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Abstract. In this paper we investigate the problem of user authenti-
cation based on keystroke timing pattern. We propose a simple, robust
and non parameterized nearest neighbor based regression algorithm for
anomaly detection. Our approach successfully handle drawbacks like out-
lier detection and scale variation. Apart from using existing keystroke
timing features from the dataset like dwell time and flight time, other
features namely bigram time and inversion ratio time are engineered
as well. The efficiency and effectiveness of our method is demonstrated
through extensive comparisons with other methods using CMU keystroke
dynamics benchmark dataset and has shown better results in terms of
average equal error rate (EER) than other proposed techniques.

Keywords: Regression, Time series, Prediction, Security, Nearest neigh-
bors, Pattern classification

1 Introduction

In this era where everyone wants secure, faster, reliable and easy to use means
of communication, there are many instances where user information such as
personal details and passwords get compromised thus posing a threat to system
security. In order to tackle the challenges posed on the system security biometrics
[4] prove to be a vital asset. Biometric systems are divided into two classes
namely physiology based ones and the ones based on behavior. Physiology based
approach allows authentication via use of retina, voice and fingerprint touch. In
contrast, behavior based approach includes keystroke dynamics on keyboard or
touch screens and mouse click patterns.

In this paper we propose an algorithm to deal with keystroke dynamics — a
behavior based habitual rhythm which is used as a protective measure. Based
on the analysis of the keystroke timing patterns, it is possible to differentiate
between actual user and an intruder. By keystroke dynamics we refer to any
feature related to the keys that a user presses such as key down time, key up
time, flight time etc. In this paper, we concentrate on classifying users based
on static text such as user password. The mechanism of keystroke dynamics
can be integrated easily into existing computer systems as it does not require



any additional hardware like sensors thus making it a cost effective and user
friendly technique for authenticating users with high accuracy. It is appropriate
to use keystroke dynamics for user authentication as studies [7][9] have shown
that users have unique typing patterns and style. Moreover, Syed et al. [7][9] has
proven some interesting results in their research work as well. First hypothesis
Syed et al. [7][9] proved is that the users present significantly dissimilar typing
patterns. Second they have shown details about the relationship between users
occurrence of sequence of events and their typing style and ability. Then they
explained sequence of key up and key down events on the actual set of keys.
They have also shown that there is no correlation between users typing skills and
the sequence of events. Hence all these factors make it difficult for intruders to
match with the actual users typing patterns. Keystroke dynamics is concerned
with users timing details of typing data and hence various features could be
generated from these timing patterns. In this paper we are using timing features
only on static text.

The rest of the paper is organized as follows. In section 2 we discuss related
work and our contribution. In section 3 we discuss the details of how features
are engineered from the dataset and in section 4 we discuss the concept of op-
timal fitting line. In section 5 we present our proposed algorithm for keystroke
timing pattern which is divided into two sub sections where first subsection dis-
cusses proposed approach and second subsection discusses the scaled Manhattan
distance metric for anomaly detection. In section 6 we experimentally evaluate
our algorithm and show the results. Finally, we conclude our study and identify
future work in Section 7.

2 Related Work

Classifying users based on keystroke timing patterns has been in limelight when
Forsen et al.[26] first investigated whether users could be distinguished by the
way they type on keyboard. Researchers have been studying the user typing
patterns and behavior for identification. Gaines et al. [27] investigated the pos-
sibility of using keystroke timings as to whether typists could be identified by
analyzing keystroke times as they type long passages of text. Monrose and Rubin
[11] later extracted keystroke features using the mean and variance of digraphs
and trigraphs. Peacock et al. [28] conducted a detailed survey on the keystroke
dynamics literature using the Euclidean distance metric with Bayesian like clas-
sifiers. Bergadano et al. [29] and later Gunetti et al. [30] proposed to use the
relative order of duration times for different n-graphs to extract keystroke fea-
tures that was found to be more robust to the intra-class variations than absolute
timing. Some neural network based techniques have also been undertaken in the
last few years. While the back-propagation models used yield favorable results
on small databases, neural networks have a fundamental limitation that every
time a new user comes into the database the network needs to be retrained.
Gunetti and Picardi [30] published great results for text-free keystroke dynam-
ics identification where they merge relative and absolute timing information on



features. Zhong et al. [5] proposed a new distance metric by combining Ma-
halanobis and Manhattan distance metrics. Many machine learning techniques
have been proposed as well for keystroke dynamics as an authentication system.
Keystroke dynamics can be applied with variety of machine learning algorithms
like Decision Trees [22], Support Vector Machines [10], Neural Networks [23],
Nearest Neighbor Algorithms [24] and Ensemble Algorithms [25] among others.

