Advanced Techniques for

Mining Structured Data:
Graph Mining

Frequent Subgraph Mining

Dr C.Loglisci
PhD Course in Computer Science and Mathematics XXXII cycle

Frequent Subgraphs (Patterns)

Discovery of graph structures that occur a significant number of times across a set of
graphs

Frequent subgraphs
A (sub)graph is frequent if its support (#occurrences) in a given dataset is no less
than a minimum support threshold

Examples are
Finding common biological pathways among species.
Recurring patterns of humans interaction during an epidemic.
Highlighting similar data to reveal data set as a whole

Frequent Subgraphs (Patterns)

O O
@ O @

Gl G2 G3 G4

Frequent subgraph () .

Min support =3 ‘

Frequent Subgraphs(Patterns)

Recall the graph isomorphism problem:

. isomorphic graphs have same structural properties even though they may look
different.
. subgraph isomorphism problem: Does a graph contain a subgraph isomorphic

to another graph?

G1=(V1,ELL1) G2=(V2,E2,L2) FVLLL) = V2.2
o) .———————j. f(V1.2) = V2.5
v CR f(V1.3) = V2.3
4 fvi4)=V24
@ f(V1.5) = V2.1

@ s

..
-
-

 components which are not connected are not of interest

State-of-Art Approaches

Pattern-growth approaches extends existing frequent sub-graphs by adding one
edge

Apriori-based approaches: joins (two) small-size patterns to create bigger size
patterns (through Apriori principle)

We will see two approaches, which employ anti-monotonic property of frequency

Pattern-growth with g$Span

Basic idea:
* acanonical, efficient and univoque representation (codes) for graphs

* lexicographic order for sorting the codes
* tree search space based on the codes

* building subgraphs by adding new edges
 frequent subgraphs & tree pruning

(k+2)-edge
""" (k+1)-edge 8

O
. ,Cd[A:;i////ge “\\\\\\\

[e] O

abcd [abce

(2) +

Canonical representation : depth-first search code

e we use a (vi, vj, I(vi), [(vj), l(vi,vj)) to represent an edge

e transformation of a bi-dimensional structure into a
sequence, which is easier to handle

* representation of the direction of exploration of the

graph, forward edge (vi < vj) Vs backward edge (vi > vj)
eo' (Oflfxfy!a)

el: (1,2,y,%,b)
e2:(2,0,x,x,a)
e3:(2,3,%,2,c)
ed: (3,1,x,y,b)
e5:(1,4,x,z,d)

Canonical representation : depth-first search code
* different (DFS) graph codes can be generated

I (a) (b) (<)
¢ vo QO 1 (0,1,%aY) [(01Y,aX |(01XaX
(b) al
\E: |-a VJ‘(‘T’K’ 8
;’tﬁ}\, 2T\ 2 | (1,2,Y%bX) |(1,2,XaX|({2Xa,Y)
(b |
) | h?{}”\d_ b G0 Ny,
Ill'kc’l {Z'} c"L-\z & 3 (2p 0, X, a, K) (2, 0, X, bf Y) (2r 0, bf X)
@ (Vs
(a) 4 [(2,3,%¢2) |(23,%¢2)|(23Y,b,2)
T@'{YN v, 050 5 |(3,1,ZbY) |(30,Zb,Y)|(3,0Zc¢cX)
Sal oy @D ;oal oy
i i V0P 6 |(1,4,Yd2) [(0,4Y4d2 |(24)Ydz
b: al Ga (r:rr)(rfrr)(r:rr)
Vo001 Vz@’}"\d\)
cly b @
@ Ress
(b) (c)

 we need a code to univocally identify graphs, compare them and add edges

Canonical representation : depth-first search code

graph codes should have ordered edges

e sorting intra-edges, within a graph

* use of neighborhood restriction rules

* these provide indication about how performing edge extension

only one code is selected to represent the graph

the minimum code (min(G)) is selected on the basis of lexicographic order on

the labels (vertices and edges)

e sorting intra-graphs

* two codes for the same graph G, A:xo, x1, .., xn) and B:(yo, y1, ..., yn) have the
relation A < B iff:
* there exists t, 0 <t < min(m,n), x,=y, for all k, s.t. k<t, and x,< y,

e x=y forallk,st.0<k<mandm<n.

