
Subgraph Mining for Anomalous Pattern Discovery in
Event Logs

Laura Genga1, Domenico Potena1, Orazio Martino1, Mahdi Alizadeh2, Claudia
Diamantini1, and Nicola Zannone2

1 Dipartimento di Ingegneria dell’Informazione, Università Politecnica delle Marche
2 Eindhoven University of Technology

{c.diamantini,l.genga,d.potena,o.martino}@univpm.it,
{m.alizadeh, n.zannone}@tue.nl

Abstract. Conformance checking allows organizations to verify whether their
IT system complies with the prescribed behavior by comparing process execu-
tions recorded by the IT system against a process model (representing the norma-
tive behavior). However, most of the existing techniques are only able to identify
low-level deviations, which provide a scarce support to investigate what actually
happened when a process execution deviates from the specification. In this work,
we introduce an approach to extract recurrent deviations and generate anomalous
patterns from them, which are able to provide meaningful diagnostics of what
happened in the system. To detect anomalous behaviors, we apply frequent sub-
graph mining techniques together with an ad-hoc conformance checking tech-
nique. Anomalous patterns are then derived by applying frequent items algo-
rithms to determine highly-correlated deviations, among which ordering relations
are inferred. The approach has been validated by means of a set of experiments.

1 Introduction

Organizations are required to monitor their business processes to ensure that their sys-
tem complies with the prescribed behavior. To this end, organizations usually employ
logging mechanisms to record process executions in logs and auditing mechanisms to
analyze those logs. Conformance checking has been proposed to assist organizations
in verifying whether the observed behavior recorded in an event log matches the pre-
scribed behavior represented as a process model. The notion of alignments [1] provides
a robust approach to conformance checking, which pinpoints the causes of noncon-
formity. Given a trace, i.e. a sequence of events generated during a process execu-
tion, each representing an instance of a given process activity, and a process model,
an alignment maps the trace to a complete run of the model (see [1] for a formal
definition of alignment). Take, for example, a trace σ1 = 〈customer identification,
prepare loan application , check financial status, check external credit rating, check
credit purpose, refuse loan〉 and the loan process in Fig. 1, modeled in the form of a
Petri net, where boxes represent transitions (denoting process activities) and circles
represent places (see [13] for a formal definition of Petri nets). Fig. 2 shows two pos-
sible alignments of σ1 and the net, where activities are abbreviated according to their
initial letter(s). The top row of the alignments shows the sequence of events in the trace;

Fig. 1: Loan process represented as a Petri net. The text below the transitions represents
the activity label, which is shortened as indicated inside the transitions. Gray boxes
represent invisible transitions (i.e. transitions that are not recorded in event logs).

γ1 =
CI PL CFS CEC � CCP RL

CI PL CFS CEC GIR CCP RL
γ2 =

CI PL � CFS CEC CCP RL

CI PL CIR � � CCP RL

Fig. 2: Alignments of σ1 = 〈CI,PL,CFS,CEC,CCP,RL〉 and the Petri net in Fig. 1

the bottom row shows the sequence of activities in the run of the net. Deviations are ex-
plicitly shown by columns that contain�. For example, the fifth column in γ1 shows
that an activity must occur in σ1 according to the net, but it is absent in the trace, i.e.
a so-called move on model. The fourth and fifth columns in γ2 show that some events
occur in the trace although they are not allowed according to the net, i.e. a so-called
move on log. Other columns for which events in the trace match the activities in the run
of the net represent synchronous moves.

As shown in Fig. 2, there can be several (possibly an infinite number of) alignments
of a trace and a Petri net, each of them representing a possible explanation of noncon-
formity. To determine the quality of alignments, a cost is assigned to each move in the
alignment. An optimal alignment of a trace and a Petri net according to a given cost
function is the one with the least total cost. For instance, if we assign cost 1 to moves
on log/model and 0 to synchronous moves, γ1 is the optimal alignment.

Alignments provide diagnostics in terms of low level deviations, i.e. elementary de-
viations like insertions (i.e., moves on log) and suppressions (i.e., moves on log). While
low level deviations indicate where the process deviates, they may not provide mean-
ingful diagnostics. Low level deviations need to be analyzed and correlated together
into high level deviations, e.g. to show whether an activity has been executed instead of
another activities or whether the execution of two activities has been swapped.