One problem faced by researchers working on these type of problems is that
majority of the researchers are preparing their own dataset by collecting data
via different techniques and the performance criteria is not uniform as well hence
comparison on similar grounds among the proposed algorithms becomes a diffi-
cult task. To address this issue, keystroke dynamics benchmark dataset is pub-
licly provided with performance values of popular keystroke dynamics algorithms
[3] to provide a standard universal experimental platform. Killourhy et al. [3]
collected and published a keystroke dynamics benchmark dataset containing 51
subjects with 400 keystroke timing patterns collected for each subject. Besides
this they also evaluated fourteen available keystroke dynamics algorithms on
this dataset, including Neural Networks [24], KNNs, Outlier Elimination [13],
SVMs [10] etc. Various distance metrics including Euclidean distance [3], Man-
hattan distance [20] and Mahalanobis [3] distance were used. This keystroke
timing pattern dataset along with the evaluation criteria and performance val-
ues stated provides a benchmark to compare the progresses of new proposed
keystroke timing pattern algorithms on same grounds.

2.1 Our Contribution

The performance study of the fourteen existing keystroke dynamics algorithms
implemented by Killourhy et al. [3] indicated that the top performers are the
classifiers using scaled Manhattan distance and the nearest neighbor classifier.
In this paper we present a new nearest neighbor regression based algorithm for
anomaly detection that assigns weight to the feature vector. Finally we used
scaled Manhattan distance metric for anomaly detection. Our algorithm has the
following desirable features:

— Parameterless: We first design our nearest neighbor based regression algo-
rithm and then show how the parameter can be automatically set, thereby
resulting in a parameterless algorithm. This removes the burden from the
user of having to set parameter values — a process that typically involves
repeated trial-and-error for every application domain and dataset.

— Accurate: Our experimental study in Section 6 shows that our algorithm
provides more accurate estimates than its competitors. We compare our
approach with 14 other algorithm using the same evaluation criteria for
objective comparison.

— Robust/Outlier Resilient: Another problem with the statistical approaches
is outlier sensitivity. Outliers (extreme cases) can seriously bias the results
by pulling or pushing the regression curve in a particular direction, lead-
ing to biased regression coefficients. Often, excluding just a single extreme



case can yield a completely different set. The output of our algorithm for
a particular input record is dependent only on its nearest neighbors hence
insensitive to far-away outliers.

— Simple: The design of our algorithm is simple, as it is based on the nearest
neighbor regression. This makes it easy to implement, maintain, embed and
modify as the situation demands.

Apart from our proposed algorithm we have engineered two new features namely
Bigram time and Inversion Ratio time as discussed in Section 3.

3 Feature Engineering

What are good timing features that classifies a user correctly? This is still an
open research problem. Though keystroke up, keystroke down and latency timing
are the commonly used features, in this paper we have generated two new features
from the given dataset besides the existing features. The dataset [3] provides
three types of timing information namely the hold time, key down-key down
time and key up-key down time. Besides these three existing features, two new
features namely Bigram time and Inversion ratio time are engineered. Following
are the details of five categories of timing features which is used to generate 51
features using keystroke timing dataset [3]. Figure 1 illustrates various timing
features where up arrow indicates key press and down arrow indicates key release.

— Hold Time also known as dwell time, is the duration of time for which the
key is held down i.e. the amount of time between pressing and releasing a
single key. In figure 1, H; represents the hold time. Hold time contributes to
eleven features (where ten features are corresponding to the ten characters
of static text and one feature corresponds to the return key).

— Down-Down Time key down key down time is the time from when keyl
was pressed to when key2 was pressed. In figure 1, the times DD; depicts
the down down time. It contributes to ten features in our feature space.

— Up-Down Time key up key down time is the time from when keyl was
released to when key2 was pressed. This time can be negative as well. In
figure 1, the times UD,; depicts the up down time. It contributes to ten
features in our feature space.

— Bigram Time is the combined time taken by two adjacent keystrokes i.e.
the time from pressing down of keyl to releasing to key2. In figure 1, the
times B; depicts the bigram time. It contributes to ten features in our feature
space.

