
Advanced Techniques for
Mining Structured Data:

Graph Mining

Graph Matching
Dr C.Loglisci

PhD Course in Computer Science and Mathematics XXXII cycle

2

Querying Graphs
• Find the friends of a friend who are interested in pop-music
• Find all the German presidents that have been elected twice
• Find all the molecules that contain a particular compound
• Find a touristic path with more historical monuments that is closest
• to Berlin
• …
l

l

l

l

l

l

3

Challenges

• No fixed schema (i.e., no rule for the structure, we should change relational
schemas)

• Hard to find information in a graph which meet structural specification, but
also specific characteristic of the elements involved

• However
• There is no a single a query language (SPARQL, Gremlin, Cypher, …)

differently from ANSI SQL in RDBMS
• Many different queries (reaching a point connected to others, best

neighbors, several options)
l

l

l

4

Containment Queries
• Containment queries

• Ask if a (sub)structure/compound is contained in a graph
• Retrieves all graphs from a graph database , such that they contain a given query

graph.
• Example is: Find all the molecules containing a specific compound

l

l

l

l

l

l

• Similarity queries
• Retrieves all graphs from a graph database, which are similar to the query graph

(exact and approximate).
• Examples is: Find the other molecules with the same structure

l

l

l

5

H (database graphs)

G (query graph))

Containment Queries

?

Solution:
▪ Recursively match structures from the query to the graph
▪ Return all the substructures of that kind
▪ Use subgraph isomorphism to find matches of the exact structure

6

Isomorphism

Given two graphs,G: (V, E), H(V', E') G is isomorphic
to H iff exists a bijective function f: V → V' s.t.:
1. For each v ∈ V, v = f (v)
2. (v, u) ∈ E iff (f (v) , (f (u)) ∈ E'

Given a G'': (V'', E'') is subgraph isomorphic to G
if exists a subgraph G' ⊑ G, G’’ isomorphic to G’

HG

GG''

G'

7

Ullmann’s algorithm
• Tree-search algorithm (DFS) to generate spaces of candidate graphs

• One DFS is used to check the containment between a subgraph query
and a graph database

• Check the graph isomorphism by using a DFS

8

Ullmann’s algorithm
• Procedure:

• A partial match (initially empty) is iteratively expanded by adding to
it new pairs of matched nodes

• A node pair specializes the parent node
• The pair is chosen with the aim to satisfy some necessary

conditions, usually also some heuristic condition. If this is not so, a
node can be pruned

• Finally, either the algorithm finds a complete matching, or no
further node pairs may be added (backtracking)

• Uses adjacency and permutation matrices for matching and
pruning

9

Ullmann’s algorithm
• Basic idea:

• the adjacency matrix AH of a graph H is:

• the permutation matrix is equivalent to the correspondence F
• Given: n, nodes of G, m, nodes of H

• the permutation matrix M is nXm
• exact one 1 in each row
• not more than one 1 in each column

AH:

M:

F: 1H-1G
2H-3G
3H-2G
4H-null

10

Ullmann’s algorithm
• Basic idea:

• the contribution of the permutation matrix is to move rows and columns
until to find an exact match (isomorphic subgraphs).

• It does work also with for isomorphic graphs:

M:

AH: M AH: M AH MT:

H:
G:

11

Ullmann’s algorithm
• Goal: Find permutation matrices that satisfy the isomorphism criterion

AH = M (M AG)T

• How:
• Enumerate, in a tree structure, candidate permutation matrices and

check the criterion over each candidate
• 1-Construction of the matrix (root) MT

• 2-Generation of all M by setting all the cells to 0 except 1 of each row
of M

• 3-Prune candidate which will not satisfy the isomorphism criterion (its
children will not satisfy the criterion still)

}1,0{,
otherwise0

)deg()deg(if1
,, 



 

 ji

GiHi

ji m
VV

m

12

Ullmann’s algorithm

• How:
• 1-Construction of the matrix (root) MT

AH:

AG:

}1,0{,
otherwise0

)deg()deg(if1
,, 



 

 ji

GiHi

ji m
VV

m



















0010

1111

1111

M

13

Ullmann’s algorithm

















0010

1111

1111

















0010

1111

0001

















0010

1111

0010

















0010

1111

0100

















0010

1111

1000

















0010

0100

0001

















0010

1000

0001

















0010

0001

0100

















0010

1000

0100

















0010

0001

1000

















0010

0100

1000

1

3

2

4 1

3

3

2 2

3

1

4 1

3

1

2

1

2

3

4

2

3

3

1 1

3

2

1





















011

100

100

)'(' T

HAMMP



















011

100

100

 with compared GA

1

3

2

• 2-Generation of all M by setting all the cells to 0 except 1 of each row of M,
w.r.t. the parent permutation matrix

14

Ullmann’s algorithm

















0010

1111

1111

















0010

1111

0001

















0010

1111

0010

















0010

1111

0100

















0010

1111

1000

















0010

0100

0001

















0010

1000

0001

















0010

0001

0100

















0010

1000

0100

















0010

0001

1000

















0010

0100

1000

1

3

2

4 1

3

3

2 2

3

1

4 1

3

1

2

1

2

3

4

2

3

3

1 1

3

2

1





















011

100

100

)'(' T

HAMMP



















011

100

100

 with compared GA

1

3

2

• 2-Generation of all M by setting all the cells to 0 except 1 of each row of M,
w.r.t. the parent permutation matrix

15

Ullmann’s algorithm
• How:

• 3-Prune candidate which will not satisfy the isomorphism criterion:
• if a vertex v of G, v corresponds to a vertex u of H, then for each

adjacent vertex of v in G, denoted as r, there must be a vertex in H,
denoted as s, which holds:

• s is adjacent u in H
• s corresponds to r

v  G , a G (vi)=1 =>  m  M s.t. mij * a H (uj)=1,

u

s
r

v

G