However, identifying low level deviations and then using them to diagnose high
level deviations has a number of drawbacks. First, it requires analysts reexamining the
detected deviations to reconstruct what happened, thus resulting in high operational
costs. More importantly, it can lead to inaccurate diagnostics. We illustrate this us-
ing the alignments in Fig. 2: γ1 indicates that activity generate internal rating should

have been executed, whereas γ2 indicates that activity check internal rating should have
been executed and that check financial status and check external credit rating should
not have been executed. The low level deviations in γ2 can be “interpreted” as a high
level deviation indicating that check financial status and check external credit rating
were executed instead of check internal rating. An analyst can deem this deviation pos-
sible and more plausible than a suppression of generate internal rating (i.e., the analyst
would choose this replacement as the explanation of nonconformity rather than to the
suppression of generate internal rating). As the number of possible alignments can be
infinite, existing alignment-based techniques usually return only optimal alignments,
i.e. γ1 in our case. This alignment, however, does not allow the analyst to reconstruct
the deemed deviation. The main problem is that optimal alignments are ‘optimal’ with
respect to low level deviations, and it may not be possible to infer what really happens
from the moves in these alignments.

To obtain accurate diagnostics, high level deviations should be treated as ‘first class
citizens’ within conformance checking. Adriansyah et al. [3] show how alignment-
based techniques can be adapted to explicitly capture high level deviations using anoma-
lous patterns. Intuitively, an anomalous pattern is an artifact representing a behavior that
does not comply with the process model. In particular, Adriansyah et al. construct pat-
terns to detect replacements and swaps of (sequences of) activities as Petri nets and
show how these patterns can be used to augment a process model. Existing alignment-
based techniques can then be applied to the construct alignments that exhibit high-level
deviations, providing analysts with accurate diagnostic information.

Although the work in [3] makes a first step toward the detection of high level devi-
ations using alignments, a number of questions are still left open. In particular:
1. Can we learn patterns representing high level deviations?

Adriansyah et al. [3] provide predefined patterns to identify replacements and swaps
of activities. We envision that other types of deviations can occur in practice. Ana-
lysts may want to identify these deviations in their analysis. This requires defining
patterns capturing the desired anomalous behavior. However, the definition of such
patterns can be difficult and time consuming. Thus, it is desirable to provide an-
alysts with tool-supported methods for the extraction of anomalous patterns from
past process executions.

2. Which patterns should be considered in the analysis?
An analyst might want to recognize any type of deviation in the alignment. How-
ever, this significantly increases the search space of alignments, making the ap-
proach unpractical. It is worth noting that some anomalous behavior might never
occur or be very rare. It is reasonable to ignore these deviations, restricting the at-
tention to recurring anomalous behaviors which are envisaged to occur in the future.
In this work, we address these questions. In particular, the goal is to devise tool-

supported methods for the extraction of patterns representing recurrent (complex) anoma-
lous behaviors. To this end, we introduce a novel approach to extract partially ordered
anomalous subgraphs. Given an event log and a process model, we apply frequent
subgraph mining technique to extract relevant subgraphs and propose a conformance
checking algorithm to identify the anomalous ones. Anomalous patterns are derived by
detecting correlated anomalous subgraphs by means of frequent itemset algorithms and

Fig. 3: Overview of the approach

inferring ordering relations among them. The extracted patterns aim to support analysts
in conformance checking by providing accurate diagnostics of recurring anomalous be-
havior, relieving them from the burden of reevaluating situations already analyzed. The
approach has been validated by means of a set of experiments.

The remainder of the work is organized as follows. Section 2 details the main steps
of the approach; Section 3 presents experimental results; Section 4 discusses related
work; finally, Section 5 draws some conclusions and delineates future work.

