
Advanced Techniques for 
Mining Structured Data: 

Graph Mining

Frequent Subgraph Mining
Dr C.Loglisci

PhD Course in Computer Science and Mathematics XXXII cycle



2

Frequent Subgraphs (Patterns)
• Discovery of graph structures that occur a significant number of times across a set of 

graphs

• Frequent subgraphs
• A (sub)graph is frequent if its support (#occurrences) in a given dataset is no less 

than a minimum support threshold

• Examples are
• Finding common biological pathways among species.
• Recurring patterns of humans interaction during an epidemic.
• Highlighting similar data to reveal data set as a whole
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Frequent Subgraphs (Patterns)
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Frequent Subgraphs( Patterns)

Recall the graph isomorphism problem:
• isomorphic graphs have same structural properties even though they may look 

different.
• subgraph isomorphism problem: Does a graph contain a subgraph isomorphic 

to another graph?

• components which are not connected are not of interest
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State-of-Art Approaches

• Pattern-growth approaches extends existing frequent sub-graphs by adding one 
edge

• Apriori-based approaches: joins (two) small-size patterns to create bigger size 
patterns (through Apriori principle)

• We will see two approaches, which employ anti-monotonic property of frequency
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• Basic idea:

• a canonical, efficient and univoque representation (codes) for graphs
• lexicographic order for sorting the codes
• tree search space based on the codes
• building subgraphs by adding new edges
• frequent subgraphs & tree pruning

Pattern-growth with gSpan



7

• we use a (vi, vj, l(vi), l(vj), l(vi,vj)) to represent an edge
• transformation of a bi-dimensional structure into a 

sequence, which is easier to handle
• representation of the direction of exploration of the 

graph, forward edge (vi < vj) Vs backward edge (vi > vj)

Canonical representation : depth-first search code
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• different (DFS) graph codes can be generated
(a)

(b)

• we need a code to univocally identify graphs, compare them and add edges

Canonical representation : depth-first search code
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• graph codes should have ordered edges
• sorting intra-edges, within a graph
• use of neighborhood restriction rules
• these provide indication about how performing edge extension

• only one code is selected to represent the graph
• the minimum code (min(G)) is selected on the basis of lexicographic order on 

the labels (vertices and edges)
• sorting intra-graphs
• two codes for the same graph G, A:(x0, x1, …, xn) and B:(y0, y1, …, yn)  have the 

relation A ≤ B iff:
• there exists t, 0 ≤ t ≤ min(m,n), xk= yk for all k, s.t. k<t, and xt < yt

• xk= yk for all k, s.t. 0 ≤ k ≤ m and m ≤ n.

Canonical representation : depth-first search code
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• it may be proved that two graphs A and B are isomorphic iff min(A)=min(B). 
This is used to count the occurrences

• given A: (x0, x1, …, xn),B: (x0, x1, …, xn,b)

• A parent of B, B child A
• sibling nodes organized in lexicographic order
• given (z0, z1, …, zn) a non-minimum code, (z0, z1, …, zn,b), its child, is not minimum. 

It will be pruned
• graphs are extended by backward edges and forward edges
• to preserve the minimality of the code the following steps 

should be applied

Tree search space
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• all back edges first

• …by using the (last) 
rightmost vertex in the 
code…

Building subgraphs
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• all back edges first

• …and the vertices of the 
rightmost path, by 
following the order in 
which they appear

Building subgraphs
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• then, forward edges by using the other  
nodes, as they appear in the 
lexicographic order…

• ..and  the vertices of the rightmost 
path…

Building subgraphs
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• …in the reverse order

Building subgraphs
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Tree search space
• …finally, we have
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Frequent subgraphs & Tree pruning
• Procedure gSpan(D,minS) S

• compute frequent one-edge subgraphs in D   S1
• sort  S1 in lexicographic order
• S S1
• for each edge e  S1

• initialize s:<e>
• add_new_edges(D,s,S,minS,S1)

• remove s from all graphs in D (only consider subgraphs not already 
enumerated)
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• Procedure   add_new_edges(D,s,S,minS,S1)
• add s to S
• for each extension x:<s,e>, e  S1

• if supp(x) then add_new_edges(D,x,S,minS,S1)
• else prune x

Frequent subgraphs & Tree pruning
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• Example (simplified, without edge labels):

Frequent subgraphs & Tree pruning

minS=3

Frequent:

Infrequent:
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Frequent subgraphs & Tree pruning

minS=3

• Example (simplified, without edge labels):

Frequent

Infrequent

no minimum code
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Apriori-based approaches

• Basic Idea
• level-by-level structure and breadth  first search 
• generate-and-test: candidate generation and then evaluation
• FSG (Kuramochi, 2002) algorithm 

• generates candidates by joining 2 frequent subgraphs to obtain one with one 
more edge. 

