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Abstract. Approaches to support an interpretation of rules induced
from imbalanced data are discussed. In this paper, the rule learning al-
gorithm BRACID dedicated to class imbalance is considered. As it may
induce too many rules, which hinders their interpretation, their filtering
should be applied. We introduce three different post-pruning strategies,
which aim at selecting rules having good descriptive characteristics. The
strategies are based on combining Bayesian confirmation measures with
rule support, which have not yet been studied in the class imbalance con-
text. Experimental results show that these strategies reduce the number
of rules and improve values of rule interestingness measures at the same
time, without considerable losses of classification accuracy, especially for
the minority class.
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1 Introduction

Learning classification rules is one of mature and well studied tasks in machine
learning. The popularity of rules comes from the fact that they directly provide a
symbolic representation of knowledge discovered from data, which is more com-
prehensible and human-readable than other representations [4]. Many various
algorithms for inducing rules have been already introduced (for their review see,
e.g. [4]). Nevertheless, such aspects of data complexity as class imbalance still
constitute difficulties [10]. The majority of standard rule algorithms are biased
towards the majority classes and tend to neglect the minority class. Two kinds
of reasons for poor performance of rule based classifiers for imbalanced data are
usually pointed out – algorithmic and data level ones [10, 12].

Some extensions of rule classifiers for class imbalances have been already pro-
posed, for their review see [12]. However, most of them address only a single or
at most a few of algorithmic or data-related factors. In [12] we introduced a new
rule induction algorithm, called BRACID (the acronym of Bottom-up induction
of Rules And Cases for Imbalanced Data), which attempts to deal with more
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of the aforementioned factors. The previous experimental studies demonstrated
that the rule classifier induced by BRACID significantly outperformed other pop-
ular rule classifiers as well as the extensions specialized to class imbalances, with
respect to predictive measures [12]. On the other hand, BRACID may generate
too many rules (see also experiments in Section 5). As it restricts human experts’
abilities to analyze or interpret the rules, we are looking for a post-processing
approach that could identify the most valuable rules. The first attempt, recently
undertaken in [14], has shown that it is possible to select rules characterized by
high supports and still leading to sufficient predictive performance.

Nevertheless, focusing attention on the most interesting rules should also
take into account other rule characteristics than simply rule support. In partic-
ular, it is important not to neglect the descriptive abilities of rules, which are
often overwhelmed by the need to increase the predictive performance. Note that
the predictive and descriptive aspects often stand in opposition to each other.
However, when human experts seek for a compact knowledge representation, im-
proving the interpretability of each single rule (i.e. working within the descriptive
perspective) can even justify some loses on the predictive performance.

Establishing when rules are interesting to users touches both subjective (user-
based) and objective (data-driven) aspects [3]. In this paper we follow the latter
aspect and consider rule interestingness measures which are often applied to
filter the set of rules [6, 11]. They are calculated from learning examples and aim
at quantifying the relationship between a rule’s premise and its conclusion. A
particular group of these interestingness measures, called Bayesian confirmation
measures, is well suited for supporting rule interpretability, as it focuses on
advancing rules for which the probability of the conclusion given the premise is
greater than the genuine probability of the conclusion itself [2, 9].

Although the concept of confirmation has been firstly considered by philoso-
phers of science in a very different context (see e.g. [1, 2, 15]), it has been adopted
to rule interestingness measures, mainly for filtering association rules [7] and
more recently for classification rules [8, 9]. Nevertheless, these measures have
not been considered for imbalanced data yet. Their application should turn out
to be particularly useful in the context of imbalance since considering the prob-
ability of each conclusion separately would be related to imbalance ratios.

For the purpose of this paper we focus on two particular confirmation mea-
sures called S [1] and N [15]. We have chosen them from a wider collection of
confirmation measures discussed in the literature because of the desired prop-
erties that they possess [8, 9]. In our opinion, these measures satisfy properties
that should influence the interpretability of rules [9].

The main aim of this paper is to introduce an approach that uses confirma-
tion measures S and N to post-prune rules induced by BRACID. This approach
should reduce the number of the rules while improving values of rule interest-
ingness measures at the same time, especially within the minority class.

