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Abstract. The dependence structure of extreme events of multivariate

nature plays a special role for risk management applications, in particular

in hydrology (flood risk). In a high dimensional context (d > 50), a natural

first step is dimension reduction. Analyzing the tails of a dataset requires

specific approaches: earlier works have proposed a definition of sparsity

adapted for extremes, together with an algorithm detecting such a pattern

under strong sparsity assumptions. Given a dataset that exhibits no clear

sparsity pattern we propose a clustering algorithm allowing to group

together the features that are ‘dependent at extreme level’, i. e., that are

likely to take extreme values simultaneously. To bypass the computational

issues that arise when it comes to dealing with possibly O(2d) subsets of

features, our algorithm exploits the graphical structure stemming from

the definition of the clusters, similarly to the Apriori algorithm, which

reduces drastically the number of subsets to be screened. Results on

simulated and real data show that our method allows a fast recovery of a

meaningful summary of the dependence structure of extremes.

Keywords: extreme values; dimension reduction; pattern mining; subspace
clustering; subgroup discovery

1 Introduction

Extreme value analysis is of primarily interest in many contexts. One example is
the machine learning problem of anomaly detection, where one needs to control
the false positive rate in the most remote regions of the sample space ([7,21,16,17]).
Another example is the field of environmental sciences, where extreme events
(floods, droughts, heavy rainfall, . . . ) are of particular concern to risk management,
considering the disastrous impact these events may have. Using Extreme Value
Theory (EVT) as a general setting to understand or predict extreme events has
a long history ([20]). In spatial problems, exhibiting areas (groups of weather
stations) which may be concomitantly impacted by severe events is of direct
interest for risk management policies. Identifying these groups may also serve as
a preliminary dimensionality reduction step before more precise modeling. Before
proceeding further, we emphasize that standard dimension reduction techniques
such as PCA do not apply to extremes as these methods essentially focus on
the data around the mean by analyzing their covariance structure, which does
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not characterize the behavior of extremes (i. e., data far away in the tails of the
distribution). In the present paper, the quantity of interest is river water-flow
recorded at several locations of the French river system. The features of the
experiment are thus the stream-flow records at different gauging stations, and
the goal is to recover maximal groups of stations where extreme discharge may
occur simultaneously. Our dataset consists of daily stream-flow recorded at 92
gauging stations scattered over the French river system, from 1969, January 1st
to 2008, December 31st. It is the same dataset as in [14], up to 220 gauging
stations presenting missing or censored records, which have been removed from
our analysis, which results in n = 14610 vectors X1, .., Xn in Rd, with d = 92
the number of stations. The reader is referred to [14] for more details.
Related work. For the purpose of anomaly detection, [16,17] proposed a method
to learn the sparsity pattern of the dependence structure of extremes: the aim
is to recover the groups of components (features) which may take large values
simultaneously, while the other features stay small. To the best of our knowledge,
these works are the only ones that tackle this specific problematic. The output
of [16,17]’s DAMEX algorithm is a (hopefully sparse) vector M̂ = (µ̂α, α ⊂
{1, . . . , d}) of size 2d − 1, where µ̂α is a summary of the dependence strength at
extreme levels between features j ∈ α. The fact that µ̂α is positive means that
the probability that all features in α be large while all others stay small, is not
negligible. Various datasets have been analyzed in [16,17] for which the DAMEX
algorithm does exhibit a sparsity pattern, thus pointing to a relatively small
number of groups of features α (each being of relatively small size |α| compared to
the original dimension of the problem) which could be jointly extreme. However,
DAMEX becomes unusable in situations where the subsets of features impacted
by extreme events vary from one event to another: DAMEX then finds a very large
number of subsets to be dependent, but not significantly so, (i. e., 0 < µ̂α � 1),
so that no sparsity pattern emerges. This is precisely the case with the river flow
dataset analyzed in the present paper (see Section 5).
Contributions. One remarkable aspect of preliminary analysis of the river flow
dataset using DAMEX is the tendency of those many subsets α’s such that
µ̂α > 0, to form clusters, whose members differ from each other by a single or two
features only. In practice, this means that several distinct events have impacted
‘almost’ the same group (cluster) of stations. The aim of this paper is to propose
a methodology enabling to gather together such ‘close-by’ feature subsets into
feature clusters. This is done by relaxing the constraint that ‘features not in
α take small value’ when constructing the representation of the dependence
structure. The output of the CLEF algorithm (CLustering Extreme Features)
proposed in the present work (Section 4) is an alternative representation which
remains usable in this ‘weakly sparse’ context. This representation can still be
explained and understood in the multivariate EVT framework (Section 3), as
in [16,17].
Relationships with Apriori This dimension reduction framework (determining
which subgroups of features are dependent at extreme level) is closely related to
the problem of frequent itemsets mining, specifically to the well known Apriori
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algorithm introduced by [2], see also [19]. The combinatorial issue that arises
with possibly 2d − 1 subsets is circumvented in Apriori by considering subsets
of increasing sizes, letting a subset ’grow’ until its frequency in the database is
not significant anymore. This incremental principle is also related to a subset
clustering method proposed in [1]. CLEF proceeds in a similar way to Apriori, the
main difference being the stopping criterion used to decide whether incrementing
a feature subset, and the fact that the output has a natural interpretation in the
framework of multivariate EVT.