10

Tree search space

it may be proved that two graphs A and B are isomorphic iff min(A)=min(B).

This is used to count the occurrences

given A: (x0, x1, ..., xn),BZ (x0, x1, ..., xn,b)

e A parent of B, B child A

* sibling nodes organized in lexicographic order

* given (0,21, ..,zn) @ NON-Minimum code, (z0, 21, ..., zn,b), its child, is not minimum.
It will be pruned

graphs are extended by backward edges and forward edges

to preserve the minimality of the code the following steps

should be applied

11

Building subgraphs

all back edges first

...by using the (last)
rightmost vertex in the
code...

1st 2nd

12

Building subgraphs

all back edges first

...and the vertices of the
rightmost path, by
following the order in
which they appear

1st 2nd

13

Building subgraphs

then, forward edges by using the other
nodes, as they appear in the
lexicographic order...

..and the vertices of the rightmost
path...

14

Building subgraphs

...in the reverse order

4th

5th

16

Tree search space

..finally, we have

- [
,\://III‘
(9]

17

Frequent subgraphs & Tree pruning

Procedure gSpan(D,minS)—> S

compute frequent one-edge subgraphsin D = S1

sort S1 in lexicographic order

S & S1

for each edge e € S1

* initialize s:<e>

 add new_edges(D,s,S,minS,S1)

remove s from all graphs in D (only consider subgraphs not already
enumerated)

18

Frequent subgraphs & Tree pruning

Procedure add new_edges(D,s,S,minS,S1)
e addstoS
 for each extension x:<s,e>, e € S1
e if supp(x) then add_new edges(D,x,S,minS,S1)
e else prune x

20

Frequent subgraphs & Tree pruning

* Example (simplified, without edge labels):

minS=3

Frequent:

(a) Infrequent:

21

Frequent subgraphs & Tree pruning

* Example (simplified, without edge labels):

minS=3

Infrequent

_E ; ;

4

T
0

no minimum code

22

Apriori-based approaches

Basic Idea

level-by-level structure and breadth first search
generate-and-test: candidate generation and then evaluation
FSG (Kuramochi, 2002) algorithm

 generates candidates by joining 2 frequent subgraphs to obtain one with one

more edge.

 then evaluates it and prunes it if the i) downward closure property is not
satisfied, ii) support constraint is not satisfied

 candidate generation uses sub-graph isomorphism

* candidate evaluation uses graph-isomorphism

(removal duplicates) and sub-graph isomorphism (frequency)

(k+1)-graph

k-graph :
/

24

Apriori-based approaches

Basic Idea

candidate 4-edge duplicate pruned

frequent 1-edge subgraphs

frequent 2-edge subgraphs

candidate 3-edge subgraphs pruned: no
subgraph isomorphism!

candidate 3-edge subgraphs to generate
4-edge subgraphs

25

Apriori-based approaches

Basic Idea

Set-enumeration tree (partial order) and breadth first search
lexicographic order on vertices and edges labels
generate-and-test: candidate generation and then evaluation
@DIB algorithm

generates candidates (k+1)-edge patterns by joining 2 frequent k-edges patterns that
satisfy the downward closure property

then evaluates and prunes it if the support constraint is not satisfied

candidate generation uses sub-graph-isermoerphism (uses heuristic: at least one k-edge
patterns has to be a sub-graph, but necessary checking whether (k+1)-edge patterns is
sub-graph)

candidate evaluation uses graph-isermoerphism (removal duplicates, no necessary by lex.
order) and sub-graphisemerphism (frequency, no necessary by intersection TID-lists)

