Advanced Techniques for Mining Structured Data: Graph Mining

Node Clustering

Dr C.Loglisci

PhD Course in Computer Science and Mathematics XXXII cycle

Networks and Communities

- · We often think of networks being organized into modules, cluster, communities:...
-and we aim at finding densely linked communities/clusters
- Examples are
 - · communities of biochemical network correspond to functional units of some kind.

communities of a web graph correspond to sets of web sites dealing with a related

topics.

Networks and Communities

- These can be referred to groups of vertices within which connections are dense but between which they are sparser:
 - within-group(intra-group) edges, High density
 - between-group(inter-group) edges, Low density.

State-of-Art Approaches

- Hierarchical approaches
 - divisive (partitioning)
 - agglomerative

Spectral clustering

We will work with undirected (unweighted) networks

State-of-Art Approaches

- Hierarchical approaches
 - divisive (partitioning)
 - · agglomerative

- it doesn't require us to specify the size or number of groups
- It doesn't give indication to get the best partitioning of the network

Basic idea:

- remove bridges, that is, partition by strongest ties, which may connect different communities
- edges betweenness, number of shortest paths passing over the edge.
- recall vertex betweenness:

$$c(v_i) = \sum_{j \neq i} \sum_{k \neq i, k > j} \frac{\eta_{jk}(v_i)}{\eta_{jk}}$$

Basic idea:

- edges betweenness, number of shortest paths passing over the edge.
- Total amount of "flow" an edge carries between all pairs of nodes

Procedure

- 1. Calculate the betweenness for all edges in the network.
- 2. Remove the edge with the highest betweenness.
- 3. Recalculate betweennesses for all edges affected by the removal.
- 4. Repeat from step 2 until no edges remain.

- 5. cross cut the dendogram of components.
- 6. by removing these edges, we separate communities from one another as components.

Remove the edge with the highest 10 betweenness. Recalculate betweennesses for all edges affected by the removal. 8

until to have: ...mmmh

- How to select the best partition of communities?
- Modularity: a measure of how well a network is partitioned into communities
 Q ~ ∑(#edges within community s # expected edges within community s),
 s∈ S, s community
- We need a reference graph to estimate the # expected edges

• Construct a network G' with same # nodes (n), same # edges (m), same degree distribution (see Graph Theory: Measures) but random connections

The expected number of edges between two u and v of degrees du, dv is: (du*dv)/2m

- Q ranges in [-1;1] and is positive if the number of edges within groups exceeds the expected number
- 0.3 < Q < 0.7 means significant community structure

Modularity is useful for selecting the number of clusters modularity

- Improvements:
 - Efficient computation of the betweenness (Breadth-first search)
 - Automatic determination of the modularity
 - Girvan-Newmam algorithm (and extended versions) available, for instance, in R software, package igraph.

References

- Andersen, R. and Lang, K.J. Communities from seed sets. WWW, 2006.
- Mcauley, J. and Leskovec, J. Discovering social circles in ego networks. TKDD, 2014.
- Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. TPAMI, 22(8),
- 888-905.