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Abstract. With the rapid growth of available data, learning models are
also gaining in sizes. As a result, end-users are often faced with classi-
fication results that are hard to understand. This problem also involves
rule-based classifiers, which usually concentrate on predictive accuracy
and produce too many rules for a human expert to interpret. In this pa-
per, we tackle the problem of pruning rule classifiers while retaining their
descriptive properties. For this purpose, we analyze the use of confirma-
tion measures as representatives of interestingness measures designed to
select rules with desirable descriptive properties. To perform the analy-
sis, we put forward the CM-CAR algorithm, which uses interestingness
measures during rule pruning. Experiments involving 20 datasets show
that out of 12 analyzed confirmation measures ci, F', and Z are best for
rule pruning and sorting. The obtained results can be used to devise new
classifiers that optimize confirmation measures during model training.

Keywords: rule classifiers, interestingness measures, Bayesian confir-
mation, rule pruning

1 Introduction

Recent years have seen the rise of such terms as big data and data science, which
brought many machine learning and data mining methods to public attention.
This growing popularity of pattern mining methods results in numerous practical
applications, such as healthcare, online education, social network analysis, or
smart houses [18,16]. Many of these applications involve cooperation with human
experts, who often have to understand not only direct algorithm results, but also
entire learning models.

Arguably the most studied data mining task is classification [16]. Various
types of classifiers have been developed over the years, however rules are contin-
uously regarded as one of the most popular approaches to practical applications
involving non-data-mining experts. It is due to the symbolic form of rules, which
makes them comprehensible. Thus, when both pattern usage and understanding
are key goals, rules are a common form of knowledge representation.

Nevertheless, in most studies data miners tend to focus solely on the predic-
tive performance of learning models [11,5,2]. This is also the case of rule mining.
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As a result, the descriptive value that rules can carry is often neglected. Unques-
tionably, a compilation of good predictive and descriptive abilities of a classifier
is sought for in many applications. Preferably, these abilities should also be ac-
companied by a compact representation. In particular, for rule-based classifiers
this requirement can be achieved by limiting the number of rules, since otherwise
the set of rules could exceed the human-expert’s understanding capabilities. For
example, in medical applications, doctors are usually interested in a reduced set
of rules that describes the patients well and offers good predictions [24].

The evaluation and, thus, pruning of rule sets is usually done by interesting-
ness measures; for a survey see e.g. [12,22]. In classification, these measures are
used to improve the predictive performance of learning models, often neglecting
the descriptive value of each rule. Nonetheless, many interestingness measures
were designed especially for evaluating the descriptive properties of rules. In
particular, Bayesian confirmation measures [10] constitute a group of measures
that quantify the degree with which the rule’s premise supports the conclusion.
Confirmation measures obtain positive values only when the premise widens our
knowledge about the conclusion. Thus, they allow to swiftly choose meaningful
rules and filter out the misleading ones. Additionally, the usefulness of confirma-
tion measures in the descriptive context has been depicted with many desirable
properties they possess [6,10,13,14].

In this paper, we analyze the impact of using confirmation measures in rule-
based classification. For this purpose, we put forward the CM-CAR algorithm,
which uses confirmation measures to sort and prune a list of rules. As a result,
the proposed algorithm is capable of producing a concise set of descriptive rules,
while retaining high predictive performance. Summarizing, the main contribu-
tions of this paper are as follows:

— the analysis of interestingness measures with good descriptive properties in
the context of predictive classification problems;

— the proposal the CM-CAR algorithm for discovering and pruning decision
rules with high confirmation;

— a comprehensive series of experiments analyzing 12 Bayesian confirmation
measures for sorting and pruning rule lists.

The remainder of this paper is organized as follows. Section 2 provides a
review of Bayesian confirmation measures, whereas Section 3 presents the CM-
CAR algorithm. In Section 4, we discuss experimental results, which demonstrate
the properties of the analyzed measures. Finally, Section 5 concludes the paper
and draws lines of future research.

2 Confirmation Measures

Among various knowledge representations, patterns in the form of rules are
known and appreciated for their high comprehensibility and interpretability.
Such form of knowledge representation is often found easy to understand and
use by decision makers.
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Rules are usually induced from a dataset being a set of objects characterized
by a set of attributes. Rules are consequence relations, denoted as £ — H
(“if E then H”), between the condition E and conclusion H formulas built from
attribute-value pairs. The condition formulas are called the premise (or evidence)
and the conclusion formulas are referred to as the conclusion (or hypothesis) of
the rule. If the set of attributes that can occur in the conclusion is limited to a
predefined class attribute, then the rule is regarded as a decision rule.