2 Methodology

Fig. 3 provides an overview of our approach, which comprises three main steps. Given
an event log, relevant subgraphs mining transforms the log traces into directed graphs
and extracts the most relevant subgraphs occurring in the traces using a Frequent Sub-
graph Mining (FSM) technique. These subgraphs are then analyzed to identify the min-
imal subgraphs that do not comply with the process model (anomalous subgraph ex-
traction). The extracted anomalous subgraphs are used to construct patterns represent-
ing frequent (complex) anomalous behavior (partial order discovery). In particular, we
capture the sets of anomalous subgraphs that frequently occur together by means of
frequent itemset discovery algorithms. For each of these itemsets, we infer ordering
relations between subgraphs by analyzing their ‘position’ in the log traces. In the re-
mainder, we describe each step in detail.

2.1 Relevant Subgraph Mining

The first step of our approach aims to mine relevant subgraphs from the process exe-
cutions recorded in the event log. We transform each log trace σi into a directed graph
gi = (Vi, Ei, φi), where Vi is the set of nodes, each corresponding to an event in the
trace, Ei is the set of the edges, showing ordering relations among the events, and φi is
a labeling function associating each node to the name of the activity of the correspond-
ing event. For the sake of simplicity, in this work we adopt a simple transformation: a

node is created for each event in the trace and each pair of subsequent events is linked
through an edge. By doing so, we consider only the temporal order of events as ordering
relations. Note that more advanced strategies can be exploited, e.g. to derive graphs also
showing possible parallelisms [12]. We plan to explore these solutions in future work.

To mine relevant subgraphs, we apply a FSM technique, which allows deriving from
a given graphs set the set of subgraphs whose support (i.e., relevance) is above a certain
threshold. In this work, we relate the relevance of a subgraph both to its occurrence
frequency and size. Given two subgraphs with the same occurrence frequency but dif-
ferent sizes, we are interested in the largest, since we expect to derive a larger amount of
knowledge from it. The size of a graph g can be represented in terms of its Description
Length (DL), i.e. the number of bits needed to encode its representation.

To the best of our knowledge, the only FSM algorithm that explicitly considers DL
is SUBDUE [16], which evaluates the relevance of a subgraph in terms of its compres-
sion capability. Namely, given a graphs set G and a subgraph s, SUBDUE evaluates
the DL of G compressed by s, i.e. the dataset obtained by replacing each occurrence
of s with a single node. The lower is the DL of the compressed dataset, the higher is
the compression capability of s. SUBDUE works iteratively. At each step, it extracts
the subgraph with the highest compression capability, which is then used to compress
the graphs set. The compressed graphs are presented to SUBDUE again. These steps
are repeated until no more compression is possible. The outcome of SUBDUE is a hi-
erarchical structure, where mined subgraphs are ordered according to their relevance,
showing the existing inclusion relationships among them. An example of SUBDUE
outcome is shown in Fig. 3. Interested readers can find a description of the approach
to extract relevant subgraphs from event logs in [11]. The hierarchical structure of sub-
graphs discovered by SUBDUE becomes the input of the next step of the methodology.

2.2 Anomalous Subgraph Extraction

The second step aims to extract the subgraphs that do not fit the given process model. To
this end, we have developed the Subgraph Conformance Checking (SCC) algorithm. In
contrast to most of the existing conformance checking algorithms, the SCC algorithm
is tailored to check conformance of subgraphs corresponding to portions of process
executions. The core idea of the SCC algorithm is to replay a subgraph against a pro-
cess model represented by its coverability graph. Given a Petri net N , the coverability
graph of N is a directed graph whose nodes are the markings reachable from the initial
marking of N and arcs are labeled by the transitions of N [13].

Given a subgraph s and the coverability graph R of a Petri net, the SCC algorithm
identifies all the arcs in R whose labels match with the first activity of s. Starting from
each of these edges, the algorithm checks if there exists a sequence of edges in R
whose labels match with the sequence of activities in the subgraph. If such a sequence
exists, the subgraph is marked as ‘compliant’; otherwise, the subgraph is marked as
‘anomalous’. The algorithm is robust with respect to the presence of invisible transi-
tions. Edges labeled with invisible transitions are taken into account while exploring
the search space, but are not used while matching the paths with the subgraph.

Fig. 4 shows an example of application of the SCC algorithm. Consider subgraph
s1 in Fig. 4a and the (portion of the) coverability graph of the Petri net in Fig. 1 shown

CFS CEC CCP

s1 GIR

s1

s3

(a) Hierarchical structure
of subgraphs to be verified

. . .

