header files provided for compatibility are:
netdb.h
arpa/inet.h
sys/time.h
sys/socket.h
netinet/in.h

The file Winsock2.h contains all of the type and structure definitions, constants, macros, and function
prototypes used by the WinSock specification. An application writer may choose to ignore the
compatibility headers and include Winsock2.h in each source file.

WinSock2.h 267

A.2.2 WinSock Header File - Winsock2.h

The Winsock2.h header file includes a number of types and definitions from the standard Windows header
file windows.h.

A WinSock service provider vendor MUST NOT make any modifications to this header file which could
impact binary compatibility of WinSock applications. The constant values, function parameters and return
codes, and the like must remain consistent across all WinSock service provider vendors.

New versions of Winsock2.h will appear periodically as new identifiers are allocated by the WinSock
Identifier Clearinghouse. The clearinghouse can be reached via the world wide web at

http://www.stardust.com/wsresource/winsock2/ws2ident.html

Developers are urged to stay current with successive revisions of Winsock2.h as they are made available by
the clearinghouse.

The Winsock2.h header file now supports UNICODE, and thus contains both A and W declarations for all
applicable functions and structures. In addition, both function prototypes and function typedefs are
supplied. As a result, the Winsock2.h header file has become quite lengthy (in excess of 40 pages when
printed). Because it has grown so large and is subject to frequent updates, Winsock2.h is no longer being
copied verbatim into this specification document.

268 Appendix B: Windows Sockets Introduction

A.2.3 Sizes of Data Types

This section lists the primitive data types used as parameters and return values for the Windows Sockets
API functions, specifying their sizes in bytes. This is to ensure that developers using programming
environments and languages other than C/C++ will be able to develop modules that will be capable of
correctly interfacing with a Windows Sockets implementation's WinSock DLL.

Primitive Data Type 16-bit Windows data
sizes (in bytes)

32-bit Windows data
sizes (in bytes)

BOOL 2 4
char 1 1
int 2 4
FAR pointer to
anything

4 4

long 4 4
short 2 2
SOCKET 2 4

Appendix B: Multipoint and Multicast 269

Appendix B. Multipoint and Multicast Semantics

B.1. Multipoint and Multicast Introduction
In considering how to support multipoint and multicast in WinSock 2 a number of existing and proposed
multipoint/multicast schemes (including IP-multicast, ATM point-to-multipoint connection, ST-II, T.120,
H.320 (MCU), etc.) were examined. While common in some aspects, each is widely different in others. To
enable a coherent discussion of the various schemes, it is valuable to first create a taxonomy that
characterizes the essential attributes of each. For simplicity, the term “multipoint” will hereafter be used to
represent both multipoint and multicast.

B.2 Multipoint Taxonomy
The taxonomy described in this appendix first distinguishes the control plane that concerns itself with the
way a multipoint session is established, from the data plane that deals with the transfer of data amongst
session participants.

In the control plane there are two distinct types of session establishment: rooted and non-rooted. In the
case of rooted control, there exists a special participant, called c_root, that is different from the rest of the
members of this multipoint session, each of which is called a c_leaf. The c_root must remain present for the
whole duration of the multipoint session, as the session will be broken up in the absence of the c_root. The
c_root usually initiates the multipoint session by setting up the connection to a c_leaf, or a number of
c_leafs. The c_root may add more c_leafs, or (in some cases) a c_leaf can join the c_root at a later time.
Examples of the rooted control plane can be found in ATM and ST-II.

For a non-rooted control plane, all the members belonging to a multipoint session are leaves, i.e., no special
participant acting as a c_root exists. Each c_leaf needs to add itself to a pre-existing multipoint session that
either is always available (as in the case of an IP multicast address), or has been set up through some out-
of-band mechanism which is outside the scope of the WinSock specification. Another way to look at this is
that a c_root still exists, but can be considered to be in the network cloud as opposed to one of the
participants. Because a control root still exists, a non-rooted control plane could also be considered to be
implicitly rooted. Examples for this kind of implicitly rooted multipoint schemes are: a teleconferencing
bridge, the IP multicast system, a Multipoint Control Unit (MCU) in a H.320 video conference, etc.

In the data plane, there are two types of data transfer styles: rooted and non-rooted. In a rooted data plane,
a special participant called d_root exists. Data transfer only occurs between the d_root and the rest of the
members of this multipoint session, each of which is referred to as a d_leaf. The traffic could be uni-
directional, or bi-directional. The data sent out from the d_root will be duplicated (if required) and
delivered to every d_leaf, while the data from d_leafs will only go to the d_root. In the case of a rooted
data plane, there is no traffic allowed among d_leafs. An example of a protocol that is rooted in the data
plane is ST-II.