— Inversion Ratio Time it is the timing ratio of hold time of keyl and key2
where key1 and key?2 are the two continuous keystrokes. In figure 1, H; 41/ H;
is the inversion ratio time. It contributes to ten features in our feature space.

Hence these five categories of timing features combines to give a 51 dimensional
feature vector.
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Fig. 1: Illustration of generated keystroke timing features where A B,C,D are the keys

4 Optimal Fitting Line

Regression algorithms are used for predicting (time series data, forecasting),
testing hypothesis, investigating relationship between variables etc. Here in this
section we discuss how the optimal fitting line [2] attempts to predict the re-
lationship between one variable from one or more other variables by fitting a
linear equation to observed data.

Here in this paper we assume that to construct the line of best fit, with
increase or decrease in each independent variable value the dependent variable
changes smoothly. Thus this helps us in achieving almost linear relationship
between dependent and independent variables thus allowing us to optimally fit
a line onto the points in a small neighborhood. The line which minimizes the
mean squared error is referred to as optimal fitting line. A low value of error
indicates that the line is optimally fitted to the neighborhood and has captured
the linearity of the locality. Let the k points have values {(z1,¥1), ..., (Tx, Yx)}
in dimension x and y and let the variable to be predicted be y. Let the equation
of line be of the form y = ax + b. Hence, dependent variable will take the value
ax;+0b corresponding to tuple i. Let the error in prediction for tuple ¢ be denoted
as e; and is equal to |y — ax; — b|. Hence the local mean error (LME) is denoted
as,

LME(CL’ b) — Zle €i _ Zle(y —kaLEj — b)2 (1)




By minimizing LME where a and b are the parameters denoted by,

k k k
. Zj:l Yj Zi:l T —k Zi:l TiYi
Y k k
Zj:l T T — ki @i

h— Zf=1 Yi —a Zf:l T (3)
k

Thus, we get the equation of the optimal fitting line. Now after constructing
the line of best fit, we are able to predict the dependent values for test tuple.
Then we compare the actual and the predicted values of dependent variable
to calculate least mean error for the given test tuple. Now based on the mean
error, we are assigning weights to our feature vector in inverse proportion which

is discussed in section 5.

(2)

5 Our Proposed Approach

5.1 Proposed Algorithm

In this section we discuss our proposed nearest neighbor regression algorithm in
detail. Our algorithm successfully eliminates nearest neighbor algorithm prob-
lems like choice of number of neighbors k£ by choosing the optimal k value corre-
sponding to minimum error thus making our algorithm to be non parametric in
nature. Our algorithm uses a unique weighing criteria (Algorithm 2) to assign
weights to the feature vector hence enabling us to determine the relative im-
portance of dimensions. The notation used for the algorithm is as follows: The
training data has d dimensions with feature variables (A1, Aa, ....., Aq) and the
value of the feature variable for the j'" feature variable A4; corresponding to the
i*? tuple can be accessed as datali][j]. The value of the dependent variable of the
training tuple corresponding to id value i can be accessed as y[i]. The value of
the dependent variable is calculated using the cosine similarity and k represents
the number of nearest neighbors. For a given test tuple T the value of its k
nearest neighbors is determined using an iterative procedure (line 4 of algorithm
1) hence making our algorithm to be non parametric in nature. The range for
value k is from low to high where low is set to value 5 (sufficiently small value)
an high is set to size of training data data/2 (sufficiently large value). Now we
describe our algorithm using the pseudo code below shown in Algorithm 1-2.
We iterate for k in range 5 to size of training data set/2 and calculate the
k nearest neighbors for test data. The k evaluated neighbors are stored in list
ClosestNeighbors (line 6 of Algorithm 1). Now Algorithm 2 constructs an optimal
fitting line Line; for each dimension of our feature vector (the dataset used by
us has 51 features) by fitting a linear equation to observed ClosestNeighbors list,
in the plane of feature variable and the dependent variable. The regression line
is constructed as discussed in section 4. Using the parameters from the equation
of the line a and b (equation 2 and 3) we predict the dependent value of test
data (line 4 of Algorithm 2). Based on the predicted and actual values of the
dependent variable squared error Ej; is calculated (line 5 of Algorithm 2).



