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Networks ...

1.5 Bln users

Social graphs, Knowledge graphs, Biological networks, Metabolic networks
They are complex: groups, links, preferences, attributes .

10.5 USD per user

|
il

Twitter

Connect entities such as persons, organizations, countries,

objects through explicit relationships o T———
Protein-protein interaction networks: proteins, physical interactions e
Metabolic networks: metabolites and enzymes,chemical reactions 1
e WIKIDATA

relationships

Other knowledge graphs:
+ YAGO

* DBPedia

* DBLP

= Pubmed

* Linkmdb

Anything that involves relationships can be modeled as a graph!



Networks

Why Networks?

Describe complex data with a simple structure
Nature, social, concepts, roads, circuits ...

Same representation for many disciplines
Computer science, biology, physics, economics, ...

Availability of (BIG) data

Large networks are now available and require complex algorithms
Networks are evolving over time (e.g., new users/friends in Facebook)

Usefulness

Analysis will discover non trivial patterns, and allow simple smooth explorations
They reveal user behaviors

They are valuable (Facebook, Twitter, Amazon ... All of them based on graphs!!!)



Networks

Networks or Graphs?

Network refers to real systems
Web, Social, Biological, ...
Terminology: Network, node, link/relationship

Graph is an abstract mathematical model of a network
Web graph, Social graph
Terminology: Graph, vertex/node, edge

BUT
we often use both without distinction



Networks and Their Representations

A network/graph: G = (V, E), where V: vertices/nodes, E: edges/links
E: asubsetof V XV, n=|V| (order of G), m = | E| (size of G).

Often, we have sets of labels, each associated to nodes and edges.

2
Adjacency matrix
0 1 1 0 0] 1 ;

1 01 00 st of d
A=l1 1. 0 1 0 5( ist of edges
00101 4~ (12)

(2,3)
0 0 01 0 (13)
1:[2, 3] (3 4)
Adjacency list 2:[1, 3] (4,5)
3:[1, 2, 4]
4:[3, 5]



Networks and Their Representations

Various kinds of networks:
Simple network: if a network has neither self-loop nor multi-edges
Multi-edges: if more than one edge between the same pair of vertices
Self-loop: if an edge connects vertex to itself (i.e., (v, v;))
Weighted graph: If a weight w;; (a real number) is associated with each edge v;
Undirected graphs: e.g., Co-authorship, Roads, Biological
Directed graph (digraph): if each edge has a direction (tail - head) e.g., Follows

A;; = 1if there is an edge from j to i; O otherwise



Basic Network Structures

Walk in a graph G between vertices X and Y: sequence of vertices, starting at X and ending
aty, s.t. there is an edge between every pair of consecutive vertices
Hops: the length of the walk

Path: a walk with distinct (non-repeating) vertices. A sequence of vertices that every

consecutive pair of vertices in the sequence is connected by an edge in the network
Length of a path: # of edges traversed along the path




Basic Network Structures

Subgraph: Given G = (V, E) and a subset of vertices V' < V, the induced subgraph G’ = (V’, E’)
consists exactly of all the edges present in G between vertices in V’

Connected: two vertices are endpoints of a path

Clique (complete graph): Every node is connected to every other

Singleton, dyad (two vertices and their relationship), triad :

e N A

E

Neighborhood of a vertex: the subgraph induced by all vertices that are
adjacent (neighbors) to the vertex



Basic Network Structures

Connected Component: A subgraph of a graph such that there exists at least one path from
vertex to each other vertex. There are no edges with other vertices of the whole graph

Adjacency matrix of a network with more than one component can be written in block
diagraph form

A

[1 0 -
(9 ‘) )
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Vertex Degree for Undirected & Directed Networks

Let a network G = (V, E)
Undirected Network d(vi) = |vj| s.t. ei; € ENejj = e
Degree (or degree centrality) of a vertex: d(v;)
# of edges connected to it, e.g., d(A) =4, d(H) = 2
Directed network

In-degree of a vertex d. (vi):
# of edges pointing to v, din (/U?) — "Uj ‘ S.t. Cij € E
E.g.,d (A)=3,d (B)=2

Out-degree of a vertex d_ (V)
# of edges from v,

E.g.,d, (A)=1,d,,(B)=2

out

dout(Ui) — "Uj‘ S.t. €ji € E
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Degree Distribution

 Degree sequence of a graph: The list of degrees of the vertices sorted in non-
increasing order
E.g., in graph G,, degree sequence: (4, 3, 2, 2, 1)

* Degree frequency distribution of a graph: Let N, denote the # of vertices with
degree k(N,, N, ..., N,), tis max degree for a node in G

E.g., in graph G,, degree frequency distribution: (0, 1, 2, 1, 1)

* Degree distribution of a graph,
probability distribution (f(0), f(1), ..., f(t), where f(k) = P(X = k) = N,/n

E.g., in graph G,, degree distribution (0, 0.2, 0.4, 0.2, 0.2)
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Various Kinds of Paths

Shortest path (geodesic path, d):
Geodesic paths are not necessarily unique: It is quite possible to have
more than one path of equal length between a given pair of vertices

Distance: the length of the shortest path between two vertices

For this graph,
what is <d> ?