In a non-rooted data plane, all the participants are equal in the sense that any data they send will be
delivered to all the other participants in the same multipoint session. Likewise each d_leaf node will be
able to receive data from all other d_leafs, and in some cases, from other nodes which are not participating
in the multipoint session as well. No special d_root node exists. IP-multicast is non-rooted in the data
plane.

Note that the question of where data unit duplication occurs, or whether a shared single tree or multiple
shortest-path trees are used for multipoint distribution are protocol issues, and are irrelevant to the interface
the application would use to perform multipoint communications. Therefore these issues are not addressed
either in this appendix or by the WinSock interface.

270 Appendix B: Multipoint and Multicast

The following table depicts the taxonomy described above and indicates how existing schemes fit into each
of the categories. Note that there does not appear to be any existing schemes that employ a non-rooted
control plane along with a rooted data plane.

rooted
control plane

non-rooted (implicit rooted)
control plane

rooted
data plane

ATM,
ST-II

No known examples.

non-rooted
data plane

T.120 IP-multicast,
H.320 (MCU)

B.3 WinSock 2 Interface Elements for Multipoint and Multicast
The mechanisms that have been incorporated into WinSock 2 for utilizing multipoint capabilities can be
summarized as follows:
• Three attribute bits in the WSAPROTOCOL_INFO struct
• Four flags defined for the dwFlags parameter of WSASocket()
• One function, WSAJoinLeaf(), for adding leaf nodes into a multipoint session
• Two WSAIoctl() command codes for controlling multipoint loopback and the scope of multicast

transmissions.

The paragraphs which follow describe these interface elements in more detail.

B.3.1. Attributes in WSAPROTOCOL_INFO struct
In support of the taxonomy described above, three attribute fields in the WSAPROTOCOL_INFO structure
are use to distinguish the different schemes used in the control and data planes respectively :
(1) XP1_SUPPORT_MULTIPOINT with a value of 1 indicates this protocol entry supports multipoint

communications, and that the following two fields are meaningful.
(2) XP1_MULTIPOINT_CONTROL_PLANE indicates whether the control plane is rooted (value = 1) or

non-rooted (value = 0).
(3) XP1_MULTIPOINT_DATA_PLANE indicates whether the data plane is rooted (value = 1) or non-

rooted (value = 0).
Note that two WSAPROTOCOL_INFO entries would be present if a multipoint protocol supported both
rooted and non-rooted data planes, one entry for each.

The application can use WSAEnumProtocols() to discover whether multipoint communications is
supported for a given protocol and, if so, how it is supported with respect to the control and data planes,
respectively.

B.3.2. Flag bits for WSASocket()
In some instances sockets joined to a multipoint session may have some behavioral differences from point-
to-point sockets. For example, a d_leaf socket in a rooted data plane scheme can only send information to
the d_root participant. This creates a need for the application to be able to indicated the intended use of a
socket coincident with its creation. This is done through four flag bits that can be set in the dwFlags
parameter to WSASocket():
• WSA_FLAG_MULTIPOINT_C_ROOT, for the creation of a socket acting as a c_root, and only

allowed if a rooted control plane is indicated in the corresponding WSAPROTOCOL_INFO entry.

Appendix B: Multipoint and Multicast 271

• WSA_FLAG_MULTIPOINT_C_LEAF, for the creation of a socket acting as a c_leaf, and only
allowed if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding
WSAPROTOCOL_INFO entry.

• WSA_FLAG_MULTIPOINT_D_ROOT, for the creation of a socket acting as a d_root, and only
allowed if a rooted data plane is indicated in the corresponding WSAPROTOCOL_INFO entry.

• WSA_FLAG_MULTIPOINT_D_LEAF, for the creation of a socket acting as a d_leaf, and only
allowed if XP1_SUPPORT_MULTIPOINT is indicated in the corresponding
WSAPROTOCOL_INFO entry.

Note that when creating a multipoint socket, exactly one of the two control plane flags, and one of the two
data plane flags must be set in WSASocket()’s dwFlags parameter. Thus, the four possibilities for creating
multipoint sockets are: “c_root/d_root”, “c_root/d_leaf”, “c_leaf/d_root”, or “c_leaf /d_leaf”.

B.3.3. SIO_MULTIPOINT_LOOP command code for WSAIoctl()
When d_leaf sockets are used in a non-rooted data plane, it is generally desirable to be able to control
whether traffic sent out is also received back on the same socket. The SIO_MULTIPOINT_LOOP
command code for WSAIoctl() is used to enable or disable loopback of multipoint traffic.

B.3.4. SIO_MULTICAST_SCOPE command code for WSAIoctl()
When multicasting is employed, it is usually necessary to specify the scope over which the multicast should
occur. Scope is defined as the number of routed network segments to be covered. A scope of zero would
indicate that the multicast transmission would not be placed “on the wire” but could be disseminated across
sockets within the local host. A scope value of one (the default) indicates that the transmission will be
placed on the wire, but will not cross any routers. Higher scope values determine the number of routers that
may be crossed. Note that this corresponds to the time-to-live (TTL) parameter in IP multicasting.