To achieve these aims, firstly we briefly review rule confirmation proper-
ties and formalize both S and N measures. Then, in section 3, the algorithm
BRACID is summarized. The three new rule post-pruning strategies are intro-
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duced in section 4. Their usefulness to improve BRACID rules is evaluated in
several experiments, which are described in section 5. In the final section we
discuss these results and draw lines of future research.

2 Bayesian Confirmation Measures

Rules are consequence relations represented as IF (condition part) THEN (target
class), where a condition part (premise) is a conjunction of elementary tests on
values of attributes characterizing learning examples and a target class points
to one of the predefined values of the decision attribute (represented in a rule
conclusion). For simplicity, rules will be denoted as E → H or simpler as R.

If the number of induced rules exceeds human-expert’s abilities to inspect
them, the interestingness measures are applied to filter them (for their review
see [6, 11]). For instance, in case of association rules or richer sets of classification
rules, measures as support or confidence are often exploited.

Interestingness measures quantify the relationship between E and H, and
are defined as functions of four non-negative values that can be gathered in
a 2 × 2 contingency table (see Table 1). For a particular data set, a is the
number of objects that satisfy both the rule’s premise and its conclusion, b is
the number of learning examples for which only H is satisfied, etc. For instance,
the support of E → H rule is defined as sup(H,E) = a and its confidence as
conf(H,E) = a/(a+c). Note that a, b, c and d can also be regarded as frequencies
for estimating probabilities: e.g. P (E) = (a + c)/n or P (H) = (a + b)/n.

Table 1. An exemplary contingency table of the rule’s premise and conclusion

H ¬H Σ

E a c a + c
¬E b d b + d

Σ a + b c + d n

The need to achieve good interpretability and high descriptive abilities of
rules drew our attention to a particular group of interestingness measures, called
Bayesian confirmation measures (or simply confirmation measures). All those
measures are characterized by a feature called property of Bayesian confirmation,
which requires that an interestingness measure c(H, E) obtains: positive values
when P (H|E) > P (H); 0 when P (H|E) = P (H); and negative values when
P (H|E) < P (H).

Thus, confirmation measures are designed to depict simply through their
scale the confirmatory, neutral or disconfirmatory impact of the rule’s premise
on its conclusion. Confirmation, interpreted as an increase in the probability
of the conclusion H provided by the premise E, is a desirable situation. Let
us stress that basic interestingness measures such as support or confidence do
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not possess the property of confirmation and thus, their utility is lower for the
descriptive perspective of knowledge discovery.

Note that the property of confirmation leaves plenty of space for defining var-
ious, non-equivalent confirmation measures (for a review see [2, 8]). To guide the
user towards the measures that reflect his expectations, researchers proposed
special properties of confirmation measures. These properties express require-
ments for a measure behaviour in certain situations. We focus our interest on
the property of monotonicity M [9], which favors these measures that are non-
decreasing with respect to a and d, and non-increasing with respect to b and c.
It is intuitively clear that we would like higher values of measures for rules that
are supported by a greater number of positive examples (i.e. increase of a), and
exactly the opposite when the number of counter-examples grows (i.e. increase
of c). Nevertheless, some confirmation measures act contrarily to property M .
In this paper we narrowed our study to two measures that have been verified
as satisfying many desirable properties (including the property of monotonicity
M) [8, 9]. The chosen measures S(H, E) [1] and N(H, E) [15] are defined as:

S(H, E) = P (H|E)− P (H|¬E) =
a

a + c
− b

b + d
, (1)

N(H, E) = P (E|H)− P (E|¬H) =
a

a + b
− c

c + d
. (2)

The values of S(H, E) and N(H, E) range from −1 (showing complete dis-
confirmation) to 1 (showing complete confirmation).

3 Rule Induction with BRACID

BRACID is a specialized algorithm to learn rules from imbalanced data. For its
details see [12]. Here, we summarize its main characteristics:

– Hybrid representation of rules and instances: BRACID tries to create
a general description in regions where the examples form large disjuncts
(using rules) and exploit good properties of instances in the more difficult
regions. BRACID allows some (difficult) examples to remain not generalized
to rules. They can be treated as maximally specific rules.