Average path length (<d>): (d) = — ! 1 Z d; ;
Average of the shortest paths between all pairs of vertices RS ) i,j=1,N(i#])

Eulerian path: a path that traverses each edge in a network exactly once
Hamilton path: a path that visits each vertex in a network exactly once
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Independent Paths, Connectivity, and Cut Sets

Two path connecting a pair of vertices (A, B) are edge-independent if they share no edges
Two path are vertex-independent if they share no vertices other than the starting and ending
vertices

oeée °’°

A vertex cut set is a set of vertices whose removal will disconnected a specified pair of
vertices

An edge cut set is a set of edges whose removal will disconnected a specified pair of vertices
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Radius and Diameter of a Network

Eccentricity: The eccentricity of a node v, is the maximum distance from v, to any

other vertices in the graph
e(v;) = max; {d(v; v;)}
E.g.,e(A)=1, e(F)=¢e(B)=¢e(D)=e(H) =2

Radius of a connected graph G: the min eccentricity of any node in G
r(G) = min; {e(v;,)} = min; {max; {d(v; v;)}}
E.g., r(G,) =1

Diameter of a connected graph G: the max eccentricity of any node in G
d(G) = max; {e(v;)} = max; ; {d(v; v;)}
E.g.,d(G,) =2
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Radius and Diameter of a Network

H B

Commonly, it is the length of the longest shortest path between any pair of o‘
vertices, that is, the maximum of the distances between pairs of vertices in thé? )

Graph G,
graph.

If the graph has weights on its edges, then it is weighted by the sum of the
edge weights along a path.

Diameter is sensitive to outliers.

Effective diameter: min # of hops for which a large fraction, typically 90%, of all
connected pairs of vertices can reach each other
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Clustering Coefficient

Clustering coefficient of a node v, (respectively, of a graph) :

A measure of the density of edges in the neighborhood of v, (in a graph G)
Let G, = (V,, E,) be the subgraph induced by the neighbors of vertex v,, |V.| = n,
(# of neighbors of v.), and |E;| = m, (# of edges among the neighbors of v)
(Local) Clustering coefficient of v, for undirected networkis C(G) - Z C'(

C(v) # edges in G, 2 X M,
1.1 = : - —
f max # edges in G; ni(n; —1)

For directed network,

- (\(t‘ ) o # €dg€5 m G?'_ B m;

Global Clustering coefficient is computed on triads, instead of vertices



Centrality

Centrality: How central a node is in the network
Degree centrality: degree of a node (local measure) X X
Y Y

Eccentricity centrality: the less eccentric, the more central (relative to rest of
network)
- c(v)=1/e(v)
- Central node: e(v;) = r(G) (if it equals the radius of G)
- Periphery node: e(v,) = d(G) (if it equals the diameter of G)
- Often used in facility location, e.g., emergency center : :
Closeness centrality: indicates how close a node is to all other vertices in the
network
c(v;) = 1/21 d(v; v))
Facility location, e.g., shopping center, minimize total distance O—O—O—0—0O

19
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Centrality

Betweenness centrality for a node v: # of shortest paths from all vertices to all
others that pass through v

N # of shortest paths between vertices v; and v, Y
njk(vi): # of such paths that contain v,
Betweenness centrality of a vertexv::  ¢(t Y 77”‘ ;

J#t k#, A>j

Ill

Indicating a central “monitoring role” played by v, for various pairs of vertices

Eigenvector centrality: Measure the influence of a node in a network, i.e.,
connections to high-scoring vertices contribute more to the score of the node in
guestion than equal connections to low-scoring vertices ‘ @
&
S
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Network Modeling

A real-world network has the following common properties:
Few connected components:

- often only 1 or a small number, independent of network size
Small diameter:

- often a constant independent of network size

- growing only logarithmically with network size or even shrink

- typically exclude infinite distances
A high clustering coefficient

- considerably more so than for a random network
A heavy-tailed degree distribution:

- asmall but reliable number of high-degree vertices

- often of power law form

——MNormal Distribution

heavy-tailed
Distribution
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Network Modeling

In social networks:
- Homophily: the tendency of individuals to associate and bond with others
who are similar. Homophily shows that people's social

networks are homogeneous with regard to many sociodemographic, behavioral,
and intra-personal characteristics

- Selection: tendency of people to form friendships with others who are like
them

- Socialization or Social Influence: the existing social connections in a network
are influencing the characteristics of the individuals



Network Modeling

In social networks: —

- Homophily: the tendency of individuals to associate and bond with others ..::.,:“',‘".'E;"'-"‘.j:,,‘
who are similar. Homophily shows that people's social g BN T
networks are homogeneous with regard to many sociodemographic, behavioral, {“’”
and intra-personal characteristics LA L

- Selection: tendency of people to form friendships with others who are like et
them

- Socialization or Social Influence: the existing social connections in a network
are influencing the characteristics of the individuals

In spatial networks, this is equivalent to the spatial auto-correlation, where 4
"everything is related to everything else, but near things are more related
than distant things."