The evaluation of the quality and utility of rules induced from data is most
commonly done by means of interestingness measures, which quantify the rela-
tionship between E and H. In the context of a particular dataset, interestingness
measures can be usually defined on the basis of four non-negative values: a, b, ¢
and d, briefly represented in Table 1.

Table 1: An exemplary contingency table of the rule’s premise and conclusion
H -H X

E a c a+c
-FE b d b+d
Y a+bec+d n

The number of objects in a dataset that satisfy both the rule’s premise and
conclusion is quantified by a. The number of objects for which the premise is
not satisfied, but the conclusion is, will be denoted by b, etc. This notation can
be effectively used for defining such interestingness measures as, for example,
confidence: conf(H, E) = a/(a + ¢) or support: sup(H, E) = a.

In this paper we focus on a particular group of interestingness measures
that are referred to as Bayesian confirmation measures (or simply confirmation
measures). Their common feature is that they obtain:

— positive values when P(H|E) > P(H),
— 0 when P(H|E) = P(H),
— negative values when P(H|E) < P(H).

Observe that the notation based on a, b, ¢, and d can also be used to estimate
probabilities, e.g. P(H) = (a+b)/n or P(H|E) = a/(a+c¢). Thus, the conditions
that a confirmation measure, denoted as ¢(H, E), must satisfy can be expressed

as follows:
> 0 when -2 > aTer,

a+tc
¢(H,E){ =0 when ;% = =t (1)
< 0 when aic < “::b.

Due to the fact that the above conditions do not favor any single measure
as the most adequate, there are many alternative, ordinally non-equivalent mea-
sures of confirmation [6,10]. Definitions of 12 popular confirmation measures are
listed in Table 2.
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Table 2: Popular confirmation measures.

a a+b ad—bc

in case of disconfirmation

D(H,F)=PH|E)—-P(H) = —
(H.E) = PUHIE) = PH) = 5 — 12 - 200 9]
a a+c ad — bc
M(H,E)=P(E|H) - P(E) = - = 2
(H.B) = PAEIH) = P(B) = S - o = 20— 23
S(H, B) = P(H|E) - PH|-F) = 4 — 2 = 4= f
T T a+c b+d  (ate)(b+d)
a c ad — be
N(H, E) = P(BH) = P(B|=H) = o= = o = (a+b)(c+d) 125]
_ B _a (at+c)(a+bd) ad—bc
C(H,E)=P(EANH)—-P(E)P(H) = - 2 i [3]
T T
_P(EH)-PE-H) _a+b c4+d _ _ad—bc
F(H’E)_PEH )+ P(EI-H) _% ¢  ad+bc+ 2ac [19]
a+b c+d
ﬂH\E ad—be . .
= in case of confirmation
(a +c)(c+d) 6]
H|E ad—be . .
= in case of disconfirmation
(a+c)(a+D)
E|H P(E) _ ad — be in case of confirmation
P(E)  (a+Db)(b+d) 14]
P(H|—|E) ad — be . . .
in case of disconfirmation
P(H " (b+d)(c+d)
a+ BA(H7 E) in case of confirmation when ¢ =0
Z(H,E) i f fi i h
e (H, B) = aZ(H,E) ?ncaseo C(.)Il rmatlon.w enc>0 4]
aZ(H,E) in case of disconfirmation when a > 0
—a+ BA(H,E) in case of disconfirmation when a =0
a+ BZ(H,E) in case of confirmation when b =0
ca(H, E) = aA(H,E) ?n case of cc.)nﬁrmation. when b > 0 4]
aA(H,E) in case of disconfirmation when d > 0
—a+ BZ(H,E) in case of disconfirmation when d =0
AH,E)Z(H,E) i f fi i
(H,E) = (H,EYZ(H,FE) 1n. case o con. rmation . (14
—A(H,E)Z(H,E) in case of disconfirmation
cr(H, E) = {min((A(H7 E),Z(H,E)) in case of confirmation (14
m

A(H,FE),Z(H,E))
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For brevity and clarity of presentation, the definitions of measures Z(H, E),
A(H,E),c1(H,E), co(H, E), c3(H, E) and c4(H, E) in Table 2 omit the situation
of neutrality, in which the measures default to 0. Moreover, measures ¢;(H, E)
and ¢o(H, E) have been computed for the values of « = § = 1/2.

