
Advanced Techniques for
Mining Structured Data:

Graph Mining

Graph Matching
Dr C.Loglisci

PhD Course in Computer Science and Mathematics XXXII cycle

2

Querying Graphs
• Find the friends of a friend who are interested in pop-music
• Find all the German presidents that have been elected twice
• Find all the molecules that contain a particular compound
• Find a touristic path with more historical monuments that is closest
• to Berlin
• …
l

l

l

l

l

l

3

Challenges

• No fixed schema (i.e., no rule for the structure, we should change relational
schemas)

• Hard to find information in a graph which meet structural specification, but
also specific characteristic of the elements involved

• However
• There is no a single a query language (SPARQL, Gremlin, Cypher, …)

differently from ANSI SQL in RDBMS
• Many different queries (reaching a point connected to others, best

neighbors, several options)
l

l

l

4

Containment Queries
• Containment queries

• Ask if a (sub)structure/compound is contained in a graph
• Retrieves all graphs from a graph database , such that they contain a given query

graph.
• Example is: Find all the molecules containing a specific compound

l

l

l

l

l

l

• Similarity queries
• Retrieves all graphs from a graph database, which are similar to the query graph

(exact and approximate).
• Examples is: Find the other molecules with the same structure

l

l

l

5

H (database graphs)

G (query graph))

Containment Queries

?

Solution:
▪ Recursively match structures from the query to the graph
▪ Return all the substructures of that kind
▪ Use subgraph isomorphism to find matches of the exact structure

6

Isomorphism

Given two graphs,G: (V, E), H(V', E') G is isomorphic
to H iff exists a bijective function f: V → V' s.t.:
1. For each v ∈ V, v = f (v)
2. (v, u) ∈ E iff (f (v) , (f (u)) ∈ E'

Given a G'': (V'', E'') is subgraph isomorphic to G
if exists a subgraph G' ⊑ G, G’’ isomorphic to G’

HG

GG''

G'

7

Ullmann’s algorithm
• Tree-search algorithm (DFS) to generate spaces of candidate graphs

• One DFS is used to check the containment between a subgraph query
and a graph database

• Check the graph isomorphism by using a DFS

8

Ullmann’s algorithm
• Procedure:

• A partial match (initially empty) is iteratively expanded by adding to
it new pairs of matched nodes

• A node pair specializes the parent node
• The pair is chosen with the aim to satisfy some necessary

conditions, usually also some heuristic condition. If this is not so, a
node can be pruned

• Finally, either the algorithm finds a complete matching, or no
further node pairs may be added (backtracking)

• Uses adjacency and permutation matrices for matching and
pruning

9

Ullmann’s algorithm
• Basic idea:

• the adjacency matrix AH of a graph H is:

• the permutation matrix is equivalent to the correspondence F
• Given: n, nodes of G, m, nodes of H

• the permutation matrix M is nXm
• exact one 1 in each row
• not more than one 1 in each column

AH:

M:

F: 1H-1G
2H-3G
3H-2G
4H-null

10

Ullmann’s algorithm
• Basic idea:

• the contribution of the permutation matrix is to move rows and columns
until to find an exact match (isomorphic subgraphs).

• It does work also with for isomorphic graphs:

M:

AH: M AH: M AH MT:

H:
G:

11

Ullmann’s algorithm
• Goal: Find permutation matrices that satisfy the isomorphism criterion

AH = M (M AG)T

• How:
• Enumerate, in a tree structure, candidate permutation matrices and

check the criterion over each candidate
• 1-Construction of the matrix (root) MT

• 2-Generation of all M by setting all the cells to 0 except 1 of each row
of M

• 3-Prune candidate which will not satisfy the isomorphism criterion (its
children will not satisfy the criterion still)

}1,0{,
otherwise0

)deg()deg(if1
,,

 ji

GiHi

ji m
VV

m

12

Ullmann’s algorithm

• How:
• 1-Construction of the matrix (root) MT

AH:

AG:

}1,0{,
otherwise0

)deg()deg(if1
,,

 ji

GiHi

ji m
VV

m

0010

1111

1111

M

13

Ullmann’s algorithm

0010

1111

1111

0010

1111

0001

0010

1111

0010

0010

1111

0100

0010

1111

1000

0010

0100

0001

0010

1000

0001

0010

0001

0100

0010

1000

0100

0010

0001

1000

0010

0100

1000

1

3

2

4 1

3

3

2 2

3

1

4 1

3

1

2

1

2

3

4

2

3

3

1 1

3

2

1

011

100

100

)'(' T

HAMMP

011

100

100

 with compared GA

1

3

2

• 2-Generation of all M by setting all the cells to 0 except 1 of each row of M,
w.r.t. the parent permutation matrix

14

Ullmann’s algorithm

0010

1111

1111

0010

1111

0001

0010

1111

0010

0010

1111

0100

0010

1111

1000

0010

0100

0001

0010

1000

0001

0010

0001

0100

0010

1000

0100

0010

0001

1000

0010

0100

1000

1

3

2

4 1

3

3

2 2

3

1

4 1

3

1

2

1

2

3

4

2

3

3

1 1

3

2

1

011

100

100

)'(' T

HAMMP

011

100

100

 with compared GA

1

3

2

• 2-Generation of all M by setting all the cells to 0 except 1 of each row of M,
w.r.t. the parent permutation matrix

15

Ullmann’s algorithm
• How:

• 3-Prune candidate which will not satisfy the isomorphism criterion:
• if a vertex v of G, v corresponds to a vertex u of H, then for each

adjacent vertex of v in G, denoted as r, there must be a vertex in H,
denoted as s, which holds:

• s is adjacent u in H
• s corresponds to r

v G , a G (vi)=1 => m M s.t. mij * a H (uj)=1,

u

s
r

v

G