23
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Network Modeling

Many real-world networks exhibit certain common characteristics, even though they
come from different domains, e.g., communication, social, and biological networks

Small-world networks
« Small diameter
 high clustering coefficient

Scale-free networks S
- power law degree distribution
- power law clustering coefficient distribution

Long Tail
Low popularity

very low, but never zero

small occurrences are extremely common, whereas
large occurrences are extremely rare (“There are a few mega-

cities, but many small towns”)



Small-world networks

 Six degrees of separation (Milgram experiment)

- 7-degrees of separation (Imdb actors)

25
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Scale-free networks

hubs and communities

hub refers to a vertex that connects to a lot of other
vertices and communities

low-degree vertices are members of dense groups
(communities), which are connected to each other

through hubs
very few users are popular (hubs)
the clustering coefficient decreases as the vertix

degree increases
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Some Models of Network Generation

Erdos-Rényi Random graph model:
a random graph is obtained by starting with a set of N vertices and
adding edges between them at random. Each node pair is connected
with probability of p
usually, N is large and p ~ 1/N
gives few components and small diameter
does give neither high clustering and nor heavy-tailed degree
distributions o |
is the mathematically most well-studied and understood model '
real-worlds networks are not randomly generated:
it significantly underestimates the number of high degree vertices
for instance, if Internet was random, we expect a portion of high
degree vertices of 2.57, butitis 14.14

INTERNET |
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Some Models of Network Generation

« Watts-Strogatz small world graph model:
- gives few components
- does not give heavy-tailed degree distributions
- extension of the random models which incorporates two properties:

- in real networks the average distance between two nodes depends
logarithmically on N (small diameter)
- the average clustering coefficient of real networks is much higher
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Some Models of Network Generation

Barabasi-Albert Scale-free model:
gives few components, small diameter and heavy-tailed distribution
does not give high clustering
the number of nodes (N) is not fixed
revises Watts model, in that the networs are not homogeneous in
degree
the probability of connecting to a node is proportional to the current
degree of that node: new edges are more likely to link to nodes with
higher degrees (preferential-attachment)
scale-free network, a network whose degree distribution follows a
power law
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Some Models of Network Generation

Barabasi-Albert Scale-free model

- networks continuously expand by additional new nodes

- WWW: addition of new nodes
- citation: publication of new papers

- the preferential-attachment is not uniform
- a node is linked with higher probability to a node that already has a

large number of links

- WWW: new documents link to well known sites (CNN, Yahoo,
Google)

- Citation: Well cited papers are more likely to be cited again



Random vs. Scale-Free Networks

Random Network, Accidental Node Fallure

S e o, e e, e ¢ The accidental failure of a
; P! \ i) ) : © ." \ ~ \ Nary © . .

) X" || b B af Ase g number of nodes in a random
< { »- ‘.‘. ) ol © ¢'  ' ‘(.“

X S Y s, = e N network can fracture the system

L Rl O into non-communicating islands
® Afte 3 |
Scale-Frae Network, Accidental Node Fanuri

Fove o0 || £ ve =, "T.| ¢ Scale-free networks are more
A | N\ robust in the face of such

RY, e AR Va5 N X .

e e Lo N\ [~ P failures
pe ¢—\ " ]
X Y
Scale-Free Network, Attack on Hubs

= T R p: e - RPN .
RSS2 L 2 e <y, . << ¢ Scale-free networks are highly
'-‘f'--ﬁf,"’q'f"-_*"/:,”’ Gl . s WA, 0= S o vulnerable to a coordinated

CSNZRY// e St attack against their hubs

| 4 ‘ o




32

Real World Case : Internet Backbone

Nodes: computers, routers
Links: physical lines

10000
‘routes.out”
exp(8.52124) " x ** ( -2.48626 ) —

1000 ‘

100 ¢ E

10 f

1 - — . Internet-Map
1 10 100

(Faloutsos, Faloutsos and Faloutsos, 1999)
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Real World Case : Actor Connectivity

Fvi 1eS:
Llnks cast jointly

(=}
°°O

P(k)




Real World Case : Co-authorship

Nodes: scientist (authors)
Links: write paper together
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Real World Case : Highway Network

Poisson distribution

P(k)
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Modeling Network Evolution

Densification power law

The # of edges grows more than linearly to # of vertices, following a power law, with
a positive densification exponent

E(t) o< N(t)? where2>86>1inmany real graphs

Shrinking diameter: The effective diameter of the graph shrinks as a graph grows over
time




Modeling Network Evolution

- The Forest-Fire model: A preferential-attachment model that matches the
densification power law and the shrinking diameter of graph evolution
- The graph grows one node at a time. The new node v adds links to the existing node
according to a “forest fire” process
- Pick an ambassador node w uniformly at random and the links to w
- Select some of ambassador’s edges, and follow these edges and repeat
- Similar to capture a “forest fire” at w and spread to other vertices

- Example: a new computer science graduate student arrives at a university, meets
some older CS students, who introduce him/her to their friends (CS or non-CS),
and the introductions may continue recursively.

37 /to
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