B.3.5. WSAJoinLeaf()
The function WSAJoinLeaf() is used to join a leaf node into the multipoint session. The function prototype
is as follows:

SOCKET WSAAPI WSAJoinLeaf (SOCKET s, const struct sockaddr FAR * name, int
namelen, LPWSABUF lpCallerData, LPWSABUF lpCalleeData, LPQOS lpSQOS,
LPQOS lpGQOS, DWORD dwFlags);

See below for a discussion on how this function is utilized.

B.4. Semantics for joining multipoint leaves
In the following, a multipoint socket is frequently described by defining its role in one of the two planes
(control or data). It should be understood that this same socket has a role in the other plane, but this is not
mentioned in order to keep the references short. For example when a reference is made to a “c_root socket”
, this could be either a c_root/d_root or a c_root/d_leaf socket.

In rooted control plane schemes, new leaf nodes are added to a multipoint session in one or both of two
different ways. In the first method, the root uses WSAJoinLeaf() to initiate a connection with a leaf node
and invite it to become a participant. On the leaf node, the peer application must have created a c_leaf
socket and used listen() to set it into listen mode. The leaf node will receive an FD_ACCEPT indication
when invited to join the session, and signals its willingness to join by calling WSAAccept(). The root
application will receive an FD_CONNECT indication when the join operation has been completed.

In the second method, the roles are essentially reversed. The root application creates a c_root socket and
sets it into listen mode. A leaf node wishing to join the session creates a c_leaf socket and uses
WSAJoinLeaf() to initiate the connection and request admittance. The root application receives
FD_ACCEPT when an incoming admittance request arrives, and admits the leaf node by calling
WSAAccept(). The leaf node receives FD_CONNECT when it has been admitted.

272 Appendix B: Multipoint and Multicast

In a non-rooted control plane, where all nodes are c_leaf’s, the WSAJoinLeaf() is used to initiate the
inclusion of a node into an existing multipoint session. An FD_CONNECT indication is provided when the
join has been completed and the returned socket descriptor is useable in the multipoint session. In the case
of IP multicast, this would correspond to the IP_ADD_MEMBERSHIP socket option. 4

There are, therefore, three instances where an application would use WSAJoinLeaf():
1. Acting as a multipoint root and inviting a new leaf to join the session
2. Acting as a leaf making an admittance request to a rooted multipoint session
3. Acting as a leaf seeking admittance to a non-rooted multipoint session (e.g. IP multicast)

B.4.1. Using WSAJoinLeaf()
As mentioned previously, the function WSAJoinLeaf() is used to join a leaf node into a multipoint session.
WSAJoinLeaf() has the same parameters and semantics as WSAConnect() except that it returns a socket
descriptor (as in WSAAccept()), and it has an additional dwFlags parameter. The dwFlags parameter is
used to indicate whether the socket will be acting only as a sender, only as a receiver, or both. Only
multipoint sockets may be used for input parameter s in this function. If the multipoint socket is in the non-
blocking mode, the returned socket descriptor will not be useable until after a corresponding
FD_CONNECT indication has been received. A root application in a multipoint session may call
WSAJoinLeaf() one or more times in order to add a number of leaf nodes, however at most one multipoint
connection request may be outstanding at a time.

The socket descriptor returned by WSAJoinLeaf() is different depending on whether the input socket
descriptor, s, is a c_root or a c_leaf. When used with a c_root socket, the name parameter designates a
particular leaf node to be added and the returned socket descriptor is a c_leaf socket corresponding to the
newly added leaf node. It is not intended to be used for exchange of multipoint data, but rather is used to
receive FD_XXX indications (e.g. FD_CLOSE) for the connection that exists to the particular c_leaf.
Some multipoint implementations may also allow this socket to be used for “side chats” between the root
and an individual leaf node. An FD_CLOSE indication will be received for this socket if the corresponding
leaf node calls closesocket() to drop out of the multipoint session. Symmetrically, invoking closesocket()
on the c_leaf socket returned from WSAJoinLeaf() will cause the socket in the corresponding leaf node to
get FD_CLOSE notification.

When WSAJoinLeaf() is invoked with a c_leaf socket, the name parameter contains the address of the root
application (for a rooted control scheme) or an existing multipoint session (non-rooted control scheme), and
the returned socket descriptor is the same as the input socket descriptor. In a rooted control scheme, the
root application would put its c_root socket in the listening mode by calling listen(). The standard
FD_ACCEPT notification will be delivered when the leaf node requests to join itself to the multipoint
session. The root application uses the usual accept()/WSAAccept() functions to admit the new leaf node.
The value returned from either accept() or WSAAccept() is also a c_leaf socket descriptor just like those
returned from WSAJoinLeaf(). To accommodate multipoint schemes that allow both root-initiated and
leaf-initiated joins, it is acceptable for a c_root socket that is already in listening mode to be used as in input
to WSAJoinLeaf().

