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Abstract. Vehicle speed is an important factor influencing highway
traffic safety. Radars are applied to control the speed of vehicles, but
the drivers often decelerate when approaching radar, and then acceler-
ate after passing by. In this research, we address automatic recognition
of speed change from audio data, based on recordings taken in controlled
conditions. Data description, acquisition details, and classification exper-
iments illustrate both changing speed and maintaining constant speed.
This is a starting point to investigate what percentage of drivers actually
maintain constant speed, or slows down only to speed up immediately af-
terwards. Automatic classification and building an appropriate database
can help improving traffic safety.

Keywords: Intelligent transport system; Road Traffic Safety; Audio sig-
nal analysis

1 Introduction

Development of transport brings numerous benefits, but it also brings problems,
including pollution of the environment, and decreased safety. According to WHO
(World Health Organization), more than one million people die each year as a
result of road traffic crashes, and people aged 15-44 years account for almost
a half of global traffic deaths [11]. Pedestrians, cyclists and motorcyclists are
especially vulnerable road users. Road crashes also cause economic losses. Ad-
ditionally, people from low- and middle-income backgrounds and countries are
more often involved in road crashes.
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Improving the safety of roads and enhancing the behavior of road users be-
came priority in all actions related to transport in Poland and around the world.
Crashes and dangerous situations are carefully analyzed, and the society is in-
formed about the results, which sometimes evoke heated discussions. The use of
photo radars, traffic calming zones, speed bumps and other means of improving
traffic safety are often criticized by the drivers. However, the statistics confirm
that road safety improves, and the number of fatalities in road crashes decreases.
The statistics of fatalities in road traffic crashes for selected European countries
are shown in Figure 1 [4]. According to Central Statistical Office of Poland, the
number of fatalities in road crashes decreased in last years, with 3348, 3190 and
2933 fatalities in 2013, 2014 and 2015 respectively.
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Fig. 1. Fatalities in road traffic crashed in selected European countries [4]

The road traffic safety can be improved. The main factors that decrease safety
are

— low quality of many roads, and of vehicles;

— lack of protection for pedestrians and bikers,

— deficiencies of the road traffic safety systems - prolonged implementation of
laws relating to risk factors, insufficient financial support, low public aware-
ness;

— reckless behavior of drivers and other road users - speeding, driving and
walking while impaired; not using seat belts.

Therefore, road safety can be improved through setting and enforcing appro-
priate regulations, through public awareness campaigns, and through interven-
tions targeting the road users behavior. The reports from the operators of naviga-
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tion systems show that drivers increase speed when passing a speed camera, after
slowing down when approaching the camera. However, these report describe the
behavior of the users of these navigation systems, and further research on other
drivers’ behavior is needed. The data on drivers’ behavior can be collected from
audio recording systems, if such systems are developed and deployed. Therefore,
the goal of our research is to investigate if changing (or maintaining) speed can
be recognized from audio data, as this can be the first step to prepare a system
to collect data on drivers’ behavior around speed cameras. Additionally, vehicle
speed influences the noise level generated by the vehicle, as the speed increase
also increases the noise level. Another factors increasing the noise level are:

— road inclination - vehicle traveling uphill generates more noise, but average
traffic speed decreases; traveling downhill generates less noise than traveling
on flat road,

— road surface, and its dampness,

— the technical condition of vehicles; especially old vehicles generate more noise
and more exhaust fumes, and these vehicles also decrease the traffic road
safety.

Out of all the factors influencing the road traffic safety and noise generated, the
speed of vehicles can be more easily addressed than some other factors. This
is why we decided to address the behavior of drivers when speed is controlled,
and prepare audio data representing acceleration, deceleration, and constant
speed. Next, we trained classifiers on speed data. This is the initial step of our
research, aiming at automatic classification of speed change, and collecting a big-
ger dataset of drivers’ behavior. These data are very complex, since audio signal
recorded depends on many factors, and it changes with time. The recorded data
represent changes of the amplitude of the audio waveform with time; close-up of
a segment of such audio data is shown in Figure 2. As we can see, data change
quickly, and even though we can observe some periodicity, irregular variations
are also clearly visible. Time domain data are usually parameterized, based on
frequency content (i.e. on the spectrum). The spectrum is usually calculated for
short segments of data, and changes of the spectrum over time can be can be
observed in so called spectrogram, where the amplitude of particular frequencies
is represented using a selected color scale. Exemplary spectrogram in grayscale
are shown in Figure 3.