• then evaluates it and prunes it if the i) downward closure property is not 
satisfied, ii) support constraint is not satisfied

• candidate generation uses sub-graph isomorphism
• candidate evaluation uses graph-isomorphism
(removal duplicates) and sub-graph isomorphism (frequency)
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Apriori-based approaches

• Basic Idea

frequent 1-edge subgraphs

frequent 2-edge subgraphs

candidate 3-edge subgraphs pruned: no 
subgraph isomorphism! 

candidate 3-edge subgraphs to generate
4-edge subgraphs

candidate 4-edge duplicate pruned
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Apriori-based approaches

• Basic Idea
• Set-enumeration tree (partial order) and breadth  first search
• lexicographic order on vertices and edges labels
• generate-and-test: candidate generation and then evaluation
• @DIB algorithm 

• generates candidates (k+1)-edge patterns by joining 2 frequent k-edges patterns  that 
satisfy the downward closure property

• then evaluates and prunes it if the support constraint is not satisfied
• candidate generation uses sub-graph isomorphism (uses heuristic: at least one  k-edge 

patterns has to be a sub-graph, but necessary checking whether (k+1)-edge patterns is 
sub-graph)

• candidate evaluation uses graph isomorphism (removal duplicates, no necessary by lex. 
order) and sub-graph isomorphism (frequency, no necessary by intersection TID-lists)
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Apriori-based approaches

• Basic Idea
• Set-enumeration tree (partial order) and breadth  first search
• lexicographic order on vertices and edges labels
• generate-and-test: candidate generation and then evaluation
• @DIB algorithm 

• generates candidates (k+1)-edge patterns by joining 2 frequent k-edges patterns  that 
satisfy the downward closure property

• then evaluates and prunes it if the i) downward closure property is not satisfied(no 
necessary) ii) support constraint is not satisfied

• candidate generation uses sub-graph isomorphism (uses heuristic: at least one  k-edge 
patterns has to be a sub-graph, but necessary checking whether (k+1)-edge patterns is 
sub-graph)

• candidate evaluation uses graph isomorphism (removal duplicates, no necessary by lex. 
order) and sub-graph isomorphism (frequency, no necessary by intersection TID-lists)
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Apriori-based approaches
• Basic Idea

{(res_A,

res_B,

conf_paper)} ...

length=1

{(res_C, res_D,

conf_ paper),

(res_C,

res_D,

jour_ paper)}

{(res_B,

res_D,

jour_ paper),

(res_C,

res_D,

conf_paper)}

{(res_B,

res_D,

jour_ paper),

(res_C,

res_D,

jour_ paper)}

...... ...

{(res_A,

res_B,  

conf_paper),

(res_A,

res_B, 

jour_ paper)}

{(res_A,

res_B,   

conf_paper),

(res_A,

res_C,  

conf_paper)}

{(res_A,

res_C,

conf_paper),

(res_A,

res_C,

jour_ paper)}

{(res_A,

res_C,

conf_paper),

(res_B,

res_D,

jour_ paper)}

...

{(res_A,

res_C,

conf_paper),

(res_C,

res_D,

jour_ paper)}

...

{(res_B,

res_D,

jour_ paper),

(res_C,

res_D,

conf_paper)

(res_C,

res_D,

jour_ paper)}

{(res_A,

res_B,  

conf_ paper),

(res_A,

res_B,

jour_ paper).

(res_A,

res_C,

conf_ paper)}

...

... ...

{(res_A,

res_C,

conf_paper),

(res_A,

res_C,

jour_  paper)

(res_B,

res_D,

jour_ paper)}

{(res_A,

res_C,

conf_paper),

(res_B,

res_D,

jour_ paper),

(res_C,

res_D,

jour_ paper)}

... ...

length=2

length=3

{(res_A,

res_B,

jour_paper)}

{(res_A,

res_C,

conf_paper)}

{(res_A,

res_C,

jour_paper)}

{(res_A,

res_D,

conf_paper)}

{(res_A,

res_D,

jour_paper)}

{(res_B,

res_D,

conf_paper)}

{(res_C,

res_D,

conf_paper)}

{(res_C,

res_D,

jour_paper)}

NO

YES

…



28

References

• Xifeng and H. Jiawei, gSpan: Graph-Based Substructure Pattern Mining, Tech. report, 
University of Illinois at Urbana-Champaign, 2002.

• M. Kuramochi and G. Karypis, An Efficient Algorithm for Discovering Frequent Subgraphs,
Tech. report, Department of Computer Science/Army HPC Research Center, 2002.



29

Neighborhood restriction rules

• If the first vertex of the current edge is less than the 2nd vertex of the current edge (forward edge)
• If the first vertex of the next edge is less than the 2nd vertex of the next edge (forward edge)

• If the first vertex of the next edge is less than or equal to the 2nd vertex of the current edge
• AND If the 2nd vertex of the next edge is equal to the 2nd vertex of the current edge plus one this is an acceptable next edge
• Otherwise the next edge being considered isn't valid

• Otherwise (next edge is a backward edge)
• If the first vertex of the next edge is equal to the 2nd vertex of the current edge
• AND If the 2nd vertex of the next edge is less than the 1st vertex of the current edge this is an acceptable next edge
• Otherwise the next edge being considered isn't valid

• Otherwise (the current edge is a backward edge
• If the first vertex of the next edge is less than the 2nd vertex of the next edge (forward edge)

• If the first vertex of the next edge is less than or equal to the 1st vertex of the current edge
• AND If the 2nd vertex of the next edge is equal to the 1st vertex of the current edge plus one this is an acceptable next edge
• Otherwise the next edge being considered isn't valid

• Otherwise (next edge is a backward edge)
• If the first vertex of the next edge is equal to the 1st vertex of the current edge
• AND If the 2nd vertex of the current edge is less than the 2nd vertex of the next edge this is an acceptable next edge
• Otherwise the next edge being considered isn't valid