– Bottom-up rule induction: Unlike a top-down strategy typical for rule
induction, BRACID follows bottom-up (or specific-to-general) strategy as a
more appropriate for imbalanced data. It starts from the set of most specific
rules each covering a single learning example – which is called a seed of the
rule. Then, in every iteration each rule is generalized in the direction of the
nearest neighbour example from the same class, provided that it does not
decrease the classification abilities of the whole rule set. The procedure is
repeated until no rule in the set can be further generalized.

– Resignation from greedy, sequential covering technique: As this tech-
nique, popular in typical rule learning algorithms, increases the data frag-
mentation and is problematic for the minority examples, BRACID takes into
account all the learning examples when evaluating new rule candidate.
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– Facing borderline minority examples: Types of learning examples are
evaluated and rules are generated differently depending on the type of the
seed example of a rule [13]. The minority examples belonging to the border-
line region are allowed to be generalized into more than one rule, to lessen
the dominance of the majority class in this region.

– Facing noisy examples from the majority class: Noisy majority exam-
ples, present inside the minority class regions, may hinder the induction of
general minority rules. BRACID has an embedded mechanism for detecting
and removing such examples from the learning data set.

– Less biased classification strategy: BRACID employs a classification
strategy based on nearest rules to diminish the domination of strong ma-
jority rules during solving conflict situations while a new instance matches
condition parts of many rules.

Note that some mechanisms employed in this algorithm lead to the increase
of the number of rules (mainly a bottom-up rule induction and generation of
more rules in the borderline regions). However, the increased number of rules
for the minority class, coupled with an increased rule support, are beneficial for
final classification. The experimental evaluation of classification performance of
BRACID showed indeed that it significantly outperformed other standard rule
classifiers as well as approaches specialized for class imbalance such as PART
algorithm combined with SMOTE preprocessing – see details in [12].

4 Selecting Rules with Respect to Confirmation

We want to select a subset of induced rules with respect to appropriate rule
evaluation measures. In [14] we have already postulated that it would be prof-
itable to find rules which cover diverse sets of examples referring to different
sub-parts of the class distribution. Focusing the expert attention on a subset of
rules having such characteristics should be particularly good for the minority
class which is often decomposed into many rare sub-concepts.

Recall that several post-pruning techniques have already been proposed to
order rules or to reduce their number. However, as we discussed in [14], it may
not lead to diverse subsets of rules in BRACID, as e.g. high supports may charac-
terize many rules having similar syntax and covering similar subsets of learning
examples. Other post-pruning techniques considered in rule classifiers are focused
on optimizing the predictive performance of the rules rather than on improving
their descriptive properties [4].

Therefore, we follow a different inspiration, coming from using rules to rep-
resent patterns in subgroup discovery, where the task is to find subgroups of
individuals that are statistically “most interesting” (e.g. covering as many ex-
amples as possible and having the most unusual statistical characteristics [4]).
We have decided to generalize the algorithm originally proposed in [5] to find
rules describing subgroups.

Our approach to select a given number of diverse rules with respect to a
given rule evaluation measure is presented in Algorithm 4. It is run for each
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class separately and takes as an input the set of all rules induced for this class
and their required number after selection – later on we discuss how to tune it.

Algorithm 1 Rule Filtering Algorithm
Input: Set of Rules S for class P , required NUMBER of rules; rule evaluation ev;
Output: Prunned set of rules FR

Delete rules with too low confirmation from S
FR ← ∅
for every example e ∈ P do

c(e) ← 1
end for
repeat

for each rule R ∈ S do
calculate rule evaluation measure ev(R)

end for
Select Rmax = arg maxR(ev(R))
for each e covered by Rmax do

c(e) ← c(e) + 1
end for
Remove Rmax from S
FR = FR ∪Rmax

until size of FR = NUMBER

Firstly, we remove all rules with the non-positive value of a selected confir-
mation measure (except the option where rules are evaluated with the support
only). The key idea of the algorithm is to assign a weight c(e) to each learning
example. It is initialized with c(e) = 1 for all examples from the given class.
When rule R is selected, then weights for examples covered by this rule are in-
creased by adding 1. Then, while evaluating the next rule being a candidate for
selection, the example takes part in all calculation with the weight 1/c(e). For
instance, the support of a rule is computed as a sum of 1/c(e) for all target class
examples covered by this rule.

