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Networks 
l Social graphs, Knowledge graphs, Biological networks, Metabolic networks

l They are complex: groups, links, preferences, attributes
l

• Connect entities such as persons, organizations, countries,
objects through explicit relationships
• Protein-protein interaction networks: proteins, physical interactions
• Metabolic networks: metabolites and enzymes,chemical reactions
l

l

l

l

l

l

Anything that involves relationships can be modeled as a graph!
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Networks 
l Why Networks?
l

l Describe complex data with a simple structure
l Nature, social, concepts, roads, circuits …

l

l Same representation for many disciplines
l Computer science, biology, physics, economics, ...

l Availability of (BIG) data
l Large networks are now available and require complex algorithms
l Networks are evolving over time (e.g., new users/friends in Facebook)    

l Usefulness
l Analysis will discover non trivial patterns, and allow simple smooth explorations
l They reveal user behaviors
l They are valuable (Facebook, Twitter, Amazon ... All of them based on graphs!!!)

l

l

l
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Networks
l Networks or Graphs?
l

Network refers to real systems
Web, Social, Biological, …
Terminology: Network, node, link/relationship

Graph is an abstract mathematical model of a network
Web graph, Social graph
Terminology: Graph, vertex/node, edge

BUT
we often use both without distinction
l

l

l

l

l
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Networks and Their Representations
l A network/graph: G = (V, E), where V: vertices/nodes, E: edges/links

l E: a subset of V × V, n = |V| (order of G), m = |E| (size of G).

l Often, we have sets of labels, each associated to nodes and edges.

l
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Networks and Their Representations
l Various kinds of networks: 

• Simple network: if a network has neither self-loop nor multi-edges

• Multi-edges:  if more than one edge between the same pair of vertices

• Self-loop: if an edge connects vertex to itself (i.e., (vi, vi))

• Weighted graph: If a weight wij (a real number) is associated with each edge vij

• Undirected graphs: e.g., Co-authorship, Roads, Biological

• Directed graph (digraph): if each edge has a direction (tail → head)  e.g., Follows

• Aij = 1 if there is an edge from j to i; 0 otherwise
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Walk in a graph G between vertices X and Y: sequence of vertices, starting at X and ending
at Y, s.t. there is an edge between every pair of consecutive vertices

Hops: the length of the walk

Path: a walk with distinct (non-repeating) vertices. A sequence of vertices that every
consecutive pair of vertices in the sequence is connected by an edge in the network

Length of a path: # of edges traversed along the path

Graph G1

Basic Network Structures
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Basic Network Structures
Subgraph: Given G = (V, E)  and a subset of vertices V’  V, the induced subgraph G’ = (V’, E’) 
consists exactly of all the edges present in G between vertices in V’
Connected:  two vertices are endpoints of a path
Clique (complete graph):  Every node is connected to every other
Singleton, dyad (two vertices and their relationship), triad :  

B

C

D

E
F

A

Neighborhood of a vertex: the subgraph induced by all vertices that are 
adjacent (neighbors) to the vertex
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Basic Network Structures
Connected Component: A subgraph of a graph such that there exists at least one path from 
vertex to each other vertex. There are no edges with other vertices of the whole graph

Adjacency matrix of a network with more than one component can be written in block
diagraph form
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Vertex Degree for Undirected & Directed Networks

l Let a network G = (V, E)
l Undirected Network

l Degree (or degree centrality) of a vertex: d(vi)
l # of edges connected to it, e.g., d(A) = 4, d(H) = 2

l Directed network

l In-degree of a vertex din(vi): 

l # of edges pointing to vi

l E.g., din(A) = 3, din(B) = 2

l Out-degree of a vertex dout(vi):

l # of edges from vi

l E.g., dout(A) = 1, dout(B) = 2
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Degree Distribution

Graph G1

• Degree frequency distribution of a graph: Let Nk denote the # of vertices with 
degree k(N0, N1, …, Nt), t is max degree for a node in G

E.g., in graph G1, degree frequency distribution: (0, 1, 2, 1, 1)

• Degree distribution of a graph, 
probability distribution (f(0), f(1), …, f(t), where f(k) = P(X = k) = Nk/n

E.g., in graph G1, degree distribution (0, 0.2, 0.4, 0.2, 0.2)

• Degree sequence of a graph: The list of degrees of the vertices sorted in non-
increasing order