As we can see, representing vehicle sound contains noise and harmonic com-
ponents. This is why we designed a feature vector that allows capturing noise
features, harmonic features, and their changes in time. Speed is usually moni-
tored by radars, but usually a single measurement is done, and the drivers are
aware of this fact. We hope that monitoring how drivers change speed in these
circumstances and launching public awareness campaign can increase the road
traffic safety.
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Fig. 2. Audio data in time domain: horizontal axis represents time, vertical - amplitude.
Recording for Ford Focus (plot from Adobe Audition [1])

Fig. 3. Spectrogram of Ford Focus accelerating, then decelerating, accelerating again
and decelerating, for 1 Newton load (a). A close-up for low frequencies is shown in (b).
Higher luminance represents higher amplitude. Spectrograms obtained from Adobe
Audition [1]
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2 Data

In order to perform the data in controlled conditions, dyno test bench (see Figure
4) recordings were performed in May and June 2016, at the University of Life
Sciences in Lublin. The position of the vehicle, OBD (On-Board Diagnostics)
acquisition and audio recorder is shown in Figure 5. Eight vehicles were recorded:

Smart ForFour - car with gasoline engine,

— Ford Focus - car with gasoline and LPG (Liquid Petroleum Gas) engine,
Hyundai i30 - car with Diesel engine,

— Toyota Corolla Verso - car with Diesel engine,

Daewoo Lublin - van with Diesel engine,

Fiat Ducato - van with Diesel engine,

Volkswagen (VW) Transporters, 2004 and 2007 year - vans with Diesel en-
gines.

Fig. 4. Dyno test bench equipment at the University of Life Sciences in Lublin

All vehicles were equipped with manual transmission. The vehicles acceler-
ated to 110 km/h (with the exception of Daewoo Lublin - to 90 km/h only), then
decelerated to low speed at fifth gear, to about 40-45 km/h, when the gear was
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Fig.5. Dyno test bench data recording, with OBD acquisition shown. The audio
recorder is placed on the tripod
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changed. When accelerating, the driver changed gear attempted to maintain a
constant speed for a few seconds at 50 km/h, 70 km/h, and 90 km/h. Also, at 110
km/h constant speed was maintained for a few seconds. This way we obtained
data representing three categories: accelerating, decelerating, and maintaining
constant speed. T'wo versions were recorded: with 450 Newton load applied, with
the exception of Ford Focus, and load adjusted to on-road conditions (with the
exception of Daewoo Lublin and Hyundai i30), i.e. depending on vehicle speed,
weight, and road coeflicients.

3 Feature Set

In order to capture changes of audio signal properties with speed changes, if
any, we decided to observe these properties within 1-second audio frames. For
each frame, we calculate spectral features for the starting 330 ms sub-frame, and
for the ending 330 ms sub-frame. Next, the calculated features for the starting
part, together with the vector of differences between features for the starting
and ending part, are placed in the feature vector. Additionally, one time-domain
parameter is calculated, i.e. zero-crossing rate, together with its change between
the value for the beginning and the ending part. Also, a parameter capturing the
spectrum change between the starting and ending part is added to the feature
set.

Features describing spectrum and time domain for the starting 330m ms of
a l-second frame include:

— Zero Crossing Rate (ZCR) in the time-domain of the sound; a zero-crossing
is a point where the sign of the function (amplitude vs. time) changes;

— Audio Spectrum Envelope - 33 features, SEO, ..., SE32 calculated according
to [8] as sums of the energy of the power spectrum within logarithmically
spaced frequency bands;

— SUM_SE - sum of the spectrum envelope values;

— MAX SE_V, MAX_SE_IND - value and index of the spectrum envelope max-
imum;

— Audio Spectrum Flatness, flaty, ..., flatos - a vector describing the flatness
property of the power spectrum [8], i.e. the deviation of the signals power
spectrum from a flat shape, for each band of the spectrum envelope; bands
up to SE25 were used, so we ignore higher frequencies, as in the research on
audio data for vehicles the spectrum is usually limited, and even the sampling
rate is often decreased in order to limit the amount of data analyzed;