This weighted coverage causes that in the subsequent iterations of the al-
gorithm, examples already covered by the selected rules contribute less to the
evaluation of new rule. It promotes the rules referring to examples not yet cov-
ered and directs the search toward diverse regions of the class.

In this study we will consider three different versions of the rule evaluation
ev(R)3 for selecting rules:

1. a standard rule support sup(R);
2. a product of support with a confirmation measure N : sup(R)×N(R);
3. a product sup(R)× S(R).

3 For simplicity we will further use a notation of a rule as R instead of (H, E) in
symbols of confirmation measures
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The choice of rule support sup(R) results from earlier experiments in [14] and
we want to consider it as a baseline. The choice of both confirmation measures
S and N has been justified in Section 2. We want to aggregate them with a
rule support to represent a trade off in a bi-criteria evaluation where the user is
interested in sufficiently strong patterns describing the classes; see also earlier
experiences with multiple criteria evaluation of rules.

5 Experiments

In the experiments we will verify whether the proposed post-pruning strategies
select a limited number of BRACID rules having better values of interestingness
measures than in case of non-pruned rules.

As the evaluation criteria we choose the average values of confirmation mea-
sures S and N , rule support and rule confidence. We consider the last two mea-
sures due to their popularity in the previous rule filtering techniques and to their
easy interpretation for the users. These criteria represent descriptive properties
of single rules with respect to their possible interpretability and they are treated
as primary criteria in our study. As a secondary criterion, we also evaluate the
predictive ability of the rule set, which will be estimated by means of G-mean and
sensitivity. We use this criterion to control whether pruning the set of rules does
not dramatically deteriorate the performance compared to all rules produced by
the BRACID algorithm. The predictive measures are evaluated in a repeated
stratified 10-fold cross validation procedure while rule evaluation measures are
calculated for a set of rules induced from the complete data set.

Table 2. Basic characteristics of datasets

Data set #Examples Minority
class size

Imbalance
ratio [%]

#Attributes
(numeric)

Minority
class name

balance-scale 625 49 7.84 4 (4) B
breast-cancer 286 85 29.72 9 (0) rec-events
cmc 1473 333 22.61 9 (2) long-term
haberman 306 81 26.47 3 (3) died
hepatitis 155 32 20.65 19 (6) die
transfusion 748 178 23.80 4 (4) yes

We analysed previous experiments from [12] and chose 6 data sets, where
BRACID generated too many rules compared to other, standard rule induction
algorithms. Although the imbalance ratios of some of these data sets are medium,
all these data are also affected by different difficulty factors characterizing the
distribution of examples from the minority class. According to experimental
studies [13] these factors lead to difficulties while learning rules.

All these data sets come from the UCI repository. We analyzed them as binary
problems – the minority class vs. majority one (which may aggregate others),
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as it a typical view of class imbalances with focusing attention on improving
recognition of the class of special importance. The basic characteristics of these
data sets are presented in Table 2.

We checked that for all data sets (except hepatitis), rule sets contained some
rules with negative values of confirmation measures. For instance, balance-scale
contained 8, cmc 19 and transfusion 14 such rules.

Table 3. Characteristics of pruned rules for the minority class

Data set Pruning #Rules Avg.sup Avg.conf Avg.S Avg.N

balance-scale none 52 2.08 0.61 0.54 0.03
sup 5 6.00 0.27 0.19 0.06
sup*N 5 4.60 0.32 0.24 0.07
sup*S 5 2.00 0.88 0.80 0.04

breast-cancer none 77 3.36 0.71 0.42 0.03
sup 8 9.63 0.71 0.43 0.09
sup*N 8 10.13 0.74 0.46 0.10
sup*S 8 9.13 0.82 0.54 0.09

cmc none 354 6.59 0.72 0.50 0.02
sup 35 14.91 0.67 0.45 0.04
sup*N 35 18.57 0.65 0.43 0.05
sup*S 35 12.69 0.78 0.56 0.03