. . .

. . .
PL // [p2]

CIR //

CFS %%

[p3]
CCP //

Inv5 ++
Inv2 ,,

[p6]
Inv3
//

Inv6 66

.

[p12]
CEC //

Inv7

11

[p13]
GIR
//

Inv8

00

[p14]
CCP
// [p21]

Inv9 //

Inv1 ''

. . .

. . .

(b) Portion of the coverability graph of the Petri net in Fig. 1.
The states marked in gray are the reachable states.

Fig. 4: Example of application of SCC algorithm.

in Fig. 4b. The SCC algorithm first looks for arcs labeled with the first event in s1,
i.e. CFS, in the coverability graph. There is only one arc labeled with that activity, i.e.
([p2], [p12]). The algorithm marks state [p12] as reachable (denoted by gray) and checks
whether there exists an arc outgoing that state with label CEC, i.e. the label of the second
node of s1. As the arc exists (i.e., ([p12], [p13])), also state [p13] is marked as reachable.
From [p13], however, there is not any edge labeled with CCP, i.e. the last event of s1.
Therefore, the subgraph is marked as “anomalous”.

It is worth noting that among the subgraphs mined by SUBDUE there might oc-
cur inclusion or overlapping relationships, i.e. subgraphs can be completely or partially
included in other subgraphs. Let si = (Vi, Ei, φi) and sj = (Vj , Ej , φj) be two sub-
graphs. We say that si includes sj , denoted as si →incl sj , if (i) ∀v ∈ Vj there ex-
ists v′ ∈ Vi s.t. φi(v) = φj(v

′) and (ii) ∀(u, v) ∈ Ej there exists (u′, v′) ∈ Ei s.t.
φi(u) = φj(u

′) and φi(v) = φj(v
′). We say that si overlaps sj , if exists a subgraph sz

such that si strictly includes sz and sj strictly includes sz .

Given two subgraphs si, sj such that si →incl sj , it is easy to observe that sj is able
to detect all process executions containing si but not the other way around. sj is hence
more general than si and thus preferable for the definition of anomalous patterns. To
capture this intuition, we introduce the notion of minimal anomalous subgraphs. Given
a set of subgraphs S = {s1, . . . , sn}, the set of minimal subgraphs is Smin = {si | si ∈
S ∧ @sj ∈ Smin s.t. si →incl sj}. For the definition of anomalous patterns, we only
consider minimal subgraphs. Given the hierarchical structure returned by SUBDUE,
we start assessing the conformance of the root subgraphs using the SCC algorithm. If
a subgraph is marked as ‘anomalous’, the algorithm prunes all the branches involving
the descendants of the subgraph, since, although they are anomalous ‘by inheritance’,
none of them is minimal. Otherwise, if a subgraph fits the process model, it is marked
as ‘compliant’ and its child subgraphs are iteratively analyzed using the SCC algorithm.
The algorithm terminates when all subgraphs in the hierarchical structure are marked
as either ‘complaint’ or ‘anomalous’.

Overlapping subgraphs, on the other hand, can provide useful insights about poten-
tial anomalous behavior. In fact, two subgraphs overlap on some activities if there are
some process executions which differ before/after those activities. By analyzing over-
lapping subgraphs that frequently occur together, we can explore some portions of these

alternative execution paths. Thus, we consider subgraphs relationships in the final step
of the methodology, as explained in the following section.