4 Readers familiar with IP multicast’s use of the connectionless UDP protocol may be concerned by the
connection-oriented semantics presented here. In particular the notion of using WSAJoinLeaf() on a UDP
socket and waiting for an FD_CONNECT indication may be troubling. There is, however, ample precedent
for applying connection-oriented semantics to connectionless protocols. It is allowed and sometime useful,
for example, to invoke the standard connect() function on a UDP socket. The general result of applying
connection-oriented semantics to connectionless sockets is a restriction in how such sockets may be used,
and such is the case here as well. A UDP socket used in WSAJoinLeaf() will have certain restrictions, and
waiting for an FD_CONNECT indication (which in this case simply indicates that the corresponding IGMP
message has been sent) is one such limitation.

Appendix B: Multipoint and Multicast 273

A multipoint root application is generally responsible for the orderly dismantling of a multipoint session.
Such an application may use shutdown() or closesocket() on a c_root socket to cause all of the associated
c_leaf sockets, including those returned from WSAJoinLeaf() and their corresponding c_leaf sockets in the
remote leaf nodes, to get FD_CLOSE notification.

B.5. Semantic differences between multipoint sockets and regular sockets
In the control plane, there are some significant semantic differences between a c_root socket and a regular
point-to-point socket:

(1) the c_root socket can be used in WSAJoinLeaf() to join a new a leaf;
(2) placing a c_root socket into the listening mode (by callings listen()) does not preclude the

c_root socket from being used in a call to WSAJoinLeaf() to add a new leaf, or for sending
and receiving multipoint data;

(3) the closing of a c_root socket will cause all the associated c_leaf sockets to get FD_CLOSE
notification.

There is no semantic differences between a c_leaf socket and a regular socket in the control plane, except
that the c_leaf socket can be used in WSAJoinLeaf(), and the use of c_leaf socket in listen() indicates that
only multipoint connection requests should be accepted.

In the data plane, the semantic differences between the d_root socket and a regular point-to-point socket are
(1) the data sent on the d_root socket will be delivered to all the leaves in the same multipoint

session;
(2) the data received on the d_root socket may be from any of the leaves.

The d_leaf socket in the rooted data plane has no semantic difference from the regular socket, however, in
the non-rooted data plane, the data sent on the d_leaf socket will go to all the other leaf nodes, and the data
received could be from any other leaf nodes. As mentioned earlier, the information about whether the
d_leaf socket is in a rooted or non-rooted data plane is contained in the corresponding
WSAPROTOCOL_INFO structure for the socket.

B.6. How existing multipoint protocols support these extensions

In this section we indicate how IP multicast and ATM point-to-multipoint capabilities would be accessed
via the WinSock 2 multipoint functions. We chose these two as examples because they are very popular
and well understood.

B.6.1. IP multicast

IP multicast falls into the category of non-rooted data plane and non-rooted control plane. All applications
play a leaf role. Currently most IP multicast implementations use a set of socket options proposed by Steve
Deering to the IETF. Five operations are made thus available:
• IP_MULTICAST_TTL - set time to live, controls scope of multicast session
• IP_MULTICAST_IF - determine interface to be used for multicasting
• IP_ADD_MEMBERSHIP - join a specified multicast session
• IP_DROP_MEMBERSHIP - drop out of a multicast session
• IP_MULTICAST_LOOP - control loopback of multicast traffic

Setting the time-to-live for an IP multicast socket maps directly to using the SIO_MULTICAST_SCOPE
command code for WSAIoctl(). The method for determining the IP interface to be used for multicasting is
via a TCP/IP-specific socket option as described in the WinSock 2 Protocol Specific Annex.

The remaining three operations are covered well with the WinSock 2 semantics described here. The
application would open sockets with c_leaf/d_leaf flags in WSASocket(). It would use WSAJoinLeaf() to

274 Appendix B: Multipoint and Multicast

add itself to a multicast group on the default interface designated for multicast operations. If the flag in
WSAJoinLeaf() indicates that this socket is only a sender, then the join operation is essentially a no-op and
no IGMP messages need to be sent. Otherwise, an IGMP packet is sent out to the router to indicate
interests in receiving packets sent to the specified multicast address. Since the application created special
c_leaf/d_leaf sockets used only for performing multicast, the standard closesocket() function would be used
to drop out of the multicast session. The SIO_MULTIPOINT_LOOP command code for WSAIoctl()
provides a generic control mechanism for determining whether data sent on a d_leaf socket in a non-rooted
multipoint scheme will be also received on the same socket.