26

Apriori-based approaches

{}
Basic Idea i~
Set-enumeration tree (partial order) and breadth first search __’____{X} i {z
lexicographic order on vertices and edges labels {x;}) {yrz}
generate-and-test: candidate generation and then evaluation s
@DIB algorithm {x.y.z}

e generates candidates (k+1)-edge patterns by joining 2 frequent k-edges patterns that
satisfy the downward closure property

 then evaluates and prunes it if the i) downward-closurepreperty-isnoetsatistied(no

necessary) ii) support constraint is not satisfied

 candidate generation uses sub-graphisemerphism (uses heuristic: at least one k-edge
patterns has to be a sub-graph, but necessary checking whether (k+1)-edge patterns is
sub-graph)

 candidate evaluation uses graphisemeorphism (removal duplicates, no necessary by lex.
order) and sub-graphisemerphism (frequency, no necessary by intersection TID-lists)

Apriori-based approaches
e Basicldea 72 lengthy1

{(res_A, {(res_A, {(res_A, {(res_A, {(res_A, {(res_A, {(res_B, {(res_C, {(res_C,
res_B, res B, res C, res C, res_D, res_D, res_D, res_D, res_D,
conf_paper)} jour_paper)} conf_paper)} jour_paper)} conf_paper)} jour_paper)} - conf_paper)} conf_paper)} jour_paper)}
N O e e
length=2
A4
{(res"A, YES {(res_A, {(res_A, {(res_A, {(res_A, {(res_B, {(res_B, {(res_C, res_D,
res_B res_B, res_C, res_C, res_C, res D, res_D, conf_ paper),
conf paﬁer), conf_paper), - conf_paper), conf_paper), ™ conf_paper), - jour_ paper), jour_ paper), (res_C,
(res_A, (res_A, (res_A, (res_B, (res_C, (res_C, (res_C, _ res_D,
res_B, res_C, res_C, res D, res_D, res D, res D, jour_ paper)}
jour_ papEr)} conf_paper)} jour_ paper)} jour_ paper)} jour_ paper)} conf_paper)} jour_ paper)}
length=3
{r(égs_BA, {(res_A, {(res_A, {(res_B,
conf_ paper) res_C, res_C, res_D,
" (res A conf_paper), conf_paper), jour_ paper),
res B. (res_A, (res_B, (res_C,
jour_ paper). res_C, res_D, res_D,
(res A, jour_ paper) jour_ paper), conf_paper)
res_C, (res_B, (res_C, (res_C,
o res D, res D, res D,

conf_ paper)} jour_ paper)} jour_ paper)} jour_ paper)}

28

References

* Xifeng and H. Jiawei, gSpan: Graph-Based Substructure Pattern Mining, Tech. report,
University of lllinois at Urbana-Champaign, 2002.

M. Kuramochi and G. Karypis, An Efficient Algorithm for Discovering Frequent Subgraphs,

Tech. report, Department of Computer Science/Army HPC Research Center, 2002.

29

Neighborhood restriction rules

If the first vertex of the current edge is less than the 2nd vertex of the current edge (forward edge)
» If the first vertex of the next edge is less than the 2nd vertex of the next edge (forward edge)
* If the first vertex of the next edge is less than or equal to the 2nd vertex of the current edge
* AND If the 2nd vertex of the next edge is equal to the 2nd vertex of the current edge plus one this is an acceptable next edge
* Otherwise the next edge being considered isn't valid
» Otherwise (next edge is a backward edge)
» If the first vertex of the next edge is equal to the 2nd vertex of the current edge
* AND If the 2nd vertex of the next edge is less than the 1st vertex of the current edge this is an acceptable next edge
* Otherwise the next edge being considered isn't valid
Otherwise (the current edge is a backward edge
» If the first vertex of the next edge is less than the 2nd vertex of the next edge (forward edge)
» [f the first vertex of the next edge is less than or equal to the 1st vertex of the current edge
 AND If the 2nd vertex of the next edge is equal to the 1st vertex of the current edge plus one this is an acceptable next edge
* Otherwise the next edge being considered isn't valid
» Otherwise (next edge is a backward edge)
» [f the first vertex of the next edge is equal to the 1st vertex of the current edge
 AND If the 2nd vertex of the current edge is less than the 2nd vertex of the next edge this is an acceptable next edge
* Otherwise the next edge being considered isn't valid