2.3 Partial Order Discovery

The final step of the approach aims to derive ordering relations among minimal anoma-
lous subgraphs. These ordering relations are used to generate anomalous patterns, i.e.
partially ordered subgraphs that show how apparently different anomalous behaviors
are usually correlated. First, we generate an occurrence matrix where each cell cij rep-
resents the number of occurrence of the j-th subgraph in the i-th trace. We apply well-
known frequent itemset algorithms [14] to this matrix, thus deriving all the subgraphs
which co-occur with a support above a given threshold. To determine how the subgraphs
in a frequent itemset are combined, we infer ordering relations between the elements
of the itemset pairwise. More precisely, for each pair of subgraphs si, sj belonging to
the same itemset, we define one of the following relation: (i) the sequentially relation,
denoted as si →seq sj , which states that sj occurs immediately after si, (ii) the over-
lapping relation, denoted by si →ov sj , which states that si occurs before sj and their
executions overlap, (iii) the eventually relation, denoted as si →ev sj , which states that
sj will occur after si, but an arbitrary number of other activities (at least one) occured
between the two subgraphs. To derive these relations, we analyze the position of the
events forming each subgraph of the itemset in the log traces in which the itemset oc-
curs. In particular, we evaluate the occurrence frequency of sequentially, overlapping
and eventually relations by means of Mseq , Mov and Mev matrices respectively. Each
cell of a matrix represents the number of times in which the ordering relation repre-
sented by the matrix occurred for a given pair of subgraphs. It is worth noting that in
the presence of noisy logs we can detect unreliable relations. To deal with this issue, we
consider only ordering relations whose occurrence frequency is above a given threshold.

As an example, let consider the frequent itemset {s26, s266, s67} where s26 =
〈CI,CI〉, s266 = 〈PL,CCP〉 and s67 = 〈CCP,CIR〉. Analyzing the positions of sub-
graphs in the log traces in which these subgraphs occur (see Fig. 5a for an example
of such traces), we can observe that s266 usually occurs immediately after s26 (i.e.,
s26 →seq s266). Moreover, we can observe that s266 overlaps s67 (i.e., s266 →ov s67)
and s67 eventually occurs after s26 (i.e., s26 →ev s67). Fig. 5b shows matrices Mseq ,
Mov and Mev for itemset {s26, s266, s67}. As can be observed in the matrices, these re-
lations are reliable as they have a high occurrence frequency. Fig. 5c shows the obtained
partially ordered subgraph.

3 Experiments

We have implemented our approach as two modules of the ESub tool [10], namely
Anomalous Subgraphs Checking (implementing steps 1 and 2) and Partial Order Dis-
covery (implementing step 3).3 The first module takes as input an event log and the
coverability graph of a Petri net and uses SUBDUE to generate a hierarchical structure

3 http://193.205.129.67/ESub/GraphManager/browsing_workflow2/subdue

s26 s266 s67
σ2 : CI CI PL CCP CIR CCW AC AL FRM PC SM SB DH BH

(a) Excerpt of traces including subgraphs s26, s266 and s67

s26 s266 s67
s26 2 174 0
s266 0 0 0
s67 0 0 0

Mseq

s26 s266 s67
s26 0 0 0
s266 0 0 199
s67 0 0 0

Mov

s26 s266 s67
s26 0 25 199
s266 0 0 0
s67 0 0 0

Mev

(b) Ordering Relations Matrices

s26
seq
//

ev

((
s266

ov
// s67

(c) Partially Ordered Subgraph

Fig. 5: Ordering Relations Discovery for itemset {s26, s266, s67}.

(a) Anomalous Subgraphs Checking (b) Partial Order Discovery

Fig. 6: Esub Modules for Anomalous Pattern Extraction.

of subgraphs and the SCC algorithm to extract the anomalous subgraphs. Fig. 6a shows
a screenshot of the module displaying a portion of the hierarchical structure derived by
SUBDUE where anomalous subgraphs are denoted by a thick border, their children by a
dotted border and compliant subgraphs by a normal border. The second module takes as
input the set of frequent itemsets and the graphs generated from the log and derives the
partially ordered subgraphs. A screenshot of this module is shown in Fig. 6b. Each edge
is labeled with the type of relation it represents. Normal lines are used for sequentially
relations, bold lines for overlapping relations and dotted lines for eventually relations.

To evaluate the approach we performed a number of experiments using a synthetic
event log generated by simulating the Petri net in Fig. 1. This model represents a real-
world loan application management process, which has been defined and validated
through interviews with the managers of a bank [2]. The results discussed in this section
can hence be considered, to a certain extent, representative of the outcome that can be
obtained in real-world contexts. Based on this model, we generated 3905 traces consist-
ing of 43673 events using CPN Tools (http://cpntools.org/). We manipulated the
generated event log by introducing noise. We set for each trace a probability of 20% of
having one or more deleted activities and a probability of 20% of having one or more in-
serted activities, randomly chosen among the activities of the model. In addition, we in-
serted some high-level deviations, namely swaps, repetitions and replacements. A swap
occurs when two or more activities are executed in an opposite order compared to the
order defined by the model; we swapped the execution of sequence 〈CCP〉 with the one
of 〈CIR〉 in 18.0% of the traces, and the execution of 〈GIR〉 with the execution of 〈CFS〉