E.g., in graph G1, degree sequence: (4, 3, 2, 2, 1)
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Various Kinds of Paths
l Shortest path (geodesic path, d): 

l Geodesic paths are not necessarily unique: It is quite possible to have 
more than one path of equal length between a given pair of vertices

l Distance: the length of the shortest path between two vertices

l Average path length (<d>): 
l Average of the shortest paths between all pairs of vertices

l Eulerian path: a path that traverses each edge in a network exactly once
l Hamilton path: a path that visits each vertex in a network exactly once

For this graph, 
what is <d> ?
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Independent Paths, Connectivity, and Cut Sets
l Two path connecting a pair of vertices (A, B) are edge-independent if they share no edges
l Two path are vertex-independent if they share no vertices other than the starting and ending 

vertices
l

l

l

l

l A vertex cut set is a set of vertices whose removal will disconnected a specified pair of 
vertices

l An edge cut set is a set of edges whose removal will disconnected a specified pair of vertices
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Radius and Diameter of a Network
l Eccentricity: The eccentricity of a node vi is the maximum distance from vi to any

other vertices in the graph
l e(vi) = maxj {d(vi, vj)}
l E.g., e(A) = 1, e(F) = e(B) = e(D) = e(H) = 2

l Radius of a connected graph G: the min eccentricity of any node in G
l r(G) = mini {e(vi)} = mini {maxj {d(vi, vj)}}
l E.g., r(G1) = 1

l Diameter of a connected graph G: the max eccentricity of any node in G
l d(G) = maxi {e(vi)} = maxi, j {d(vi, vj)}
l E.g., d(G1) = 2

Graph G1



15

Radius and Diameter of a Network

Graph G1

• Commonly, it is the length of the longest shortest path between any pair of 
vertices, that is, the maximum of the distances between pairs of vertices in the 
graph. 

• If the graph has weights on its edges, then it is weighted by the sum of the 
edge weights along a path.

• Diameter is sensitive to outliers. 

• Effective diameter: min # of hops for which a large fraction, typically 90%, of all 
connected pairs of vertices can reach each other
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Clustering Coefficient
• Clustering coefficient of a node vi (respectively, of a graph) : 

• A measure of the density of edges in the neighborhood of vi  (in a graph G)

• Let Gi = (Vi, Ei) be the subgraph induced by the neighbors of vertex vi, |Vi| = ni

(# of neighbors of vi), and |Ei| = mi (# of edges among the neighbors of vi)

• (Local) Clustering coefficient of vi for undirected network is

• For directed network,

• Global Clustering coefficient is computed on triads, instead of vertices
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Centrality
• Centrality: How central a node is in the network
• Degree centrality: degree of a node (local measure)

• Eccentricity centrality: the less eccentric, the more central (relative to rest of 
network)

• c(vi) = 1/e(vi) 
• Central node: e(vi) = r(G) (if it equals the radius of G)
• Periphery node: e(vi) = d(G) (if it equals the diameter of G)
• Often used in facility location, e.g., emergency center

• Closeness centrality: indicates how close a node is to all other vertices in the 
network 
• c(vi) = 1/∑j d(vi, vj)
• Facility location, e.g., shopping center, minimize total distance
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Centrality

• Betweenness centrality for a node v: # of shortest paths from all vertices to all 
others that pass through v

• ηjk: # of shortest paths between vertices vj and vk

• ηjk(vi): # of such paths that contain vi

• Betweenness centrality of a vertex vi:

• Indicating a central “monitoring role” played by vi for various pairs of vertices

• Eigenvector centrality: Measure the influence of a node in a network, i.e., 
connections to high-scoring vertices contribute more to the score of the node in 
question than equal connections to low-scoring vertices
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Network Modeling
• A real-world network has the following common properties:
• Few connected components:
• often only 1 or a small number, independent of network size

• Small diameter:
• often a constant independent of network size
• growing only logarithmically with network size or even shrink
• typically exclude infinite distances

• A high clustering coefficient
• considerably more so than for a random network

• A heavy-tailed degree distribution:
• a small but reliable number of high-degree vertices
• often of power law form
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Network Modeling
In social networks: 
• Homophily: the tendency of individuals to associate and bond with others
who are similar. Homophily shows that people's social
networks are homogeneous with regard to many sociodemographic, behavioral,
and intra-personal characteristics
• Selection: tendency of people to form friendships with others who are like
them
• Socialization or Social Influence: the existing social connections in a network
are influencing the characteristics of the individuals
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Network Modeling
In social networks: 
• Homophily: the tendency of individuals to associate and bond with others
who are similar. Homophily shows that people's social
networks are homogeneous with regard to many sociodemographic, behavioral,
and intra-personal characteristics
• Selection: tendency of people to form friendships with others who are like
them
• Socialization or Social Influence: the existing social connections in a network
are influencing the characteristics of the individuals