haberman none 122 6.05 0.72 0.46 0.06
sup 12 9.92 0.65 0.41 0.10
sup*N 12 12.25 0.78 0.55 0.14
sup*S 12 9.42 0.90 0.66 0.11

hepatitis none 66 7.42 0.99 0.82 0.23
sup 7 12.00 0.97 0.83 0.37
sup*N 7 12.57 1.00 0.86 0.39
sup*S 7 12.57 1.00 0.86 0.39

transfusion none 161 6.36 0.67 0.44 0.03
sup 16 16.06 0.63 0.40 0.07
sup*N 16 18.50 0.68 0.46 0.08
sup*S 16 15.56 0.77 0.54 0.07

While using the algorithm for selecting rules we need to define a number
of required rules as the stopping condition. In general, this parameter should
represent the analyst’s expectations and his abilities to inspect the rules. Here we
recall our previous experiments [14], where we studied a wide range of values of
this parameter (up to 30%). The results showed that the threshold 10% often led
to rule sets having the good average rule support and comparable classification
performance as the original set of BRACID rules.

Yet another option is to select all the rules which are necessary to cover all
the learning examples in each class. We studied this coverage option in [14] and
observed that it usually produced higher classification prediction (with respect
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to G-mean or sensitivity measure) than the percentage option. However, it also
selected more rules than the percentage option. As in this study we aim at
reducing the number of rules, we decided to consider the percentage option with
the parameter tuned to 10% of the original set of rules for each class4.

In our study, we will examine three proposed strategies to select rules with
the rule evaluation ev(R) (see Section 4), defined as: (1) a standard rule support
sup(R); (2) a product sup(R)×N(R); and (3) a product sup(R)× S(R).

The rule characteristics with respect to considered criteria are given in Table
3 and 4, for the minority and majority class, respectively. The column “pruning”
corresponds to the selection strategy (note that results for using the standard
version of BRACID without pruning is presented in the first row for each dataset
with an abbreviation “none”).

Table 4. Characteristics of pruned rules for the majority class

Data set Pruning #Rules Avg.sup Avg.conf Avg.S Avg.N

balance-scale none 306 12.89 1.00 0.08 0.02
sup 31 30.10 0.99 0.08 0.05
sup*N 31 34.19 1.00 0.08 0.06
sup*S 31 30.45 1.00 0.08 0.05

breast-cancer none 75 4.97 0.96 0.26 0.02
sup 8 11.75 0.93 0.23 0.05
sup*N 8 13.38 0.99 0.31 0.07
sup*S 8 12.50 0.99 0.30 0.06

cmc none 401 7.30 0.97 0.20 0.01
sup 40 21.73 0.98 0.20 0.02
sup*N 40 22.98 0.99 0.22 0.02
sup*S 40 21.50 0.99 0.22 0.02

haberman none 60 6.38 0.98 0.25 0.03
sup 6 15.83 0.99 0.27 0.07
sup*N 6 15.83 0.99 0.27 0.07
sup*S 6 15.83 0.99 0.27 0.07

hepatitis none 52 18.62 1.00 0.24 0.15
sup 5 59.60 1.00 0.34 0.49
sup*N 5 65.20 1.00 0.36 0.53
sup*S 5 59.60 1.00 0.34 0.49

transfusion none 118 11.72 0.97 0.21 0.02
sup 12 51.50 0.93 0.18 0.06
sup*N 12 51.75 0.95 0.20 0.07
sup*S 12 41.75 0.96 0.21 0.06

4 More detailed experimental results, including also the coverage option are provided
at the page http://www.cs.put.poznan.pl/iszczech/publications/nfmcp-2016.html;
As one can check, rule post-pruning with the coverage option also improves the
values of considered rule interestingness measures
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Additionally, we constructed rule classifiers with the three selection strate-
gies and evaluated their classification performance. The values of G-mean and
sensitivity measures are presented in Tables 5 and 6, respectively.