B.6.2. ATM Point to Multipoint

ATM falls into the category of rooted data and rooted control planes. An application acting as the root
would create c_root sockets and counterparts running on leaf nodes would utilize c_leaf sockets. The root
application will use WSAJoinLeaf() to add new leaf nodes. The corresponding applications on the leaf
nodes will have set their c_leaf sockets into listen mode. WSAJoinLeaf() with a c_root socket specified
will be mapped to the Q.2931 ADDPARTY message. The leaf-initiated join is not supported in ATM UNI
3.1, but will be supported in ATM UNI 4.0. Thus WSAJoinLeaf() with a c_leaf socket specified will be
mapped to the appropriate ATM UNI 4.0 message.

Appendix C: The Lame List 275

Appendix C. The Lame List

Keith Moore of Microsoft gets the credit for starting this, but other folks have begun contributing as well.
Bob Quinn, from sockets.com, is the kind soul who provided the elaborations on why these things are lame
and what to do instead. This is a snapshot of the list as we went to print (plus a few extras thrown in at the
last minute).

The Windows Sockets Lame List
(or What's Weak This Week)

 brought to you by The Windows Sockets Vendor Community

1. Calling connect() on a non-blocking socket, getting WSAEWOULDBLOCK,
then immediately calling recv() and expecting WSAEWOULDBLOCK before the
connection has been established. Lame.

 Reason: This assumes that the connection will never be established
 by the time the application calls recv(). Lame assumption.

 Alternative: Don't do that. An application using a non-blocking
 socket must handle the WSAEWOULDBLOCK error value, but must not
 depend on occurrence of the error.

2. Calling select() with three empty FD_SETs and a valid TIMEOUT
structure as a sleazy delay function. Inexcusably lame.

 Reason: The select() function is intended as a network function,
 not a general purpose timer.

 Alternative: Use a legitimate system timer service.

3. Polling with connect() on a non-blocking socket to determine
when the connection has been established. Dog lame.

 Reason: The WinSock 1.1 spec does not define an error for connect()
 when a non-blocking connection is pending, so the error value
 returned may vary.

 Alternative: Using asynchronous notification of connection completion
 is the recommended alternative. An application that prefers
 synchronous operation mode could use the select() function (but
 see 23).

 Non-Alternative: Changing a non-blocking socket to blocking mode
 to block on send() or recv() is even more lame than polling on
 connect().

4. Assuming socket handles are always less than 16. Mired in a
sweaty mass of lameness.

 Reason: The only invalid socket handle value is defined by the
 WinSock.H file as INVALID_SOCKET. Any other value the SOCKET

276 Appendix C: The Lame List

 type can handle is fair game, and an application *must* handle
 it. In any case, socket handles are supposed to be opaque,
 so applications shouldn't depend on specific values for any
 reason.

 Alternative: Expect a socket handle of any value, including 0.
 And don't expect socket handle values to change with each
 successive call to socket() or WSASocket(). Socket handles
 may be reused by the WinSock implementation.

5. Polling with select() and a zero timeout in Win16's non-
 preemptive environment. Nauseatingly lame.

 Reason: With any non-zero timeout, select() will call the
 current blocking hook function, so an application anticipating
 an event will yield to other processes executing in a 16-bit
 Windows environment. However, with a zero timeout an appli-
 cation will not yield to other processes, and may not even
 allow network operations to occur (so it will loop forever).

 Alternative: Use a small non-zero timeout. Better yet, use
 asynchronous notification instead of using select().

6. Calling WSAAsyncSelect() with a zero Event mask just to make
the socket non-blocking. Lame. Lame. Lame. Lame. Lame.

 Reason: WSAAsyncSelect() is designed to allow an application
 to register for asynchronous notification of network events.
 The v1.1 WinSock specification didn't specify an error for
 a zero event mask, but may interpret it as an invalid input
 argument (so it may fail with WSAEINVAL), or silently ignore
 the request.

 Alternative: To make a socket non-blocking without registering
 for asynchronous notification, use ioctlsocket() FIONBIO.
 That's what it's for.

7. Telnet applications that neither enable OOBINLINE, nor read
OOB data. Violently lame.

 Reason: It is not uncommon for Telnet servers to generate urgent
data, like when a Telnet client will send a Telnet BREAK command
or Interrupt Process command. The server then employs a “Synch”
mechanism which consists of a TCP Urgent notification coupled with
the Telnet DATA MARK command. If the telnet client doesn’t read
the urgent data, then it won’t get any more normal data. Not ever,
ever, ever, ever.

Alternative: Every telnet client should be able to read and/or detect
OOB data. They should either enable inline OOB data by calling
setsockopt() SO_OOBINLINE, or use WSAAsyncSelect() (or
WSAEventSelect()) with FD_OOB or select() using exeptfds to
detect OOB data arrival, and call recv()/WSARecv() with MSG_OOB
in response.