The paper is organized as follows. Section 2 sets up the extremal feature
clustering problem and establishes connections with multivariate EVT. The
dimension reduction device is explained in Section 3. Section 3.1 recalls existing
work and points out some limitations, Section 3.2 makes explicit the links
between the considered problem and the Apriori algorithm. The CLEF algorithm
is described in Section 4. Section 5 gathers results: the output of CLEF is
compared with that of DAMEX and Apriori. Section 6 concludes. The Python
code for CLEF, the scripts and the dataset used for our hydrological case study
are available at https://bitbucket.org/mchiapino/clef_algo.

2 Problem statement and multivariate EVT viewpoint

2.1 Formal statement of the problem

Consider a multivariate random quantity of interest X = (X1, . . . , Xd) in Rd
(here, Xj is the water discharge recorded at location j). The first step when
it comes to learning dependence properties of X is to standardize the features,
in the same spirit as in the copula framework; and one possible choice for
that is the probability integral transform: Denote by F the joint cumulative
distribution function (c.d.f.) of X and by F j the marginal c.d.f. of Xj . Define
V j = (1 − F j(Xj))−1, and V = (V 1, . . . , V d), which allows us to focus only
on the dependence structure of X. Our goal here is to recover all the maximal
subsets of features (stations) α ⊂ {1, . . . , d} which ’may be large together’ with
non negligible probability. In more formal terms, define the extremal joint excess

coefficient,

ρα := lim
t→∞

tP
(
∀j ∈ α, V j > t

)
= lim
t→∞

P
(
∀j ∈ α, V j > t | V α1 > t

)
∈ [0, 1] (1)

Such a limit exists under the regularity property (3) in the next paragraph.
Notice already that the second equality comes from our standardization choice:
if F j is continuous, then for any j ≤ d, t−1 = P(V j > t) = P(V α1 > t), which
justifies the scaling factor t in the definition. The coefficient ρα ∈ [0, 1] may be
seen as a ‘correlation’ coefficient for the features Xj , j ∈ α at extreme levels. We
say that the features {V j , j ∈ α} ‘may be large together’ if ρα > 0. One relevant
summary of the dependence structure of extremes is thus the set of subgroups

M = {α ⊂ {1, . . . , d} : ρα > 0}. (2)

https://bitbucket.org/mchiapino/clef_algo
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More precisely, we would like to recover those subgroups α ∈ M which are
maximal for inclusion in M, i. e., ∀β such that α ( β, β /∈ M. A maximal set
of features α ∈ M may be viewed as a cluster, in the sense that every subset
β ⊂ α is dependent at extreme level (i. e., ρβ > 0), and that α ‘gathers’ all of
them together. In this paper, a ‘cluster’ of features is understood as a maximal
element α ∈M.