Table 5. G-mean for BRACID with all rules vs. BRACID with pruned rules

Data set BRACID sup sup*S sup*N

balance-scale 0.57 0.63 0.59 0.60
breast-cancer 0.61 0.61 0.61 0.61
cmc 0.64 0.64 0.64 0.64
haberman 0.60 0.55 0.54 0.54
hepatitis 0.80 0.80 0.75 0.74
transfusion 0.65 0.64 0.63 0.65

Table 6. Sensitivity for BRACID with all rules vs. BRACID with pruned rules

Data set BRACID sup sup*S sup*N

balance-scale 0.49 0.59 0.52 0.63
breast-cancer 0.61 0.65 0.57 0.61
cmc 0.64 0.64 0.65 0.61
haberman 0.72 0.78 0.71 0.70
hepatitis 0.78 0.84 0.84 0.84
transfusion 0.75 0.78 0.71 0.76

6 Discussion and Final Remarks

First, we will discuss the results of the experiments. Each of post-pruning strate-
gies improves the interestingness measure used in the given strategy. Note that
all of them improve average rule supports for both minority and majority classes.
For some data sets these improvements are quite high, for instance, for cmc data
the average rule supports increase from 6.59 to 18.57 examples in the minority
class, and from 7.3 to 21.0 examples in the majority class.

The second strategy (based on sup(R) and N(R)) increases the average value
of measure N for all data sets in both classes — see e.g. hepatitis data, where
the improvements are from 0.23 to 0.39 for the minority class and from 0.17 to
0.49 for the majority class. Analogically, the third strategy improves the average
values of the confirmation measure S – however, it is more visible for the minority
class than for the majority one, for instance changes from 0.46 to 0.65 in the
minority class and from 0.25 to 0.27 in the majority one for haberman data.
Note that values of the confirmation measure S are always higher than N .
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It is worth observing that the proposed strategies also improve rule evaluation
measures other than the ones used in each strategy. In particular, the second
strategy usually provides the highest values of the average support – in the
majority of data sets it is better than the first strategy that uses the support
only. Although it sometimes slightly improves the confirmation measure S, it
usually decreases the average confidence of rules. On the other hand, the third
strategy offers the highest increases of the rule confidence. It is more visible for
the minority class as the confidence of majority rules is already quite high.

What is also interesting, classification performance of such pruned rules does
not decrease too much compared to the original set of rules – see results in Tables
5 and 6. In particular, the sensitivity obtained by the first and the second strategy
are close to the results of unpruned rules. Although it is not the main criterion of
our experimental evaluation, we can say that these results show that the pruned
rules can be treated as a representative subset of original rules.

The differences in results obtained by strategies using S and N measures
could be explained by analyzing their formulae (see Equations 1 and 2). They
exploit the contingency matrix in a different, although symmetric, way. S is
more focused on considering a pair of numbers (a and c) decreased by (b and d),
while N aggregates a different combination. As BRACID tries to induce rules
with a very high confidence (which refers to a pair a and c), it is naturally
oriented on obtaining higher values of the S measure. On the other hand, as
N confirmation measure exploits complementary information to the one used in
BRACID rule induction process, it may better co-operate with the rule support
in the pruning strategy and may lead to better descriptive rule evaluation as
well as classification results.

To sum up, our experiments have clearly demonstrated that all proposed
post-pruning strategies lead to selecting a much smaller number of BRACID
induced rules, which are characterized by better values of considered interest-
ingness measures than in case of non-pruned rules.

As future research, we plan to extend the experimental evaluation with more
imbalanced data characterized by additional data difficulty factors and poten-
tially with other rule classifiers specialized for class imbalances. Furthermore, we
plan to investigate a more local way of calculating the interestingness measures,
which will be based on the analysis of neighbor examples to the given rule rather
than on all data elements as it is currently done.
Ack. The research was supported by NCN grant DEC-2013/11/B/ST6/00963.

References

1. Christensen, D.: Measuring confirmation. Journal of Philosophy, 96, 437–461 (1999)
2. Fitelson, B.: The plurality of Bayesian measures of confirmation and the problem

of measure sensitivity. Philosophy of Science, 66, 362–378 (1999)
3. Freitas, A.: On rule interestingness measures. Knowledge-Based Systems, 12, 309-

-315 (1999)
4. Furnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning, Springer

Verlag (2012)



12 NapieraÃla K., Stefanowski J., Szczȩch I.
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