Appendix C: The Lame List 277

8. Assuming 0 is an invalid socket handle value. Uncontrollably lame.

 Reason and Alternative: See item 4.

9. Applications that don't properly shutdown when the user closes
the main window while a blocking API is in progress. Totally lame.

 Reason: WinSock applications that don't close sockets, and call
 WSACleanup(), may not allow a WinSock implementation to reclaim
 resources used by the application. Resource leakage can even-
 tually result in resource starvation by all other WinSock
 applications (i.e. network system failure).

 Alternative: While a blocking API is in progress in a 16-bit WinSock
1.1 application, the proper way to abort is to:

 1) Call WSACancelBlockingCall()
 2) Wait until the pending function returns. If the
 cancellation occurs before the operation completes,
 the pending function will fail with the WSAEINTR error,
 but applications must also be prepared for success, due
 to the race condition involved with cancellation.
 3) Close this socket, and all other sockets. Note: the
 proper closure of a connected stream socket, involves:
 a) call shutdown() how=1
 b) loop on recv() until it returns 0 or fails with
 any error
 c) call closesocket()
 4) Call WSACleanup()
NOTE: This procedure is not relevant to 32-bit WinSock 2 applications,
since they really block, so calling WSACancelBlockingCall() from the
same thread is impossible.

10. Out of band data. Intensely lame.

 Reason: Basically TCP can't do Out of Band (OOB) data reliably.
 If that isn't enough, there are incompatible differences in the
 implementation at the protocol level (in the urgent pointer offset).
 Berkeley Software Distribution's (BSD) implementation does RFC 793,
 literally, and many others implement the corrected RFC 1122 version
 some versions also allow multiple OOB data bytes by using the start
 of the MAC frame as the starting point for the offset) If two TCP hosts

 have different OOB versions, they cannot send OOB data to each other.

 Alternative: Ideally, you can use a separate socket for urgent data,
 although in reality it is inescapable sometimes. Some protocols
 require it (see item 7), in which case you need to minimize your
 dependence, or beef up your technical support staff to handle user
 calls.

11. Calling strlen() on a hostent structure's ip address, then
truncating it to four bytes, thereby overwriting part of malloc()'s
heap header. In all my years of observing lameness, I have seldom

278 Appendix C: The Lame List

seen something this lame.

 Reason: This doesn't really need a reason, does it?

 Alternative: Clearly, the only alternative is a brain transplant.

12. Polling with recv(MSG_PEEK) to determine when a complete message
has arrived. Thrashing in a sea of lameness.

 Reason: A stream socket (TCP) does not preserve message boundaries
 (see item 20). An application that uses recv() MSG_PEEK or ioctlsocket()
 FIONREAD to wait for a complete message to arrive, may never succeed.
 One reason might be the internal service provider’s buffering; if the bytes
 in a “message” straddle a system buffer boundary, the WinSock may
 never report the bytes that exist in other buffers.

Alternative: Don’t use peek reads. Always read data into your application
 buffers, and examine the data there.

13. Passing a longer buffer length than the actual buffer size since you
know you won’t receive more than the actual buffer size. Universally lame.

 Reason: WinSock implementations often check buffers for readability
 or writability before using them to avoid Protection Faults. When a
 buffer length is longer than the actual buffer length, this check will fail,
 so the function call will fail (with WSAEFAULT).

 Alternative: Always pass a legitimate buffer length.

14. Bounding every set of operations with calls to WSAStartup() and
WSACleanup(). Pushing the lameness envelope.

 Reason: This is not illegal, as long as each WSAStartup() has a
 matching call to WSACleanup(), but it is more work than necessary.

 Alternative: In a DLL, custom control or class library, it is
 possible to register the calling client based on a unique task
 handle or process ID. This allows automatic registration without
 duplication. Automatic de-registration can occur when a process
 closes its last socket. This is even easier if you use the process
 notification mechanisms available in the 32-bit environment.

15. Ignoring API errors. Glaringly lame.

 Reason: Error values are your friends! When a function fails, the
 error value returned by WSAGetLastError() or included in an asyn-
 chronous message can tell you *why* it failed. Based on the
 function that failed, and the socket state, you can often infer
 what happened, why, and what to do about it.

 Alternative: Check for error values, and write your applications
 to anticipate them, and handle them gracefully when appropriate.
 When a fatal error occurs, always display an error message that
 shows:
 - the function that failed

Appendix C: The Lame List 279

 - the WinSock error number, and/or macro
 - a short description of the error meaning
 - suggestions for how to remedy, when possible

16. Calling recv() MSG_PEEK in response to an FD_READ async
notification message. Profoundly lame.

 Reason: It’s redundant It’s redundant.