2.2 Connections with multivariate EVT

The working hypothesis in EVT is that, up to marginal standardization, the
distribution of X is ‘approximately homogeneous’ on extreme regions. As pointed
out above, if the margins F j are continuous, then the V j ’s have the homogeneity
property: tP

(
V j

t ≥ x
)

= 1/x, for 1 ≤ j ≤ d, t > 1, x > 0. The key assumption
is that the latter property holds jointly at extreme levels, i. e., that V is jointly
regularly varying (see e.g. [23]), which writes

tP
(
V

t
∈ A

)
−−−→
t→∞

µ(A), (3)

where µ is the so-called exponent measure and where A is any set in Rd which
is bounded away from 0 and such that µ(∂A) = 0. The exponent measure is
finite on any such set A and satisfies, for t > 0, A ⊂ Rd+, tµ(tA) = µ(A), where
tA = {tx : x ∈ A}. Notice that many commonly used textbook multivariate
distributions (e.g. multivariate Gaussian or Student distributions) satisfy (3),
after standardization to V variables. The measure µ characterizes the distribution
of V at extreme levels, since for t large enough (so that the region tA is an ’extreme
region’ of interest), one may use the approximation P(V ∈ tA) ' t−1µ(A). The
connection between µ and the ρα’s is as follows: consider the ‘rectangle’

Γα := {x ∈ Rd+ : ∀j ∈ α, xj > 1} (4)

From the definitions (1) and (3), it follows that ρα = µ(Γα). Thus the family of
subset M in (2) writes M = {α : µ(Γα) > 0}.

Non parametric estimation In a word, non parametric estimation of extremal
characteristics based on i.i.d. data X1, . . . , Xn (distributed as X) is performed
by replacing probability distributions with their empirical counterparts, and by
proceeding as if the limit in (3) were reached above some large, fixed threshold
t, which is chosen depending on the sample size n. Theoretical guarantees on
the estimators are obtained for t = n/k where k = o(n) and k →∞ (typically,
k ≈
√
n , see e.g. [3], Chapter 3 for more details). Since the F j ’s are unknown, set

V̂ ji = 1
1−F̂ j(Xj

i
) , i = 1, . . . , n, j = 1, . . . , d, where F̂ j( · ) is an empirical version

of the cumulative distribution function. Then the exponent measure µ of any
region A ⊂ Rd+ \ {0} is approximated by

µn(A) = tP̂n(tA), where P̂n(A) = n−1
n∑
i=1

δV̂i(A). (5)
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Statistical properties of µn (or of other functional summaries of it) have been
investigated by many authors, see e.g. [22,11,12] for the asymptotic behavior, [15]
for finite sample error bounds.

3 Dimension reduction for multivariate extremes

3.1 Existing work

Numerous modeling strategies for extremes of moderate dimension (say d ≤ 10)
have been proposed, see e.g. [9,10,25] for parametric modeling, [4,18,24,13] for
semi- or non-parametric ones. In order to address higher dimensional problems,
dimensionality reduction algorithms have recently been proposed ([6,16,17]). The
latter references share the common idea of recovering the sub-cones of Rd+ on
which the exponent measure µ concentrates. The present work is mainly related
to [16,17] insofar as we restrict the search to a finite number of regions that
are defined by constraints ‘parallel to the axes’, as it is the case in (4). [16,17]
consider the truncated cones

Cα = {x : ‖x‖∞ ≥ 1, xj > 0 for j ∈ α ; xj = 0 for j /∈ α}. (6)

The importance of such cones in the analysis comes from the homogeneity property
of µ. More precisely, a subset of features α may take large values together while
the other take small values, if and only if µ assigns a positive mass to Cα. The
approach proposed in [17] consists in ‘thickening’ the cones Cα, i. e., defining for
some small ε > 0 (typically, ε = 0.1),