Our interest in confirmation measures results mostly from their valuable
scale semantics. Notice, how easy it is to filter out misleading rules (i.e., those
for which the premise actually disconfirms the conclusion) only by observing
the value of the measure. Especially when working with imbalanced data, it is
important not to give credit to rules in which the probability of the conclusion
given the premise is smaller that the genuine probability of the conclusion itself.
Nevertheless not all popular interestingness measures depict such situations, e.g.
confidence, support. That is why, we direct our interest to confirmation measures.
They have been widely studied as measures in single-rule evaluation [6,10,14] for
descriptive purposes, neglecting however their potential usefulness in classifiers.
Thus, our experimental study intentionally focuses only on confirmation mea-
sures, which in our opinion should gain in popularity in the context of rule-based
classification.

3 The CM-CAR Algorithm

In this paper, we analyze the potential of using confirmation measures in classi-
fication. However, existing rule classifiers [11,5,26,8] try to optimize accuracy or
instance coverage rather than the descriptive value of the created rules. There-
fore, we put forward a new algorithm called Confirmation Measure Class Asso-
ciation Rules (CM-CAR), which creates a user-defined number of decision rules
based on Bayesian confirmation measures. The pseudocode of CM-CAR is pre-
sented in Algorithm 1.

Algorithm 1 CM-CAR

Input: D: data set, minsup: minimal support, k: number of rules, C: class attribute,
Q@s: ordered set of sorting measures, (Qp: ordered set of pruning measures

Output: CAR: decision rule list of length &

1: CAR + 0

2: L < itemsets with support > minsup > Find frequent associations
3: for all subsets [ of itemsets [ € £ do > Create decision rules
4: if I — i = {C} then

5: r < decision rule [, — C

6: CAR <~ CARUr

7: Sort CAR according to Qs > Create decision list
8: Leave in CAR k-best rules according to Q) > Prune decision list

First, the CM-CAR algorithm finds frequent itemsets. For this purpose we
use the Apriori algorithm [1], however, in practice any frequent itemset mining
algorithm could be used. Next, CM-CAR creates decision rules based on those
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frequent sets that contain the class attribute C. Finally, two sets of interesting-
ness measures, ()5 and @), are used to sort and filter the rules, respectively. As its
classification model, the algorithm outputs a list of decision rules of user-defined
length k.

CM-CAR can be considered a generalization of the CBA algorithm proposed
by Liu et al. [21], where instead of using support and confidence, we use arbitrary
interestingness measures to create a list of rules. Furthermore, it is worth noting
that the proposed algorithm uses two sets of measures for two distinct purposes.
Qs is a set of measures that order the rules and, therefore, decide which rule is
used if more than one rule covers an example. If Qs = {sup,conf}, rules are
sorted according to their support and then, in case of ties, confidence. On the
other hand, @, prunes the sorted rules. For example, if @), = {S, N} then the
rule list is limited to k best rules according to measure S and, in case of ties, V.

With two separate sets of measures, CM-CAR is capable of dividing the
responsibility for the predictive (Qs) and descriptive (@),) properties of its clas-
sification model. In the following section, we use this feature of CM-CAR to
compare various confirmation measures in a series of experiments.

4 Experimental Study

The goal of this paper is to perform a comparison of confirmation measures. For
this purpose, we use the CM-CAR algorithm with varying values of @, and @,.
The use of other rule-based classifiers is out of the scope of this study.

The experiments are divided into two groups. In the first group, we are
interested in assessing confirmation measures in the context of rule pruning.
Therefore, we set Qs = {conf, sup,length} and Q, = {CM}, where length
signifies the number of conditional attributes in a rule and C'M is one of the 12
confirmation measures from Table 2. For reference, we also analyzed the usage
of conf as a pruning measure. By keeping Qs fixed in this group of experiments,
we ensure that differences in model performance are only due to the measure
used for pruning.

In the second group of experiments, we focus on verifying the utility of
confirmation measures in the context of classification. To achieve this, we set
Qs = {CM, sup,length} and Q, = {CM}, making one of the 12 confirmation
measures (or conf) a key factor responsible for the predictive and descriptive
performance.

The minsup parameter for frequent pattern mining was set to obtain a num-
ber of rules close to 10 000 for each dataset. Such a number was selected to
ensure that it is possible to perform a long series of rule prunings. The use of
each confirmation measure was evaluated using accuracy, AUC, G-mean, and F1-
score [17] based on a holdout test set consisting of 34% of the original data. The
CM-CAR algorithm was written in Java as part of the WEKA [15] framework.

! Sources available at: http://www.cs.put.poznan.pl/dbrzezinski/software.php
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4.1 Datasets

In our study, we used 20 datasets with various numbers of classes, imbalance
ratios, and containing nominal as well as numeric attributes. All of the used
datasets are publicly available, mostly through the UCI machine learning repos-
itory [20]. Table 3 presents the main characteristics of each dataset.