Table 1: Support values of discovered partial orders
Id po1 po2 po3 po4 po5 po6 po7 po8 po9 po10
δitem 85.6 96.7 99.8 97.3 96.8 100 99.6 96.4 86.4 99.5
δall 4.7 5.2 17.9 14.7 11.6 12.2 11.9 8.3 4.4 11.6

in 15.5% of the traces. A repetition means that a given (sequence of) activity(ies) is re-
peated multiple times (without belonging to a loop); we added two repetitions, namely
the repetition of sequence 〈CI〉 and of sequence 〈CER〉 in 33.6% and 9.0% of the traces
respectively. Finally, a replacement indicates that a given (sequence of) activity(ies) is
executed instead of another one; in our experiments, sequence of activities 〈ACO〉 was
replaced with sequence 〈SBO〉, 〈ACO,AL〉 with 〈PLA,BHF,GIR〉 and 〈PC,S〉 with
〈CCP,CCP〉 in 12.0%, 3.7% and 12.0% of the traces respectively.

By doing so, we obtain an event log involving several heterogeneous anomalous be-
haviors, among which is however possible to recognize some regularities. This reflects
what we reasonable expect to find in a real-world context. Note that this implies that
we cannot expect to detect patterns with a very high support value. However, this does
not affect the validity of the approach. The importance of a deviation is not necessar-
ily related to its frequency. For instance, in several domains (e.g., security), undesired
behaviors have to be detected even if they are not very frequent.

The event log was given as input to the Anomalous Subgraphs Checking module.
SUBDUE extracted 1245 subgraphs, from which 186 minimal anomalous subgraphs
were derived. The set of minimal anomalous subgraphs was used to derive the frequent
itemsets. For our experiments, we used FP-Growth [14] implemented in RapidMiner
(https://rapidminer.com), with a minimum support threshold of 5%. The outcome
of FP-Growth algorithm was passed to the Partial Order module. Based on the derived
itemsets and a threshold of 40%, the module extracted ten partially ordered subgraphs.
Table 1 shows the support of each pattern with respect to the traces where its itemset
occurs (δitem) and with respect to the overall set of traces (δall). We can observe that
ordering relations hold for most of the occurrences of their itemsets. Moreover, most of
the derived partial orders have good support values, higher than (or anyway closed to)
5%. Note that the support of a pattern is always lower or at most equal to the support of
its corresponding itemset. In fact, there can be some traces where the itemset occurs, but
its subgraphs do not match the ordering relations of the pattern. This explains why po1
and po9 have a δall lower than 5%. For the sake of space, we only focus on two of the
discovered patterns, namely po4 and po9, which allow us to point out some interesting
aspects of the approach.

Partially ordered subgraph po4 (Fig. 7a) shows a swap of activities CFS and GIR.
The support of the pattern (Table 1) is close with the support we set for the devia-
tion; the difference is due to some traces which do not fit the ordering relations of po4
because of other inserted/deleted activities. We would like to point out that detecting
the swap is quite straight by analyzing po4 while detecting such a high-level devia-
tion using, for instance, alignments is far from trivial. For example, Fig. 7b shows the
alignment returned by the ProM plug-in PNetReplayer for trace σ5 = 〈CI, CI, PL,
GIR,CEC,CFS,CCP,RL〉. Here, to recognize the swap the analyst has to relate the

PL GIR CEC CFS

s164 s102

seq

(a) Uncompressed po4

γ =
CI CI PL � GIR CEC � CFS CCP RL

CI � PL CFS � CEC GIR � CCP RL

(b) Alignments of trace σ5 and the Petri net in Fig. 1

Fig. 7: Analysis of anomalous pattern po4

deletion of CFS and the insertion of GIR, occurring before CEC, with the deletion of
GIR and the insertion of CFS occurring after CEC. Clearly, this can easily lead to mis-
leading diagnostics, especially when more than one activity occur between the swapped
activities or other deviations occur.