Algorithm 1

1: procedure KNN BASED DIMENSIONAL REGRESSION

2: MinimumError <— oo, Error forK < oo

3: OutputWeights < 1 // All d dimensions have same weight initially
4 for each k= low to high do

5: ErrorforK < 0

6 ClosestNeighbors < GetNeighbors(data, k,T)

7 Dimensional Regressor(T) // Algorithm 2

8 if MinimumError > Error fork then

9: MinimumError < Error fork
10: OutputWeight < Wr
11: end if

12: end for
13: return OutputWeight
14: end procedure

Algorithm 2

1: procedure DIMENSIONAL REGRESSION

2 for each i = 1 to d do // d is the number of dimensions
3 Line; < ConstructLine(ClosestNeighbors,i) // As discussed in Secton 4
4 PredictedTestVal; < Ti*a+b

5: E; + (PredictedTestVal; — ActualTestVali)2

6 end for

7 if Vi FE; is equal then

8 Wr+1

9: else
10: for eachi =1 to d do
11: weight; < max(E;)/Ej
12: W + weight;
13: end for
14: end if .
15: Errorfork < . Ej

j=1
16: return Wr
17: end procedure

It would be appropriate to state that a lower error value in predicting the line
indicates that the constructed regression line is optimal in nature and fits the
neighborhood of test data. Hence we conclude that the value of dependent vari-
able predicted via the line of best fit is approximately correct and thus a higher
weight should be assigned for a more optimal line or we can say a line with
lower squared error. This intuition is captured by assigning weights in inverse
proportion to the error in prediction for this dimension, hence a feature with
high error value is assigned lower weight and and the feature with lower error
value is assigned higher weight. The squared error in prediction of neighbors
(line 15 of Algorithm 2) is computed and stored in Errorfork. A lower value



of the squared error indicates that the weight values chosen using the nearest
neighbors are appropriate. We then select the value of the parameter k for which
the calculated error is minimum and hence assigns the corresponding weight vec-
tor W (line 8-10 of algorithm 1). On this weighted feature vector we evaluate
the anomaly score via a scaled Manhattan distance metric as discussed in the
section below. The approach demonstrated in Algorithm 2 is a completely novel
idea for dimension wise assigning weights in inverse proportion to error.

5.2 Scaled Manhattan Distance Metric

After the weights have been assigned to the feature vector via our proposed
approach, we calculate the anomaly scores as described by Killourhy et al. [3]
for evaluating our model. For calculating anomaly score we are using a scaled
Manhattan distance metric as described by Araujo et al. [20]. The anomaly score
is calculated as: N

>ic1lTi — il

Qi

4)

where for i*? feature x; is the test vector and y; is the mean vector calculated
from training phase and «a; is the mean absolute deviation from the training
phase. From the equation 4 we can see that each dimension is scaled by a factor
of a; hence making our algorithm capable to handle scale variation.

6 Experimental Setup and Results

In this section we discuss the evaluation criteria used and the performance of our
proposed model. We evaluated our approach on the CMU keystroke dynamics
benchmark dataset [3]. 51 users are designated this task and average equal error
rate(EER) is used as the performance measure for this dataset.

6.1 Evaluation Criteria

We frame keystroke dynamics based authentication as a one- class classification
problem which learns a model for a user, rejects anomalies to the learned model
as imposters, and accept inliers as the genuine user. Although the use of negative
examples in training could significantly improve the accuracy of the classifier,
it is unrealistic to assume prior knowledge about the keystroke features from
imposters, let alone the availability of their training data. In order to ensure
comparison on same grounds we have used exactly the same evaluation criteria
as stated by Killourhy et al. [3] on our proposed approach. The data consist
of keystroke timing information of 51 users, where each user is made to type
a password 400 times. The .tie5Roanl password used for typing is a strong
ten character static text. All the 51 users enrolled for this data collection task
typed the same password in 8 different sessions with 50 repetitions per session
thus making each user to type 400 times in total. Following are the four steps
that are used to evaluate the algorithm for classification of a single (called as a



genuine user) from the other 50 users (called as the impostors). Repeating four
steps for all 51 users is to make sure that each user have been attacked all 50
other users.

— Model training Extract 200 initial timing feature vectors for a genuine user
from the dataset. Our proposed approach is used to build a model depicting
the timing behavior of the users.

— Testing genuine users Extract last 200 passwords typed by the genuine
user from the dataset. Now this is the testing phase for our proposed ap-
proach where these 200 timing feature vectors acts as test data. Scores gen-
erated in this step acts as the user scores.

