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Overall theme of the talk

Interaction between:

◮ Probability distributions

◮ Patterns

◮ Prediction



Interaction of distributions and patterns

Based on a publication by the authors:

◮ Jaakko Hollmén, Jouni K. Seppänen, and Heikki Mannila.
Mixture models and frequent sets: combining global and
local methods for 0-1 data. In Daniel Barbara and
Chandrika Kamath, editors, Proceedings of the Third
SIAM International Conference on Data Mining, pages
289–293. Society of Industrial and Applied Mathematics,
2003.
http://dx.doi.org/10.1137/1.9781611972733.32

http://dx.doi.org/10.1137/1.9781611972733.32


Introduction

Two Traditions of Data Mining:

◮ Approximating the joint distribution (global)

◮ Technology of fast counting (local)

We study the interaction of global and local techniques
Questions:

◮ How can be benefit from the combination of global and
local techniques?

◮ Are frequent itemsets extracted from clustered data
different from globally extracted frequent itemsets? How
different? How to measure?

◮ What is the information content in such frequent set
collections?



Frequent Sets and Deviation

Compare two collections of frequent sets:

◮ Frequent set collection F1

◮ Frequent set collection F2

We define a dissimilarity measure deviation:

d(F1,F2) =
1

|F1 ∪ F2|

∑

I∈{F1∪F2}

|f1(I )− f2(I )|.

Here, we denote by fj(I ) the frequency of the set I in Fj , or σ
if I 6∈ Fj . The deviation is in effect an L1 distance where
missing values are replaced by σ.



Frequent Sets in Clusters
Compare frequent sets with d(F1,F2)/σ

◮ Frequent set collection F1

◮ Frequent set collections from clusters F2
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Frequent sets extracted from partitioned data are markedly
different



Comparing Distributions (1/2)

What is the information content in the frequent sets extracted
from partitioned data? Compare distributions approximated on
the basis of frequent sets.
Maximum Entropy Distribution g(x)

◮ satisfies frequencies of the frequents sets

◮ maximum entropy solution

◮ explicit representation with 2d parameters

◮ iterative scaling algorithm



Comparing Distributions (2/2)

Estimate gj(x) from frequent sets of cluster j and mix to get a
Mixture of Maximum Entropy Distributions:

g(x) =
J∑

j=1

P̂(x ∈ j)gj(x)

Measure the difference from the the empirical distribution f (x)
with

◮ L1 distance:
∑

x |g(x)− f (x)|

◮ Kullback-Leibler measure:
Eg [log(g/f )] =

∑
x g(x) log(g(x)/f (x))



Comparing Distributions
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Summary and Conclusions

We study the interaction between global and local techniques
in data mining

◮ Combined use of frequent sets and probabilistic clustering
with multivariate 0-1 data

◮ Define a dissimilarity measure between collections of
frequent sets

◮ Frequent sets extracted from clusters are markedly
different from globally extracted frequent sets

◮ Use the frequent sets from clusters to define a mixture of
maximum entropy distributions

◮ Measure the difference from the empirical distribution
(L1 and K-L)



Multiresolution pattern mining

Based on the following publications:

◮ Prem Raj Adhikari, 2014. Probabilistic Modelling of
Multiresolution Biological Data. Doctoral Dissertation,
Aalto University School of Science, November 2014.

◮ Prem Raj Adhikari, Jaakko Hollmén, 2010. Patterns from
Multiresolution 0-1 data. In Proceedings of the ACM
SIGKDD Workshop on Useful Patterns (UP 2010), pp
8–16.



Multiple Resolutions: Chromosome-17

Figure: G-banding patterns for normal human chromosomes at five
different levels of resolution. Source: (Shaffer et. al. 2009) .
Example case in Chromosome:17.



Chromosome Nomenclature

◮ International System for Human
Cytogenetic Nomenclature
(ISCN)

◮ Short arm locations are labeled
p (petit)

◮ long arms q (queue)

◮ 17p13.2: chromosome 17, the
arm p, region(band) 13,
subregion(subband) 2

◮ Hierarchical, irregular naming
scheme; cumbersome for
scripting(manual)



Multiple Resolutions: Part of Chromosome-17

q21.3q21.2 q24q22 q23q21.1

Coarse
Resolution

Fine
Resolution

q23-24q21
q22

q24q23q21 q22
q21

q24q23.2q23.1 q23.3q22q21.2q21.1 q21.31 q21.32 q21.33

q24.2q24.1 q24.3q23.2q23.1q22q21.2q21.1 q23.3q21.33q21.32q21.31

Figure: Part of chromosome 17 showing the differences in multiple
resolutions.



Multiple Resolutions: the problem

◮ Two different datasets are available in two different
resolutions. How do you map into other resolutions such
that patterns are preserved?