 Alternative: Call recv() in response to an FD_READ message. It
 may fail with WSAEWOULDBLOCK, but this is easy to ignore,
 and you are guaranteed to get another FD_READ message later
 since there is data pending.

17. Installing an empty blocking hook that just returns FALSE.
Floundering in an endless desert of lameness.

Ed. Note: Fortunately, this is not an issue for WinSock 2 applications,
since blocking hooks are now a thing of the past!! (Good Riddance)

 Reason: One of the primary purposes of the blocking hook function
 was to provide a mechanism for an application with a pending
 blocking operation to yield. By returning FALSE from the
 blocking hook function, you defeat this purpose and your appli-
 cation will prevent multitasking in the non-preemptive 16-bit
 Windows environment. This may also prevent some WinSock
 implementations from completing the pending network operation.

 Alternative: Typically this hack is done to try to prevent
 reentrant messages. There are better ways to do this, like
 subclassing the active window, although, admittedly, preventing
 reentrant messages is not an easy problem to avoid.

18. Client applications that bind to a specific port. Suffocating
in self lameness.

 Reason: By definition, client applications actively initiate a
 network communication, unlike server applications which passively
 wait for communication. A server must bind() to a specific port
 which is known to clients that need to use the service, however,
 a client need not bind() its socket to a specific port in order
 to communicate with a server.

 Not only is it unnecessary for all but a very few application
 protocols, it is dangerous for a client to bind() to a specific
 port number. There is a danger in conflicting with another
 socket that is already using the port number, which would cause
 the call to bind() to fail with WSAEADDRINUSE.

 Alternative: Simply let the WinSock implementation assign the
 local port number implicitly when you call connect() (on stream
 or datagram sockets), or sendto() (on datagram sockets).

19. Nagle challenged applications. Perilously teetering on the edge
of a vast chasm of lameness.

280 Appendix C: The Lame List

 Reason: The Nagle algorithm reduces trivial network traffic. In a
 nutshell, the algorithm says don't send a TCP segment until either:
 - all outstanding TCP segments have been acknowledged
 or
 - there's a full TCP segment ready to send

 A "Nagle challenged application" is one that cannot wait until
 either of these conditions occurs, but has such time-critical
 data that it must send continuously. This results in wasteful
 network traffic.

 Alternative: Don't write applications that depend on the immediate
 data echo from the remote TCP host.

20. Assuming stream sockets maintain message frame boundaries. Mind
bogglingly lame.

 Reason: Stream sockets (TCP) are called stream sockets, because
 they provide data streams (duh). As such, the largest message
 size an application can ever depend on is one-byte in length.
 No more, no less. This means that with any call to send() or
 recv(), the WinSock implementation may transfer any number of
 bytes less than the buffer length specified.

 Alternative: Whether you use a blocking or non-blocking socket,
 on success you should always compare the return from send() or
 recv() with the value you expected. If it is less than you
 expected, you need to adjust the buffer length, and pointer,
 for another function call (which may occur asynchronously, if
 you are using asynchronous operation mode).

21. 16-bit DLLs that call WSACleanup() from their WEP. Inconceivably
lame.

 Reason: WEP() is lame, ergo depending on it is lame. Seriously,
 16-bit Windows did not guarantee that WEP() would always be
 called, and the Windows subsystem was often in such a hairy
 state that doing *anything* in WEP() was dangerous.

 Alternative: Stay away from WEP().

22. Single byte send()s and recv()s. Festering in a pool of lameness.

 Reason: Couple one-byte sends with Nagle disabled, and you have
 at best a 40:1 overhead-to-data ratio. Can you say wasted
 bandwidth? I thought you could.

 As for one-byte receives, think of the effort and inefficiency
 involved with trying to drink a Guinness Stout through a
 hypodermic needle. That's about how your application would
 feel "drinking" data one-byte at a time.

 Alternative: Consider Postel's RFC 793 words to live by: "Be
 conservative in what you do, be liberal in what you accept

Appendix C: The Lame List 281

 from others." In other words, send modest amounts, and receive
 as much as possible.

23. select(). Self abusively lame.

 Reason: Consider the steps involved in using select(). You need
 to use the macros to clear the 3 fdsets, then set the appropriate
 fdsets for each socket, then set the timer, then call select().

 Then after select() returns with the number of sockets that have
 done something, you need to go through all the fdsets and all
 the sockets using the macros to find the event that occurred,
 and even then the (lack of) resolution is such you need to
 infer the event from the current socket state.

 Alternative: Use asynchronous operation mode (e.g. WSAAsyncSelect()
 or WSAEventSelect()).

24. Applications that call gethostbyname() before calling inet_addr().
Words fail to express such all consuming lameness.