— Testing impostors Extract initial 5 passwords typed by each of the 50
impostors (i.e., all subjects other than the genuine user) from the dataset.
Based on our proposed algorithm and the model build in step 1 another set
of scores are generated. Scores generated in this step acts as the impostor
scores.

— Assessing models performance Based on the genuine user scores and
impostor scores generated in the steps above, the ROC curve is generated
for the actual (genuine) user. The equal error rate is calculated from the ROC
curve where the equal error rate corresponds to that point on the curve where
the false positive rate (false-alarm) and false negative rate (miss) are equal.
Repeat the above four steps, in total of 51 times where every time each of
the subsequent user is taken as the genuine user from the 51 distinct users in
turn, and calculate the equal-error rate for each of the genuine users. Then
calculate the mean of all 51 equal-error rates thus giving us the performance
value for all users, and calculate the standard deviation which will give us
the measure of its variance across subjects.

6.2 Results

Figure 2 shows ROC curve for different users with their Equal Error Rate (EER)
value and user number where user number corresponds to the user as stated in
CMU dataset'. Table 1 shows the comparison of various proposed keystroke
timing algorithms with our proposed approach. Comparison is shown with 14
other algorithms which used the same dataset and the same evaluation criteria
[3] thus assuring an objective comparison. Our proposed algorithm with and
without two new engineered features (as discussed in Section 3) is able to achieve
an average equal error rate (EER) of 6.98% and 7.839% respectively with a
standard deviation (stddev) of 0.044 and 0.047 across 51 subjects. The average
equal error rate (EER) shown in the table below are the fractional rates between
0.0 and 1.0, not the percentages. Clearly from Table 1, our proposed approach
performs superior than other proposed techniques in comparison.

! Dataset available at http://www.cs.cmu.edu/~keystroke/
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Fig.2: Shows ROC curve for different users with their Equal Error Rate(EER) value
where user number corresponds to the user as labeled in CMU dataset.

Table 1: Comparison of 16 different keystroke timing pattern algorithms that uses the
same CMU keystroke timing dataset and evaluation criteria in terms of Average Equal
Error Rate(EER)(with standard deviation shown in brackets).

Model/Algorithm Average EER(stddev) Source
Our Proposed Algorithm 0.0698(0.044)

(with 2 new engineered features)

Our Proposed Algorithm 0.0739(0.047)

(without 2 new engineered features)

Median Vector Proximity 0.080(0.055) Al-Jarrah [1]
Manhattan-Mahalanobis(No Outlier) 0.084(0.056) Zhong et al. [5]
Manhattan-Mahalanobis(Outlier) 0.087(0.060) Zhong et al. [5]
Manhattan(scaled) 0.0962(0.0694) Killourhy et al. [3
Nearest Neighbor(Mahalanobis) 0.0996(0.0642) Killourhy et al. [3
Outlier Count(z-score) 0.1022(0.0767) Killourhy et al. [3

SVM (one-class) 0.1025 (0.0650) Killourhy et al. [3
Mahalanobis 0.1101 (0.0645) Killourhy et al. [3
Manhattan (Filter) 0.1360 (0.0828) Killourhy et al.

(
(
(
0.1614 (0.0797
(
(
(
(

Neural Network(Auto-assoc) ) Killourhy et al. [3

Euclidean 0.1706 (0.0952) Killourhy et al. [3

Fuzzy Logic 0.2213 (0.1051) Killourhy et al. [3

k Means 0.3722 (0.1391) Killourhy et al. [3
)

Neural Network(Standard) 0.8283 (0.1483 Killourhy et al. [3

7 Conclusion and Future Work

In this paper we investigate the problem of authenticating users based on keystroke
timing pattern. We engineered new features namely bigram time and inversion
ratio time apart from the features already given in the CMU keystroke timing



dataset. Besides engineering new features we also proposed a simple and ro-
bust nearest neighbor based regression algorithm. We evaluated our results and
compared it against 14 other algorithms that used the same dataset and evalua-
tion criteria thus providing performance comparison on equal grounds. Although
simple, it proved to be effective as it outperformed majority of competing algo-
rithms as shown in Table 1. Future work involves extending our work for soft
keys or touch pad keys and in addition to timing pattern features we can use
users pressure patterns as well in order to authenticate users. We are planning
to experiment with different curve fitting techniques as well.
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