Partially ordered subgraph po9 (Fig. 5c) corresponds to the combination of two
high-level deviations, namely the repetition of activity CI and the swap of activities CCP
and CIR, thus originating a new, not a-priori known, pattern. This provides an example
of the capability of our approach to extract general patterns that do not necessarily
reflect a-priori knowledge of deviations. On the other hand, it also points out the need
of post-processing the discovered patterns; it is easy to see that the edge between s26 and
s67 is not needed to interpret the pattern. We plan to address this issue in future work.

4 Related Work

A number of approaches have been proposed for conformance checking. Some ap-
proaches [7, 9, 20] check whether log traces satisfy a set of compliance rules. Rozinat
and van der Aalst [19] propose a token-based technique to replay process executions
over a process model and use the information obtained from remaining and missing
tokens to detect deviations. Banescu et al. [6] extend the work in [19] to identify and
classify high level deviations by analyzing the configuration of remaining and missing
tokens. However, it has been shown that token-based techniques can provide misleading
diagnostics.

Recently, alignments have been proposed as a robust approach to conformance
checking [1]. Alignments are able to pinpoint deviations causing nonconformity based
on a given cost function. These cost functions, however, are usually based on human
judgment and, hence, prone to imperfections, which can ultimately lead to incorrect
diagnostics. To obtain probable explanations of nonconformity, Alizadeh et al. [4] pro-
pose an approach to compute the cost function by analyzing historical logging data,
which is extended in [5] to consider multiple process perspectives. Alignment-based
techniques rely on total ordering of events; thus, diagnostics obtained by these tech-
niques can be unreliable when timestamps of events are coarse or incorrect. Lu et al.
[18] describe how partially ordered traces can be obtained from sequential event logs
and propose an approach for computing partially ordered alignments using these par-
tially ordered traces. Alignment-based approaches specify the obtained diagnostic in-
formation in terms of low level deviations; our work, instead, is focused on deriving
high-level deviations. Adriansyah et al. [3] show how alignment-based techniques can
be extended to directly capture high level deviations in alignments using anomalous
patterns. However, they use a-priori known patterns, while our approach aims at auto-
matically deriving from the event log recurrent and a-priori unknown patterns.

Well-known approaches for subprocess extraction from sequential traces are [8],
which detects subprocesses by identifying sequences of events that fit a-priori defined
templates; [15], which exploits a sequence pattern mining algorithm to derive frequent
sequences of clinical activities from clinical logs; and [17], which introduces an ap-
proach to derive “episodes”, i.e, directed graphs where nodes correspond to activities
and edges to eventually-follow precedence relations, which, given a pair of activities,
state which one occurs later. With respect to previous approaches, the one proposed in
this work does not require to define any a-priori defined template and extracts the sub-
processes that are the most relevant according to the MDL principle, thus taking into
account both frequency and size in determining the relevance of each subprocess.

5 Conclusions and future work

In this work, we presented a novel approach to discover complex anomalous patterns,
showing high-level deviations in process executions. Main novelties consists in i) an
approach to extract anomalous subgraphs representing raw deviations and ii) an ap-
proach to derive partially ordered anomalous subgraphs representing complex anoma-
lous behaviors. Our experiments demonstrated the capability of the approach by return-
ing meaningful patterns capturing high-level deviations that, on the other hand, would
be hard to identify using, for instance, alignment-based techniques.

However, more efforts are required in order to move from partially ordered anoma-
lous subgraphs, describing basic ordering relations, to anomalous subprocesses describ-
ing the execution flows of deviations. First, a post-processing of the discovered patterns
is needed to remove redundant relations, as mentioned in Section 3. Moreover, it is de-
sirable to derive more complex flow constructs, e.g. loops and AND/OR relations. A
possible direction in this regard consists in investigating the application of process dis-
covery algorithms. A further extension consists in devising (semi)automatic techniques
able to detect in which portions of the process anomalous subprocesses occurred, thus
simplifying the analysis of deviations. Moreover, extending the original model with the
detected subprocesses paves the way for implementing efficient strategies to detect fu-
ture instances of anomalous behaviors, both in an on-line and an off-line setting. This
can be obtained by investigating the combination of our approach with the one proposed
in [3].