Cα,ε = {x ∈ Rd+ : ‖x‖∞ ≥ 1 ; ‖x‖−1
∞ xj > ε for j ∈ α ; ‖x‖−1

∞ xj ≤ ε for j /∈ α}.
(7)

The quantity µα := µ(Cα) is approximated by its empirical counterpart on Cα,ε,
µ̂(Cα) = µn(Cα,ε), where µn is the empirical estimator defined in (5). In practice
a tolerance parameter µmin has to be chosen: for any α such that µn(Cα,ε) < µmin,
one sets µ̂(Cα) = 0. The final output of [17]’s DAMEX algorithm is the potentially
sparse 2d − 1-vector M̂ = (µ̂α)α⊂{1,...,d} mentioned in the introduction, with
µ̂α := µ̂(Cα).

One shortcoming of DAMEX is that no sparsity pattern is produced in case
of ‘noise’, i. e., when the empirical extreme mass is spread over many sub-cones
Cα,ε’s. This suggests an alternative approach allowing to gather together those
α’s that are ‘close’, where being ‘close’ means belonging to a single relevant
super-set.

3.2 Gathering together ‘close-by’ cones

One way to ‘gather’ different Cα,ε’s is to relax the condition that ‘all the features
V j for j /∈ α take small values’ in the definition of Cα,ε. This yields the rectangular
region Γα defined in (4). Unlike the regions Cα,ε’s, the Γα’s do not form a partition
of the positive orthant of Rd, and indeed the fact that a point Vi belongs to Γα
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does not tell anything about its features V ji for j /∈ α. The problem addressed
in [17] (recoveringM := {α : µ(Cα) > 0}) and the relaxed problem considered
here (recovering M := {α : ρα > 0} = {α : µ(Γα) > 0}) are different but however
related through the maximal elements ofM and M, as stated in the following
lemma. Recall that α is said to be maximal in M (resp.M) if there is no superset
α′ ) α in M (resp.M).
Lemma 1. For α ⊂ {1, . . . , d},

α is maximal in M⇔ α is maximal inM. (8)

The proof is deferred to the Appendix.
Another important property from an algorithmic perspective is the following:
Lemma 2. For α ⊂ {1, . . . , d}, if ρα = 0 then also for all α′ ⊃ α, ρα′ = 0.
The proof is immediate: remind that ρα = µ(Γα) and notice that for α ⊂ α′,
Γα′ ⊂ Γα.

Lemma 2 suggests an incremental-type algorithm such as Apriori ([2]) meaning
that one may search for α’s such that ρα > 0 among α’s of increasing size
following the Hasse diagram, and stopping the search along a given path of the
latter diagram as soon as ρα = 0 for some α. This incremental strategy is the
main ingredient of the Apriori algorithm, which we recall for convenience: Let
I = {item1, . . . , itemd} be a set of items and let T = {t1, . . . , tn} be a set of
transactions with ti ⊂ I,∀i ∈ {1, . . . , n}. The frequency of appearance of the
list of items α ⊂ I is defined as fα := 1

n

∑
1≤i≤n 1α⊂ti . Apriori returns the set

{α : fα > fmin} with fmin > 0. It begins with pairs of items and then increases
the size of the subsets at each step. Indeed if fα ≤ fmin then all supersets α′ ⊃ α
verify fα′ ≤ fmin as well, which reduces drastically the number of subsets to be
tested.

4 Empirical criterion and implementation

4.1 Conditional criterion for extremal dependence

Considering the relaxed framework where the goal is to recover the set M
defined in (2), one needs an empirical criterion allowing to test the condition
ρα(= µ(Γα)) > 0. One option would be to consider the empirical estimator
ρ̂α = µn(Γα) where µn is defined in (5), then to set ρ̂α = 0 whenever ρ̂α ≤ ρmin,
with ρmin a user-defined tolerance level. However, since the Γα’s (for increasing
α’s ) are nested, the quantities µ(Γα)′s are decreasing with the size of α. The
threshold ρmin should thus depend on the size of α, which would introduce d
tuning parameters instead of one. The alternative considered in the present paper
is to compare µn(Γα) with µn(Γβ), with β ⊂ α. More precisely, consider the
probability that all the features in α be large given that all of them but at most
one are large. This yields the conditional coefficient:

