Advanced Techniques for

Mining Structured Data:
Graph Mining

Graph Matching

Dr C.Loglisci
PhD Course in Computer Science and Mathematics XXXII cycle



Querying Graphs

Find the friends of a friend who are interested in pop-music

Find all the German presidents that have been elected twice

Find all the molecules that contain a particular compound

Find a touristic path with more historical monuments that is closest
to Berlin



Challenges

No fixed schema (i.e., no rule for the structure, we should change relational
schemas )

Hard to find information in a graph which meet structural specification, but
also specific characteristic of the elements involved

However

There is no a single a query language (SPARQL, Gremlin, Cypher, ...)
differently from ANSI SQL in RDBMS

Many different queries (reaching a point connected to others, best
neighbors, several options)



Containment Queries

* Containment queries
* Askif a (sub)structure/compound is contained in a graph
* Retrieves all graphs from a graph database, such that they contain a given query
graph.
 Exampleis: Find all the molecules containing a specific compound

e Similarity queries
* Retrieves all graphs from a graph database, which are similar to the query graph
(exact and approximate).
 Examplesis: Find the other molecules with the same structure



Containment Queries

o w mm m

G (query graph)) O

H (database graphs)

Solution:
Recursively match structures from the query to the graph
Return all the substructures of that kind
Use subgraph isomorphism to find matches of the exact structure



Isomorphism

Given two graphs,G: (V, E), H(V', E') G is isomorphic
to H iff exists a bijective function f: V - V's.t.:

1. ForeachveV,v=Ff(v)

2. (v, u) € Eiff (f(v), (f(u)) €E

Given a G'": (V", E") is subgraph isomorphic to G O O ® P ®
if exists a subgraph G' E G, G”” isomorphic to G’ R ook

T



Ulimann’s algorithm

* Tree-search algorithm (DFS) to generate spaces of candidate graphs

* One DFS is used to check the containment between a subgraph query
and a graph database

* Check the graph isomorphism by using a DFS



Ulimann’s algorithm

* Procedure:

* A partial match (initially empty) is iteratively expanded by adding to
it new pairs of matched nodes

* A node pair specializes the parent node

* The pair is chosen with the aim to satisfy some necessary
conditions, usually also some heuristic condition. If this is not so, a
node can be pruned

* Finally, either the algorithm finds a complete matching, or no
further node pairs may be added (backtracking)

e Uses adjacency and permutation matrices for matching and
pruning




Ulimann’s algorithm

Basic idea:

the adjacency matrix AH of a graph H is:

AH:

oo o

= = O =

ook O
| E—

oo o

* the permutation matrix is equivalent to tne correspondence F F-1H-1G
Given: n, nodes of G, m, nodes of H

the permutation matrix M is nXm
exact one 1 in each row
not more than one 1 in each column

"

2H-3G
3H-2G
4H-null



Ulimann’s algorithm

* Basic idea:
* the contribution of the permutation matrix is to move rows and columns
until to find an exact match (isomorphic subgraphs).
* It does work also with for isomorphic graphs:

o 1 0 O o [2]|o]| o o (o||l1] 0
0 |1||0| O 0o |0|[2] 0
' ||[;| 1 0 0 1 [@]|1] 1 1 |1 (|a] 1
| 0 0l 0 1110 O 0O (0|1 ] O
1\ 1 0 0 0]
2 —4) 10 01 0
H: \{, M:
3) 0O 1 0 0
_0 0 0 1_

10



11

Ulimann’s algorithm

Goal: Find permutation matrices that satisfy the isomorphism criterion
AH =M (M AG)'

How:
 Enumerate, in a tree structure, candidate permutation matrices and
check the criterion over each candidate
° _ . . T _
1-Construction of the matrix (root) M {1 if deg(V,, ) > deg(V. )

ml,J —

m . {01
0 otherwise . €04

e 2-Generation of all M by setting all the cells to O except 1 of each row
of M

* 3-Prune candidate which will not satisfy the isomorphism criterion (its
children will not satisfy the criterion still)



Ulimann’s algorithm

* How:
o - I . T
1-Construction of the matrix (root) M 1 if deg(V., ) >deg(V.,)
mij = . ,mij E{O,l}
’ 0 otherwise ’

/"4'; 0 1 0 0
—&(_ wmiiii]

\3 o 1 0 0 (1 1 1 1]

> M=[1111

0100

aG |00 1
1 e 3 e 2 ) o .



|

— O O
o «— O
o O

o O O

[
— O  —
— O O

o O O

1 o 1 O

Ulimann’s algorithm
&

O « o O
A d O 010_ _OOO
—1 1 O 1
o O O
TN — O O
—1 1 O .
L 1 .
........ o 4 o
— — I —
__u“u_l_.u.“um_
I 1
o 4 O
o O O
1
O +d O O O
O +d O — O O
I — |
O A —
o O O
— O
O +d O
O O
- O O
I

P=M'(M'A,)

compared with A,

2-Generation of all M by setting all the cells to O except 1 of each row of M,

w.r.t. the parent permutation matrix

13



L W

— O  —
R G N CO)

o «H o

o o - 9
o o o 0
1

0
0
2,

o «+H O

o «— O

o O O

|

o «H O o O -

Ulimann’s algorithm

o € O — O O

0
1
1

1

0
1000
0010
0100
OO

©)

2)

OO

2]

O +dH O
| I |
o O o O 9 o
o « e
o O d
o O
O +d o e
] — —
_||_0 © o O d
Il
1 1 Amu
e
— O — O O =
S o\ oo« () 5
I
|
A d O _010_ _OOO_o m
o
— 44 O — o
Oooe
— d - 0
— O O
— d O 9
L 1
o o d

0
0
1

0
0
1

(2)

3)
P=M'(M'A,)

1

1

0

|

2-Generation of all M by setting all the cells to O except 1 of each row of M,

w.r.t. the parent permutation matrix

14



15

Ulimann’s algorithm

How:

* 3-Prune candidate which will not satisfy the isomorphism criterion:

e ifavertexvof G, vcorresponds to a vertex u of H, then for each
adjacent vertex of vin G, denoted asr, there must be a vertexin H,

denoted as s, which holds:

* sisadjacentuinH ' s
e scorrespondstor 1} y .“_"*I"‘\
\ - u
) Sy | 2 —xid)
G 4\ . .-\\ -
[ 2] lg

VwveG,ag(v)=1=>dme Mst. m;.ay,(u)=1,