Table 3: Dataset characteristics

Dataset Instances Numerical Nominal Classes Majority

Attributes Attributes class
adult-census 32,561 6 8 2 75.90%
autos 205 15 10 7 32.68%
cmce 1,473 2 7 3 43.70%
credit-g 1,000 7 13 2 70.00%
diabetes 768 8 0 2 64.10%
electricity 45,312 7 1 2 57.50%
hepato 536 9 0 4 33.20%
king-and-rook 28,056 0 6 18 16.20%
kr-vs-kp 3,196 0 36 2 52.20%
lymph 148 3 15 4 54.73%
madelon 2,600 500 0 2 50.00%
mushroom 8,124 0 22 2 51.80%
nursery 12,960 0 8 5 33.30%
poker-hand 829,201 5 5 10 50.10%
spect 267 0 22 2 79.40%
splice 3,190 0 61 3 51.88%
tic-tac-toe 958 0 9 2 65.34%
vowel 990 10 3 11 9.09%
waveform 5,000 40 0 3 33.80%
wine 153 13 0 3 39.87%

Out of all the datasets, 10 can be considered balanced (cmc, diabetes, electric-
ity, hepato, kr-vs-kp, madelon, mushroom, vowel, waveform, wine), whereas 10
suffer from class-imbalance (adult-census, autos, credit-g, king-and-rook, lymph,
nursery, poker-hand, spect, splice, tic-tac-toe). Most datasets have from few hun-
dred to few thousand examples, with the notable exception of poker-hand which
contains 829,201 instances. It is also worth highlighting madelon as the dataset
with most attributes (500) and king-and-rook as the one with most class at-
tribute values (18).

Due to the fact that CM-CAR creates rules from frequent itemsets, it re-
quires instances described only by nominal attributes. Therefore, all numerical
attributes were discretized into ten equal-frequency bins. Datasets preprocessed
in this way were used in all the discussed experiments.



8 Brzezinski D., Grudzinski Z., Szczech 1.

4.2 Rule Pruning

In this group of experiments, the generated rule set was limited subsequently
to: 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%, 5%, 2%, 1% of the
original model size. Thus, at the extremes the rule set was not pruned at all
or was limited to only 1% of the initial set. Due to the large number of tested
measures and datasets, we will only present the most interesting results; detailed
tables and additional plots are available in the supplementary materials.?

For evaluations using the G-mean measure, it was observed that since G-
mean multiplies the true positive rate of each class, in situations where the rules
did not cover examples from one of the classes the reported performance was
zero. This shows that for highly imbalanced data coverage should be additionally
controlled. Partially due to this phenomenon, on some of the datasets (madelon,
spect, tic-tac-toe, poker-hand, kr-vs-kp, king-and-rook) the differences in perfor-
mance were very small and did not discriminate confirmation measures in terms
of pruning capabilities. However, on the remaining data clear differences were
visible, and two cohesive groups of measures were identified: 1) A and ¢o; 2) F,
Z, and c;. Figure 1 presents measure performance on the mushroom datasets,
which exemplifies the relations between these two groups.

100% §—= o D -+ -
. M --%-
Q0% [ e R T
N 5 oo
Q0% VIt N
° ‘*—‘wf-.—n:x‘?. C -—=--
\ a F ——o—-
70% 3y & 7 e -
60% ' A
5 50% . 2
8 \ c3 e
< 0% + 44 ¢
conf -—%-—
30%
20%
10%
0%

100% 90% 80% T70% 60% 50% 40% 30% 20% 10% 0%
Number of rules

Fig.1: CM-CAR accuracy on the mushroom dataset for different pruning lev-
els with Qs = {conf, sup,length} and @, = {CM}, where CM is one of the
measures listed in the legend.

2 Supplement: http://www.cs.put.poznan.pl/dbrzezinski/software/CMCAR . html
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The dependency between measures A and ¢y can be explained by the fact
that the value of ¢y is in some cases proportional to the value of A. Such a
situation occurs in the case of confirmation and when additionally b (the number
of objects not supporting the premise, but supporting the conclusion) is greater
than 0. Indeed, after analyzing the results of the Apriori algorithm these two
requirements were met for most datasets.

The relation between measures in the second group is more difficult to ex-
plain. Under certain conditions, ¢y is proportional to Z, however the interdepen-
dence with F is not expressed in any way in the definitions of these measure. It
is worth noting that all three measures were among the best performing pruning
measures, when evaluated using accuracy, G-mean, AUC, and F-score.