κα := µ(Γα)
µ(∆α) (9)
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with ∆α := {x ∈ Rd+ : ‖x‖∞ > 1,
∑
j∈α1xj≥1 ≥ |α| − 1}. The idea is now to

compare empirical counterparts of κα with a single fixed tolerance parameter
κmin > 0. This amounts to decide that µn(Γα) results from noise if µn(Γα) �
µn(∆α). Notice that Γα ⊂ ∆α, so that κα ∈ [0, 1] whenever the denominator
in (9) is well defined. This is the case if and only if µn(Γβ) > 0 for some β ⊂ α
such that |α \ β| = 1, which is another argument in favor of an incremental
strategy.

4.2 Algorithm

CLEF (summarized in Algorithm 1) uses the empirical counterpart of the condi-
tional criterion κα, which depends on a (high) threshold t as in (5):

κ̂α,t := µn(Γα)
µn(∆α) =

∑n
i=1 1{#{j∈α: V̂ j

i
>t} = |α|}∑n

i=1 1{#{j∈α: V̂ j
i
>t} ≥ |α|−1}

. (10)

For k ≥ 2, families Âk of subsets α of size k are constructed in an incremental
way, among a set of candidates A′k, as follows: Set Â1 = {{1}, . . . , {d}}, then

A′k =
{
α ⊂ {1, . . . , d} : |α| = k, ∀β ⊂ α s.t. |β| = k − 1 : β ∈ Âk−1}

Âk = {α ∈ A′k : κ̂α,t > κmin

}
. (11)

Remark 1 (Choice of the parameters t and κmin). According to standard good
practice in EVT (see e.g. [8]), t and κmin are chosen in ‘stability regions’ of
relevant summaries of the output. Here we consider the cardinal of M̂ and the
mean cardinal of maximal subsets α ∈ M̂, and t is chosen such that, when slightly
increased, the output remains stable.

The procedure stops at step K ≤ d−1 if ÂK+1 = ∅, at which point our estimator
of the family M of dependent subsets is M̂ = ∪Kk=1Âk. Notice that restricting
the search to the set of candidates A′k ensures that the ‘empirical counterpart’ of
Lemma 2 is satisfied, namely α /∈ M̂ ⇒ ∀β ⊃ α, β /∈ M̂. It also avoids division
by zero when computing (11). The final output of CLEF is the set M̂max of
maximal elements of M̂.

Remark 2. [Construction of the candidates A′k+1] The graphical structure of the
patterns (subsets) is exploited as in the max-clique algorithm ([29]). Namely,
members of A′k+1 are the maximal cliques of size k in the graph (Ak, Ek), where
Ek = {(α, α′) ∈ Ak × Ak : |α ∩ α′| = k − 1}. Clique extraction is performed
using Bron & Kerbosch ([5],[28]) algorithm, as implemented in the function
find_clique of the Python package NetworkX.
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Algorithm 1 CLEF (CLustering Extreme Features)
INPUT: High threshold t, tolerance parameter κmin > 0.

STAGE 1: constructing the Âk’s .

Initialization: set K = d.
Step 1: Construct the family of extremal-dependent pairs:

set Â2 =
{
{i, j} ⊂ {1, . . . , d}, such that κ̂{i,j} > κmin

}
.

Step 2: If Â2 = ∅, set K = 2; end STAGE 1. Otherwise

– generate candidate triplets A′3 = {i, j, k} ⊂ {1, . . . , d} s.t {i, j}, {i, k}, {j, k} ∈
Â2},

– set Â3 =
{
α ∈ A′3 s.t. κ̂α > κmin

}
.