— MFCC - 13 mel frequency cepstral coefficients. The cepstrum is calculated as
the logarithm of the magnitude of the spectral coefficients, and then trans-
formed to the mel scale, reflecting the properties of the human perception
of frequency. Twenty-four mel filters were applied, and the obtained results
were transformed (averaged) to 12 coefficients. The 13" coefficient is the
0-order coefficient of MFCC, corresponding to the logarithm of the energy

[6];
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— FO0_ACor, - fundamental frequency, calculated from the autocorrelation
function. This parameter is included in the feature set, since the frequency
of wheels rotation is visible in the spectrum (with its multiples), and this
frequency changes with the speed change;

— EnAbjkHz - proportion of the spectral energy above 4kHz to the entire
spectrum energy;

— FEnergy - energy of the entire spectrum;

— Audio Spectrum Centroid (SC) - the power weighted average of the frequency
bins in the power spectrum. Coefficients were scaled to an octave scale an-
chored at 1 kHz [8];

— Audio Spectrum Spread (SS) - RMS (root mean square) of the deviation of
the log frequency power spectrum with respect to Audio Spectrum Centroid
8};

— 5?]0110]3“ - the frequency below which 85% (experimentally chosen threshold)
of the accumulated magnitudes of the spectrum is concentrated,

— BW_10dB, BW_20dB, BW_30dB - bandwidth of the frequency band com-
prising the spectrum maximum (in dB scale) and the level drop by 10, 20
and 30 dB, respectively, towards both lower and upper frequencies.

All these features are placed in the feature vector. Next, they are also calcu-
lated for the ending 330 ms of the 1-second frame, and

— the differences between these values and the values for the starting part are
added to the feature vector;

— additionally, Flurl parameter is added to the feature set. Flux! is the sum
of squared differences between the magnitudes of the spectrum points calcu-
lated for the starting and ending 330 ms sub-frames within the one-second
frame.

Altogether, the feature vector consists of 169 features.

Audio data were recorded in stereo, with 48 kHz sampling rate, and 24 bit
resolution. Fast Fourier transform was used for spectrum calculation, and slid-
ing frame with 330 ms hop size was applied when analyzing the audio data
and calculating the feature vector. The applied 330 ms analyzing frame yields
good frequency resolution, which is needed when calculating low frequencies,
representing wheels rotation.

3.1 Feature Selection

Since our feature vector is relatively large, we also performed feature selection,
as it is recommended in such a case [5]. For each of the classifiers investigated,
cross validation procedure was applied. We applied 8-fold cross validation, and
each fold represented data from one vehicle. Since we used random forests as
classifiers, we decided to apply feature importance from these classifiers. We
tested 2 versions: with constant number of features to be selected (10 features;
number arbitrarily chosen), and with feature importance above various threshold
based of mean decrease of Gini criterion. The threshold 0.01 was selected, as
giving a small number of features. After threshold based selection, the number
of features left varied from several to more than 20 features.
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4 Classification

The experiments on classification of the acquired data were performed using
random forests (RF, [2]), deep learning (DL) architecture (neural network), and
support vector machines (SVM), using R [9]. The data were classified into three
classes:

— deceleration, with speed decrease more than 5 km/h per second; this class
represents fast deceleration, often happening when the driver must quickly
reduce speed when speeding before radar registers speed;

— stable speed, with speed change within 3 km/h range per second, originating
for speed increase below 1.5 km/h per second or speed decrease below 1.5
km/h per second;

— acceleration, with speed increase more than 2.5 km/h per second.

The data were labeled according to OBD data and other information recorded at
the dyno test bench. As we can see, the speed ranges do not represent neighboring
intervals, since we wanted to capture clear cases of intent acceleration or decel-
eration. The remaining data were not taken into account in our experiments.
Altogether, we had 101 examples (1-second frames) representing deceleration,
423 examples for acceleration, and 579 examples for stable speed. Since decel-
eration was underrepresented, compared to the other classes, we also performed
upsampling during training (i.e. replicated examples, to match the number of
examples in each fold with the biggest class), in order to balance classes.