Changing between different resolutions

Upsampling

◮ Upsampling is the process of changing the representation
of data to the higher or finer resolution.

◮ Simple transformation table involving chromosome bands
was used to upsample data from the resolution 400 to
different finer resolutions.

◮ The transformation table were chromosome specific and
resolution specific (88 tables for 5 resolutions).

Resolution:400 Resolution:850

17p13 17p13.3
... 17p13.2
... 17p13.1



Are Maximal Frequent Itemset Preserved?

Resolution 400 Resolution 850

Frequent Itemset ⇒ Frequent Itemset
{6,7,8} ⇒ {8,9,10,11,12,13,14}
m m

Chromosome Bands ⇒ Chromosomse Bands
{17q11.2, 17q12, 17q21} ⇒ {17q11.2, 17q12,

17q21.1, 17q21.2,
17q21.31, 17q21.32,
17q21.33 }
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Multiple Resolutions: Chromosome-17

Figure: G-banding patterns for normal human chromosomes at five
different levels of resolution. Source: (Shaffer et. al. 2009).
Example case in Chromosome:17.



Chromosome Nomenclature
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Workflow for the three-part methodology

Semantic Pattern
Mining

EXPERIMENTAL

DATA

BACKGROUND

KNOWLEDGE

Mixture
Models

Banded Matrix
Visualization

Rule 
Generation

Cluster
Visualization

Rule
Visualization

Model 
Selection

Clustering



Management summary

Three-part methodology for semi-automated data analysis:

◮ Probabilistic clustering of 0-1 data

◮ Semantic pattern mining from clustered data

◮ Visual display of the data matrix structure (bandedness)

◮ Unified visual display of everything



Rest of the talk

◮ Mixture models and model selection

◮ Describe amplification data used in the study

◮ (Semantic) pattern mining from clustered data

◮ Semantic?

◮ Unified visual display with structured data

◮ Examples: visual displays and rules

◮ Assessment?



Mixture modeling, general

Finite Mixture model

◮ p(x) =
∑J

j=1 πj p(x|θj)

◮ Component distributions p(x|θj)

◮ mixing coefficients πj ≥ 0,
∑

j πj = 1

◮ The whole is the sum of its parts

Estimation of the mixture model from data

◮ Framework of maximum-likelihood (ML)

◮ Expectation-Maximization (EM) algorithm



Mixture modeling, 0-1 data

Probability of an observed data vector x :

p(x) =

d∏

i=1

θxii (1− θi)
1−xi

Probability of an observed data vector x :

p(x |πj ,Θ) =

J∑

j=1

πjp(x |θj) =

J∑

j=1

πj

d∏

i=1

θxiji (1− θji)
1−xi



EM algorithm for the 0-1 mixture model

In the E-step, the expected values of the hidden states are
estimated:

p(j |xn,π
k ,Θk) =

πk
j p(xn|θ

k
j )∑J

j ′=1 π
k
j ′p(xn|θ

k
j ′)

In the M-step, the values of the parameters are updated:

πk+1
j =

1

N

N∑

n=1

p(j |xn,π
k , θk),

θ
k+1
j =

1

Nπk+1
j

N∑

n=1

p(j |xn,π
k , θk)xn.



Example: Chromsome 1

Data: dimension of the data fixed d = 27
What is an appropriate complexity for the mixture model?
Model-selection problem: the number of component
distributions

◮ J large = complex model, little data to support

◮ J small = simple model, more data to support



Model selection based on cross-validation

Vary the number of component distributions: J = 2, . . . , 30

◮ 5-fold crossvalidation repeated 10 times

◮ 50 partitions of data into a training set and validation set

Train the model fifty times and calculate likelihoods

◮ 50 likelihood values for the training set

◮ 50 likelihood values for the validation set

◮ Computational effort: train a mixture model 1450 times



Model selection based on cross-validation
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◮ Choose the number of components J = 6 and train the
final model with all the data ⇒ Plausible, localized
amplification patterns



Mixture modeling ”block” ready

◮ Automatic (?) model selection

◮ Soft clustering: probabilities (no thanks)

◮ Hard clustering: data partitions (yes, please!)

◮ No need to modify the subsequent blocks

Available as an open-source software:

◮ http://users.ics.aalto.fi/jhollmen/BernoulliMix/

◮ Now: Materials

http://users.ics.aalto.fi/jhollmen/BernoulliMix/


DNA copy number amplification data

Bibliomics survey from scientific articles of chromosomal
comparative genomic hybridization (CGH) studies:

◮ 838 journal articles

◮ period of 10 years between 1992 and 2002

DNA copy number amplifications recorded

◮ 4590 patients with DNA copy number amplifications

◮ 393 chromosomal regions

◮ data matrix has 4590 rows and 393 columns

◮ cancer type for every patient recorded



DNA copy number amplification data

Data matrix: X = (xij), i = 1, . . . , 4590, j = 1, . . . , 393

◮ xij = 1, if DNA copy number amplification present

◮ xij = 0, if no amplification present

DNA copy number amplifications recorded

◮ chromosomal regions: 1p36.3, 1p36.2, 1p36.1, . . .