...
Step k(k ≤ d): If Âk = ∅, set K = k; end STAGE 1. Otherwise

– generate candidates of size k + 1, A′k+1 = {α ⊂ {1, . . . , d}, |α| = k + 1, α \ {j} ∈
Âk for all j ∈ α},

– set Âk+1 =
{
α ∈ A′k+1 such that κ̂α > κmin

}
.

Output: M̂ = ∪Kk=1Âk.
STAGE 2: pruning (keeping maximal α’s only)

Initialization: M̂max ← ÂK .

for k = (K − 1) : 2, for α ∈ Âk,
If there is no β ∈ M̂max such that α ⊂ β, M̂max ← M̂max ∪ {α}.

Output: M̂max

5 Results

5.1 Stream-flow data

The output of CLEF for the stream-flow data may be visualized in Figure 1
(Execution time: 0.09 s on recent 4 cores laptop computer). Following the heuristic
mentioned in Remark 1, the extremal threshold t was fixed to 600, yielding n = 202
extreme events (time indexes i such that ‖V̂i‖∞ ≥ t). The parameter κmin was
fixed to 0.3. A total number of 69 clusters (elements of M̂max) are returned by
the CLEF algorithm, the size of which varies between 2 and 6. At first inspection,
Figure 1 agrees with general climatologic facts: in the north-western part of
France, the climate is driven by large scale oceanographic perturbations, so that
extreme floods tend to impact a large number of gauging stations simultaneously.
The south-eastern part of France is rather subject to localized events (e.g. the
so-called ‘orages Cévenols’ in the vicinity of the Mediterranean coast). This yields
smaller clusters, both in terms of number of stations and of spatial extent. As
a comparison, Table 1 shows the outcome of [17]’s DAMEX algorithm with the
stream-flow data. These results show that no matter the choice of the thickening
parameter ε in (7), the data do not concentrate on ‘a few’ thickened cones Cα,ε,
instead most of the empirical mass is spread onto many of them. In other words,
there are too many subcones with positive mass, but not in a significant way.
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Fig. 1. Output of CLEF for the stream-flow dataset: Maximal groups of stations α ∈ M̂
that are likely to be jointly impacted by an extreme event. Clusters of stations are

marked by colored edges between their members, the color scale indicates the number

of stations forming the cluster.

5.2 Simulation experiments

In order to assess the performance of CLEF in a supervised setting, we generate
d-dimensional datasets under a model such that the exponent measure µ con-
centrates on K specified cones (Cα1 , . . . , CαK ). The generated data are ‘realistic’
in the sense that all the features are positive (the points lie in the interior cone
C{1,...,d}), even though the furthest points in the tails concentrate near the sub-
cones Cαk ’s. Namely, we use the asymmetric logistic extreme value model ([27]),
from which data is simulated using Algorithm 2.2 in [26]. 20 datasets of size
n = 100 .103, d = 100, are generated. For each dataset, K subsets α1, . . . , αK
of {1, . . . , d} are randomly chosen, which sizes follow a truncated geometric
distribution (the maximum cluster size is 8). We aim at reproducing the fact
that different events associated with a single α usually impact a group of stations
which differs from α by a few stations (the impacted area is not deterministic).
To this end, for each step i = 1, . . . , n, and each subset αj , j = 1, . . . ,K, one
randomly chosen ‘noisy’ feature li,j ∈ {1, . . . , d} \ αj is added to αj . For CLEF,
DAMEX and Apriori algorithms, the extreme threshold parameter t is chosen so
that #{i≤n:‖V̂i‖∞≥t}

n ≈ 5%. Table 2 summarizes the average performance of the
two algorithms, for K = 40, 50, 60, 70. In these experiments, the CLEF algorithm
recovers most of the charged K subsets α1, . . . , αK in average, and significantly
more than Apriori. It should be noted though, that in situations (not reported
here) where no noise is added, Apriori performs better than CLEF. As expected,
in our ‘noisy’ simulations, DAMEX does not recover the sparse structure of the
data.
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Table 1. Output of [17]’s DAMEX algorithm with the hydrological dataset. Columns 1

and 2 indicate respectively the number of thickened cones Cα,ε with non zero empirical

mass, and the percentage of cones (among those such that µn(Cα,ε) > 0) containing

less than 1% of the ‘extreme data’, that is of #{i : ‖V̂i‖∞ > t}.