 Reason: Some users prefer to use network addresses, rather than
 hostnames at times. The v1.1 WinSock specification does not say
 what gethostbyname() should do with an IP address in standard ASCII
 dotted IP notation. As a result, it may succeed and do an
 (unnecessary) reverse-lookup, or it may fail.

 Alternative: With any destination input by a user--which may be
 a hostname OR dotted IP address--you should call inet_addr()
 FIRST to check for an IP address, and if that fails call
 gethostbyname() to try to resolve it.

 Furthermore, in some applications, you may want to explicitly
 check the input string for the broadcast address "255.255.255.255,"
 since the return value from inet_addr() for this address is the
 same as SOCKET_ERROR.

25. Win32 applications that install blocking hooks. Grossly lame.

 Reason: Besides yielding to other applications (see item 17),
 blocking hook functions were originally designed to allow
 concurrent processing within a task while there was a blocking
 operation pending. In Win32, there's threading.

 Alternative: Use threads.

26. Polling with ioctlsocket(FIONREAD) on a stream socket until
a complete "message" arrives. Exceeds the bounds of earthly lameness.

 Reason and Alternative: see item 12

27. Assuming that a UDP datagram of any length may be sent. Criminally lame.

 Reason: various networks all have their limitations on maximum
 transmission unit (MTU). As a result, fragmentation will occur,

282 Appendix C: The Lame List

 and this increases the likelihood of a corrupted datagram (more
 pieces to lose or corrupt). Also, the TCP/IP service providers at
 the receiving end may not be capable of re-assembling a large,
 fragmented datagram.

 Alternative: check for the maximum datagram size with the
 SO_MAX_MSGSIZE socket option, and don’t send anything
 larger. Better yet, be even more conservative. A max of 8K is
 a good rule-of-thumb.

28. Assuming the UDP transmissions (especially multicast
 transmissions) are reliable. Sinking in a morass of
 lameness.

 Reason: UDP has no reliability mechanisms (that’s why
 we have TCP).

 Alternative: Use TCP and keep track of your own message
 boundaries.

29. Applications that require vendor-specific extensions, and
 cannot run (or wore yet, load) without them. Stooping to unspeakable
 depths of lameness

 Reason: If you can’t figure out the reason, it’s time to hang up
 your keyboard.

 Alternative: Have a fallback position that uses only base
 capabilities for when the extension functions are not present.

30. Expecting errors when UDP datagrams are dropped by the sender,
receiver, or any router along the way. Seeping lameness from every
crack and crevice.

 Reason: UDP is unreliable. TCP/IP stacks don’t have to tell you when
 they throw your datagrams away (a sender or receiver may do this
 when they don’t have buffer space available, and a receiver will do it
 if they cannot reassemble a large fragmented datagram.

Alternative: Expect to lose datagrams, and deal. Implement reliability
in your application protocol, if you need it (or use TCP, if your application
allows it).

Appendix D: For Further Reference 283

Appendix D. For Further Reference

This specification is intended to cover the Windows Sockets interface in detail. Many details of specific
protocols and Windows, however, are intentionally omitted in the interest of brevity, and this specification
often assumes background knowledge of these topics. For more information, the following references may
be helpful:

D.1 Networking books:

Braden, R.[1989], RFC 1122, Requirements for Internet Hosts--Communication Layers, Internet
Engineering Task Force.

Comer, D. [1991], Internetworking with TCP/IP Volume I: Principles, Protocols, and Architecture,
Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume II: Design, Implementation, and
Internals, Prentice Hall, Englewood Cliffs, New Jersey.

Comer, D. and Stevens, D. [1991], Internetworking with TCP/IP Volume III: Client-Server Programming
and Applications, Prentice Hall, Englewood Cliffs, New Jersey.

Leffler, S. et al., An Advanced 4.3BSD Interprocess Communication Tutorial.

Stevens, W.R. [1990], Unix Network Programming, Prentice Hall, Englewood Cliffs, New Jersey.

Stevens, W.R. [1994]. TCP/IP Illustrated, Volume 1: The Protocols, Addison-Wesley, Massachusetts

Wright, G.R. and Stevens, W.R. [1995], TCP/IP Illustrated Volume 2: The Implementation, Addison-
Wesley., Massachusetts

D.2 Windows Sockets programming books:

Bonner, P. [1995], Network Programming with Windows Sockets, ISBN: 0-13-230152-0, Prentice Hall,
Englewood Cliffs, New Jersey.

Dumas, A. [1995], Programming WinSock, ISBN: 0-672-30594-1, Sams Publishing, Indianapolis, Indiana

Quinn, B. and Shute, D. [1995], Windows Sockets Network Programming, ISBN: 0-201-63372-8, Addison-
Wesley Publishing Company, Reading, Massachusetts

Roberts, D. [1995], Developing for the Internet with Winsock, ISBN 1-883577-42-X, Coriolis Group
Books.

