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JOINT PROJECT 
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Labels: 
 

•  singer 
•  politician 
•  proud 
•  curly 
•   rich 

 

Labels: 
 

• happy  
•  young 
•  smiley 
•   covered 
•  dressed up 

 
 

Labels: 
 

•  serious 
•  senior 
•  sad 
•   worried 
•  black 

 

Labels: 
 

•  white 
•  male 
•  angry 
•   old 
•  glasses 

 

Imagine that you are preparing to train a classifier with the set of images you label manually(3-5 labels per image).  

Labels should be nouns and/or adjectives including but not limited to:  

• Possible occupation 

• emotional state 

• visual components 

• Etc.  
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Labels: 

 

•  experience  

•  proud 

•  fighter 

•  politician 

•   tough  

 

Labels: 

 

•  politician 

•  black 

•  muslim 

•   smiley 

•  self confident  

 

 

Labels: 

 

• smiley  

•  friendly 

•  bald 

•   positive 

•  black 

 

Labels: 

 

• tiny  

•  patriotic 

•  white 

•   elegant 

•  confused 

 

Imagine that you are preparing to train a classifier with the set of images you label manually(3-5 labels per image).  

Labels should be nouns and/or adjectives including but not limited to:  

• Possible occupation 

• emotional state 

• visual components 

• Etc.  
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Inclination or prejudice for or against 
one person or group, especially in a 
way considered to be unfair. 
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BIASED AI vs.  

BIASED SOCIETY 
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Should We Let Data Speak for Itself? 
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Data Quality Issues 
Data Bias  

Bias must be considered  relative to task 
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DETECTING 

MEASURING 

MITIGATING 

 
 
Where does the bias come from? Traditional Approach 
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Where does the bias come from?  
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What we have done so far?  
 
- Categorization of biases and their representation in social datasets 
- Data Labelling process analysis(ACM AI and Ethics) – Quality criteria from bias 

perspective  
 

What we plan to do further? 
- Mathematical representation of this mapping(human biases to AI biases) 
- Algorithmic representation 
- Detecting bias in visual models(Framework and the system) 
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Encoded Stereotypes  
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• Consider team composition for diversity of thought, background and experiences 

• Understand the task, stakeholders, and potential for errors and harm 

• Check data sets: Consider data provenance. What is the data intended to represent? 

• Verify through qualitative, experimental, survey and other methods 

• Check models and validate results: Why is the model making decision? 

• What mechanisms would explain results? Is supporting evidence consistent? 

•  Twyman’s law: The more unusual the result, more likely it’s an error 

• Post-Deployment: Ensure optimization and guardrail metrics consistent w/responsible 

practices and avoid harms. 

• Continual monitoring, including customer feedback 

• Have a plan to identify and respond to failures and harms as they occur 

Approach 
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 More in my TEDx speech 

 

 

 and Medium article  
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           A society that engages in a 

 technique needs a strong 

inner force in order not to be 

seduced by the goals, not to 

become too greedy.  
- Joseph Weizenbaum 

“ 
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JOSEPH WEIZENBAUM 
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CONTACT 

Weizenbaum Institute for the Networked Society 

Hardenbergstr. 32, 10623 Berlin 

www.weizenbaum-institut.de 

Gunay Kazimzade 

Gunay.kazimzade@tu-berlin.de 

  