ε # {α : µn(Cα,ε) > 0} %

{
α :

#{i:t−1Vi∈Cα,ε}
#{i:‖Vi‖≥t}

< 1%

}
0.01 740 100%

0.05 688 98%

0.1 639 94%

0.2 559 88%

Table 2. Average number of errors (non recovered and falsely discovered clusters) of

CLEF, Apriori and DAMEX with simulated, noisy data.

K # errors CLEF # errors Apriori # errors DAMEX

40 1.2 6.4 72.2

50 3.5 10.9 91.0

60 6.3 14.6 112.4

70 10.1 25.8 134.0

6 Conclusion

We propose a novel dimension reduction method for the analysis of extremes of
multivariate datasets via feature clustering. This is done in adequacy with the
framework of multivariate extreme value theory. The proposed algorithm makes
use of the graphical structure of the problem, scanning the multiple possible
subsets of features in a time efficient way. Results on a hydrological stream-
flow data and on simulated data demonstrate the relevance of this approach on
datasets which would not exhibit any sufficiently sparse structure when analyzed
with existing algorithms. Future work will focus on the statistical properties
of the empirical criteria κ̂α,t involved in the algorithm, which would allow to
analyze the output as a statistical test for independence at extreme levels.
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A Appendix: Proof of Lemma 1

Step 1. As a first step we show thatM⊂M, i. e., µ(Cα) > 0⇒ µ(Γα) > 0.
Proof. Write Cα =

⋃
ε>0,ε∈QRα,ε, where Rα,ε = {x ∈ Rd+ : ‖x‖∞ ≥ 1; xj >

ε (j ∈ α); xi = 0 (i /∈ α)}. Assume µ(Cα) > 0. Since µ(Cα) < ∞, by the
monotonous limit property of the measure µ, we have µ(Cα) = limε→0 µ(Rα,ε).
Also, from the definitions, Rα,ε ⊂ εΓα. Thus,

µ(Cα) > 0⇒ ∃ε ∈ (0, 1) : µ(Rα,ε) > 0 ⇒ µ(εΓα) > 0
⇒ ρα = µ(Γα) = εµ(εΓα) > 0.

Step 2. We now prove the reverse inclusion for maximal elements of M, i. e.,

α is maximal in M ⇒ α ∈M. (12)

Proof. Consider, for i /∈ α, the set ∆i,ε = Γα ∩ {x ∈ Rd+ : xi > ε}, so that
Γα =

{⋃
i∈{1,...,d}\α
ε∈Q∩(0,1)

∆i,ε

}
∪Rα,1. Thus,

α ∈M ⇒ µ(Γα) > 0 ⇒
(
∃i, µ(∆i,ε) > 0 or µ(Rα,1) > 0

)
(13)

To prove (12), it is enough to show that

α ∈M ⇒ for i /∈ α, µ(∆i,ε) = 0. (14)

Indeed if (14) is true, and if α ∈M, then (13) implies that µ(Rα,1) > 0, and the
result follows from the inclusion Rα,1 ⊂ Cα. We show (14) by contraposition. If
µ(∆i,ε) > 0 for some i /∈ α, then

1
ε
∆i,ε =

(
1
ε
Γα

)
∩ {x ∈ Rd+ : xi > 1} ⊂ Γα∪{i},

thus µ(Γα∪{i}) > 0, which contradicts the maximality of α in M.
Step 3. From (12), if α is maximal in M then α ∈ M. Now if α is maximal
in M but not in M, there exists β ) α in M. Thus from Step 1, β ∈ M, a
contradiction. Hence α is also maximal in M. Conversely, if α is maximal in
M then (Step 1) α ∈M. If α was not maximal in M, there would exists β ) α
maximal in M, and from (12), β ∈M, contradicting the maximality of α inM.
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