◮ cancer types: Acute lymphoid leukemia, Acute myeloid
leukemia, Adrenocortical carcinoma, B-cell lymphoma,
Barrett´s adenocarcinoma, . . .



DNA copy number amplification data
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Profiles of DNA copy number amplification

◮ Prevalence of an amplification with reference to the rest
of the data (time series context!)



Clinical relevance of amplification patterns

Amplification patterns have clinical importance:

◮ 2p in neuroblastoma

◮ 17p in osteosarcoma

◮ 18q in lymphoma

◮ 1q and 8 in Ewing’s sarcoma



Experiments with other data sets

Demonstrate the validity of the approach for other data sets:

◮ Cities data set describes the most liveable cities in the
world according to Mercer ranking

◮ NY Daily data set desribes the crawled news items along
with their sentiment scores

◮ Tweets data set is a collection of tweets with different
features where the original task is to identify sports
related tweets

◮ Stumble Upon data set consists of training data set used
in the Kaggle competition



Semantic Pattern Mining

Hedwig system

◮ Rule induction by specialization

◮ first-order logical expressions

◮ Supports ontologies (next slide)

◮ Example: Cluster3(X) ← 1q43-44(X) ∧ 1q12(X)

Available as an open-source software:

◮ https://github.com/anzev/hedwig

https://github.com/anzev/hedwig


Ontology and semantic pattern mining

Extraction of semantic patterns (rules) using an ontology of
different resolutions of the multiresolution data
Example:

◮ Riva del Garda is part of Italy

◮ We are in Riva del Garda, We are in Italy

◮ Genomic region 1q21.1 is part of chromosome 1

◮ Genomic region 1q21.1 is part of chromosome 1q

◮ Genomic region 1q21.1 is part of chromosome 1q21

◮ January 2 is part of week 1 (temporal domain)



Structural visualization of 0-1 data matrices
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Structural visualization of 0-1 data matrices
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Semantic patterns extracted from cluster 1

# Rules for cluster 1 TP FP Precision Lift p-value

1 Cluster1(X) ← 1q43–44(X) 26 88 0.23 3.09 0.000
2 Cluster1(X) ← 1q41(X) 26 90 0.22 3.04 0.000
3 Cluster1(X) ← 1q32(X) 24 116 0.17 2.33 0.000
4 Cluster1(X) ← HotspotSite(X) 30 280 0.10 1.31 0.000
5 Cluster1(X) ← FragileSite(X) 30 317 0.09 1.17 0.002

Table: Rules induced for cluster 1 of the chromosome 1 data set.
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Extracted rules from cluster 3 of the chromosomal

data

# Rules for cluster 3 TP FP Precision Lift p-value

1
Cluster3(X) ← 1q43--44(X)

1q12(X)
81 0 1.00 4.62 0.000

2 Cluster3(X) ← 1q11(X) 78 9 0.90 4.15 0.000
3 Cluster3(X) ← 1q43--44(X) 88 26 0.77 3.57 0.000
4 Cluster3(X) ← 1q41(X) 88 28 0.76 3.51 0.000
5 Cluster3(X) ← 1q12(X) 81 43 0.65 3.02 0.000
6 Cluster3(X) ← 1q32(X) 88 52 0.63 2.91 0.000
7 Cluster3(X) ← 1q31(X) 87 54 0.62 2.85 0.000
8 Cluster3(X) ← 1q25(X) 88 64 0.58 2.68 0.000
9 Cluster3(X) ← 1q24(X) 88 97 0.48 2.20 0.000
10 Cluster3(X) ← 1q21(X) 88 134 0.40 1.83 0.000
11 Cluster3(X) ← 1q22--24(X) 88 149 0.37 1.72 0.000
12 Cluster3(X) ← HotspotSite(X) 88 222 0.28 1.31 0.000
13 Cluster3(X) ← CancerSite(X) 88 245 0.26 1.22 0.000
14 Cluster3(X) ← FragileSite(X) 88 259 0.25 1.17 0.000

Table: Rules induced for cluster 3 of the chromosome 1 data set.



Description: assessment

◮ Predictive models, prediction error

◮ Data understanding, ???

◮ Solution: A/B testing ???

◮ Information systems: create and test framework

◮ What role does generalization have in description?

◮ Can you describe one, given data set and generalize well?



Summary and Conclusions

◮ Three-part methodology: pieces of research knitted
together to form a semi-automated workflow

◮ Clustering ”produces” class labels, rule descriptions from
clusters (classes)

◮ Visual display of everything

◮ Assessment on data understanding remains an open
problem
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