In future work, we plan to address these issues. Furthermore, we intend to perform
more extensive experiments on real-life event logs, exploring also other approaches, for
instance, model building approaches.

Acknowledgement This work has been partially funded by the NWO CyberSecurity
programme under the PriCE project and by the Dutch national program COMMIT un-
der the THeCS project.

References

1. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process models
for conformance checking and performance analysis. Wiley Int. Rev. Data Min. and Knowl.
Disc. 2(2), 182–192 (2012)

2. Accorsi, R., Stocker, T.: On the Exploitation of Process Mining for Security Audits: The
Conformance Checking Case. In: Proceedings of Annual Symposium on Applied Comput-
ing. pp. 1709–1716. ACM (2012)

3. Adriansyah, A., van Dongen, B.F., Zannone, N.: Controlling break-the-glass through align-
ment. In: Proc. of International Conference on Social Computing. pp. 606–611. IEEE (2013)

4. Alizadeh, M., de Leoni, M., Zannone, N.: History-based construction of alignments for con-
formance checking: Formalization and implementation. In: Data-Driven Process Discovery
and Analysis. LNBIP, vol. 237, pp. 58–78. Springer (2014)

5. Alizadeh, M., de Leoni, M., Zannone, N.: Constructing probable explanations of nonconfor-
mity: A data-aware and history-based approach. In: Proceedings of Symposium Series on
Computational Intelligence. pp. 1358–1365. IEEE (2015)

6. Banescu, S., Petkovic, M., Zannone, N.: Measuring privacy compliance using fitness metrics.
In: Business Process Management. pp. 114–119. LNCS 7481, Springer (2012)

7. Borrego, D., Barba, I.: Conformance checking and diagnosis for declarative business process
models in data-aware scenarios. Expert Syst. Appl. 41(11), 5340–5352 (2014)

8. Bose, R.P.J.C., van der Aalst, W.M.P.: Abstractions in process mining: A taxonomy of pat-
terns. In: Business Process Management, LNCS, vol. 5701, pp. 159–175. Springer (2009)

9. Caron, F., Vanthienen, J., Baesens, B.: Comprehensive rule-based compliance checking and
risk management with process mining. Decision Support Systems 54(3), 1357–1369 (2013)

10. Diamantini, C., Genga, L., Potena, D.: Esub: Exploration of subgraphs. In: Proceedings of
the BPM Demo Session. pp. 70–74. CEUR-WS.org (2015)

11. Diamantini, C., Genga, L., Potena, D.: Behavioral process mining for unstructured processes.
Journal of Intelligent Information Systems pp. 1–28 (2016)

12. Diamantini, C., Genga, L., Potena, D., van der Aalst, W.: Building instance graphs for highly
variable processes. Expert Systems with Applications 59, 101–118 (2016)

13. Finkel, A.: The minimal coverability graph for Petri nets. In: Advances in Petri Nets, pp.
210–243. Springer (1993)

14. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: ACM
Sigmod Record. vol. 29, pp. 1–12. ACM (2000)

15. Huang, Z., Lu, X., Duan, H.: On mining clinical pathway patterns from medical behaviors.
Artificial intelligence in medicine 56(1), 35–50 (2012)

16. Jonyer, I., Cook, D., Holder, L.: Graph-based Hierarchical Conceptual Clustering. The Jour-
nal of Machine Learning Research 2, 19–43 (2002)

17. Leemans, M., van der Aalst, W.: Discovery of frequent episodes in event logs. In: Proc. of
Int. Symp. on Data-driven Process Discovery and Analysis. pp. 1–31. CEUR-ws. org (2014)

18. Lu, X., Fahland, D., van der Aalst, W.M.: Conformance checking based on partially ordered
event data. In: Business Process Management. pp. 75–88. Springer (2014)

19. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring
real behavior. Information Systems 33(1), 64–95 (2008)

20. Taghiabadi, E.R., Gromov, V., Fahland, D., van der Aalst, W.P.: Compliance checking of
data-aware and resource-aware compliance requirements. In: On the Move to Meaningful
Internet Systems. LNCS, vol. 8841, pp. 237–257. Springer (2014)