In spatial networks, this is equivalent to the spatial auto-correlation, where
"everything is related to everything else, but near things are more related 
than distant things."
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Network Modeling
• Many real-world networks exhibit certain common characteristics, even though they 

come from different domains, e.g., communication, social, and biological networks

• Small-world networks 
• Small diameter 
• high clustering coefficient

• Scale-free networks
• power law degree distribution
• power law clustering coefficient distribution

small occurrences are extremely common, whereas
large occurrences are extremely rare (“There are a few mega-
cities, but many small towns”)
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Small-world networks

• Six degrees of separation (Milgram experiment)
• 7-degrees of separation (Imdb actors)
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Scale-free networks

• hubs and communities
• hub refers to a vertex that connects to a lot of other

vertices and communities
• low-degree vertices are members of dense groups

(communities), which are connected to each other
through hubs

• very few users are popular (hubs)
• the clustering coefficient decreases as the vertix

degree increases
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Some Models of Network Generation

• Erdös-Rényi Random graph model:
• a random graph is obtained by starting with a set of N vertices and 

adding edges between them at random. Each node pair is connected 
with probability of p

• usually, N is large and p ~ 1/N
• gives few components and small diameter
• does give neither high clustering and nor heavy-tailed degree

distributions
• is the mathematically most well-studied and understood model
• real-worlds networks are not randomly generated:

• it significantly underestimates the number of high degree vertices
• for instance, if Internet was random, we expect a portion of high 

degree vertices of 2.57, but it is 14.14
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Some Models of Network Generation

• Watts-Strogatz small world graph model:
• gives few components
• does not give heavy-tailed degree distributions
• extension of the random models which incorporates two properties:

• in real networks the average distance between two nodes depends
logarithmically on N (small diameter)

• the average clustering coefficient of real networks is much higher
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Some Models of Network Generation

• Barabási-Albert Scale-free model:

• gives few components, small diameter and heavy-tailed distribution
• does not give high clustering
• the number of nodes (N) is not fixed
• revises Watts model, in that the networs are not homogeneous in 

degree
• the probability of connecting to a node is proportional to the current

degree of that node: new edges are more likely to link to nodes with 
higher degrees (preferential-attachment) 

• scale-free network, a network whose degree distribution follows a 
power law
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Some Models of Network Generation

• Barabási-Albert Scale-free model 

• networks continuously expand by additional new nodes
• WWW: addition of new nodes
• citation: publication of new papers

• the preferential-attachment is not uniform
• a node is linked with higher probability to a node that already has a 

large number of links
• WWW: new documents link to well known sites (CNN, Yahoo, 

Google)
• Citation: Well cited papers are more likely to be cited again
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• The accidental failure of a
number of nodes in a random
network can fracture the system
into non-communicating islands

• Scale-free networks are more
robust in the face of such
failures

• Scale-free networks are highly
vulnerable to a coordinated
attack against their hubs

Random vs. Scale-Free Networks
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Real World Case : Internet Backbone
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Real World Case : Actor Connectivity
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Real World Case : Co-authorship
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Real World Case : Highway Network 

Nodes: cities
Links:   highways, roads
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Modeling Network Evolution 
• Densification power law

• The # of edges grows more than linearly to # of vertices, following a power law, with 
a positive densification exponent

• Shrinking diameter: The effective diameter of the graph shrinks as a graph grows over 
time

where 2 > β > 1 in many real graphs
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Modeling Network Evolution 
• The Forest-Fire model:  A preferential-attachment model that matches the 

densification power law and the shrinking diameter of graph evolution
• The graph grows one node at a time.  The new node v adds links to the existing node

according to a “forest fire” process
• Pick an ambassador node w uniformly at random and the links to w
• Select some of ambassador’s edges, and follow these edges and repeat

• Similar to capture a “forest fire” at w and spread to other vertices

• Example: a new computer science graduate student arrives at a university, meets 
some older CS students, who introduce him/her to their friends (CS or non-CS), 
and the introductions may continue recursively.
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