To verify the significance of the observed difference we performed the non-
parametric Friedman test [7]. The null-hypothesis of the Friedman test (that
there is no difference between the performance of all the tested confirmation
measures) can be rejected for accuracy, G-mean, and the F-score with p < 0.05,
but not for AUC. To verify which algorithms perform better than the other, we
computed the critical difference (C'D) chosen by the Nemenyi post-hoc test [7]
at a = 0.05. Figure 2 depicts the results of the test for accuracy and the F1-score
by connecting the groups of algorithms that are not significantly different (the
lower the rank the better).

cD cD

Zown

2O

(a) Accuracy (b) Fl-score

Fig. 2: Performance ranking of all measures (Qs = {conf, sup,length}, Q, =
{CM}) averaged over all the analyzed pruning levels. Classifiers that are not
significantly different according to the Nemenyi test (at o = 0.05) are connected.

As mentioned earlier, F', Z, ¢; are among the best measures according to
accuracy and the Fl-score (although not depicted due to space limitations, sim-
ilar rankings were found for G-mean and AUC). Due to the large number of
compared measures, the test was not able to showcase a significant difference
with conf, S, D and c3, however, at a = 0.05 the three highlighted measures
pruned significantly better than ¢, N, ¢4, M, co, and A.

4.3 Classification using Confirmation Measures

In the second group of experiments, we used confirmation measures to sort the
decision list and, thus, influence the classification procedure. Tables with accu-
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racy, G-mean, AUC, and Fl-score performance for CM-CAR using each of the
analyzed measures are available in the supplementary material?, whereas below
we summarize the main findings.

In terms of average predictive performance for all pruning levels, F', Z, ¢;
were once again the best performing measures. It is also worth highlighting the S
measure, which was also among the best measures. This is particularly interesting
as the S measure possesses desirable properties, such as minimality /maximality
or evidence symmetry and evidence-hypothesis symmetry, which are not show-
cased by F, Z, or ¢; [14]. Another consistent observation was that of M, A, and
co being the worst measures for rule sorting. An exemplary dataset were these
relations can be seen is the diabetes dataset, presented in Figure 3.

100% D -+ -
M - -x -
90% S e
N
80% C -—m-—
F ——o—-
70% 7 - -e -
s, 60% A
= : €1 A
5 50% g -4 -
3 cg ~e-
< 40% ; ¢4
N\ conf -—-—
30% K
¥
Fi
20% 3
b
10%
0%

100% 90% 80% T70% 60% 50% 40% 30% 20% 10% 0%
Number of rules

Fig.3: CM-CAR accuracy on the diabetes dataset for different pruning levels
with Qs = {CM, sup,length} and @, = {CM}, where CM is one of the mea-
sures listed in the legend.

As in the first group of experiments we performed the Friedman test to
verify the significance of the differences observed between the analyzed measures.
The null-hypothesis of the Friedman test can be rejected for all four evaluation
measures, accuracy, G-mean, AUC, F-score, with p < 0.001. Figure 2 visually
presents the results of the Nemenyi test for accuracy and the Fl-score.

As the results show, F', Z, ¢; are once again the best measures according
to accuracy and the Fl-score, and are significantly better rule sorting measures
than C, N, ¢4, M, co, and A.
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(a) Accuracy (b) Fl-score

Fig. 4: Performance ranking of all measures (Qs = {C'M, sup,length}, Q, =
{CM}) averaged over all the analyzed pruning levels. Classifiers that are not
significantly different according to the Nemenyi test (at o = 0.05) are connected.

5 Conclusions

Mining a concise set of descriptive rules that is characterized by a good predic-
tive performance is a challenging task. In this paper, to tackle this problem we
proposed the CM-CAR algorithm, which uses confirmation measures to sort and
prune a list of rules. Using the proposed algorithm we reviewed the applicability
of 12 confirmation measures to rule pruning and sorting.

The results of the experiments show that Bayesian confirmation measures can
be successfully applied to reduce the set of rules while maintaining satisfactory
predictive performance. In particular, the F', Z, ¢; measures consistently showed
better performance than the popularly used con fidence measure. It is also worth
highlighting S, which is a well established metric in the field of interestingness
measures and was also one of the best performing sorting measures.

The results of the research described in this paper inspire us to continue
working with confirmation measures in the context of rule-based classification.
In particular, we plan to analyze the impact that confirmation measures can
have on the coverage of the training set of objects, as in certain applications
it is advisable to propose a set of rules that covers the whole or the vast part
of the training set. Additionally, this study used an algorithm that facilitated
the comparison of several confirmation measures, as future work we plan to use
selected measures as components of more specialized rule-based classifiers.
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