4.1 Classifiers

Random forest (RF) is the classifier which yielded the best results in our ex-
periments. RF is a set of decision trees, and bias and correlations between the
trees are minimized during the classifier construction. Each tree is built without
pruning, using a different N-element bootstrap sample (i.e. obtained through
drawing with replacement) of the N-element training set. For a K-element fea-
ture set, k features are randomly selected for each node of any tree (k < K,
often k = VK ). The best split on these k features is applied to split the data
in the node. Gini impurity criterion is applied (minimized) to choose the split.
This criterion measures of how often an element would be incorrectly labeled, if
random labeling according to the distribution of labels in the subset is applied.
The forest of M trees is obtained by repeating this procedure M times; M=500
in our experiments, which is a standard setting in R. Classification using RF is
performed by simple voting of all trees.

DL neural network in our experiments is a multi-layer feedforward neural
net, with many hidden layers, with data standardization. Training is performed
through back propagation with adaptive learning. We used R package h2o [7],
with standard settings; training parameters include large weight penalization
and drop-out regularization (ignoring a random fraction of neuron inputs). In
training, weights are iteratively updated in so-called epochs, with grid-search of
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the parameter space. DL classifiers yielded good results in our previous research
on audio data for vehicles [10].

We also applied SVM classifiers, which look for a decision surface (hyper-
plane) maximizing the margin around the decision boundary. The training data
points are called support vectors. SVM projects data into a higher dimensional
space, using a kernel function. We applied radial basis functions (RBF), with ¢
and v parameters. In our experiments, we applied v=0.03125 and c=2.

5 Experiments

In our experiments, we trained RF, DL and SVM classifiers to recognize accel-
eration, deceleration and stable speed for our data. Since the feature vector is
large, we also performed feature selection in 2 versions, i.e. with 10 best features
kept, and with features above 0.01 threshold. The results are shown in Table 1.
As we can see, the results for SVM without feature selection are low, but after
feature selection the accuracy is better than for DL.

Table 1. Classification accuracy for speed changes

Classifier RF | DL |SVM
No feature selection 70.6%160.9%37.2%
Top 10 features 68.8%|58.7%162.6%
Features above threshold||70.1%55.5%(64.9%

We repeated these experiments after upsampling of the data. The results are
shown in Table 2. As we can see, upsampling increases accuracy in some cases,
and our best result was obtained for RF with feature selection above the thresh-
old. However, upsampling decreases accuracy for DL with feature selection with
top 10 features, which means that such a small amount of features is insufficient
to classify such complex data.

Table 2. Classification accuracy for speed changes after data balancing (upsampling
of training data)

Classifier RF | DL |SVM
No feature selection 66.9%164.4%|36.4%
Top 10 features 67.3%|46.1%60.7%
Features above threshold||72.6%68.9%65.7%

The obtained results show how difficult it is to classify such data, but look-
ing into details in confusion matrices (see Table 3) we can see that classifiers
most often mistake stable speed with acceleration. Accelerating is a relatively
slow process, so such mistakes are not surprising. Also, deceleration is mistaken
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with stable speed, but the deceleration we recorded was a safe one, with engine
braking, without applying brakes. The acceleration vs. deceleration mistakes are
rare, and deceleration was never mistaken with acceleration. Confusion matrix
for DL is shown in Table 4 for comparison; as we can see, the performance of
DL is much worse for deceleration class.

Table 3. Confusion matrix for RF with feature selection above threshold, with up-
sampling in training

Class/Identified as:||Acceleration|Stable speed|Deceleration
Acceleration 300 118 5
Stable speed 106 447 26
Deceleration 0 47 54

Table 4. Confusion matrix for DL with feature selection above threshold, with up-
sampling in training

Class/Identified as:||Acceleration|Stable speed|Deceleration
Acceleration 264 152 7
Stable speed 454 120 5
Deceleration 25 34 42

6 Summary and Conclusions

In this paper, we aimed at automatic recognition of accelerating and decelerating
of vehicles. The data for analysis were recorded at dyno test bench, so we had
access to the speed data and rpm (revolutions per minute) information. This is
the initial stage of the research investigating how drivers behave when approach-
ing radars, and then after leaving the speed controlling zone. The experimental
results show that classifiers can distinguish accelerating, decelerating and sta-
ble speed with about 70% accuracy, with accelerating and decelerating rarely
mistaken. Also, we recorded safe braking (engine braking) in dyno test bench.
Dramatic braking when drivers are speeding and must quickly decelerate before
approaching a speed camera is much faster, and we anticipate easier recognition
of fast deceleration when such data are recorded.
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