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Abstract. In this paper we propose a method for the discovery of spatial 
association rules, that is, association rules involving spatial relations among 
(spatial) objects. The method is based on a multi-relational data mining 
approach and takes advantages of the representation and reasoning techniques 
developed in the field of Inductive Logic Programming (ILP). In particular, the 
expressive power of predicate logic is profitably used to represent spatial 
relations and background knowledge (such as spatial hierarchies and rules for 
spatial qualitative reasoning) in a very elegant, natural way. The integration of 
computational logics with efficient spatial database indexing and querying 
procedures permits applications that cannot be tackled by traditional statistical 
techniques in spatial data analysis. The proposed method has been implemented 
in the ILP system SPADA (Spatial Pattern Discovery Algorithm). We report 
the preliminary results on the application of SPADA to Stockport census data. 

1   Introduction 

Censuses make a huge variety of general statistical information on society available to 
both researchers and the general public. Population and economic census information 
is of great value in planning public services (education, funds allocation, public 
transportation) as well as in private businesses (locating new factories, shopping 
malls, or banks, as well as marketing particular products).  

The application of data mining techniques to census data, and more generally, to 
official data, has great potential in supporting good public policy and in underpinning 
the effective functioning of a democratic society [22]. Nevertheless, it is not 
straightforward and requires challenging methodological research, which is still in the 
initial stage.  

One of the research issues related to mining census data is geo-referenciation. The 
practice of attaching socio-economic data to specific locations has increasingly spread 
over the last few decades. In the UK, for instance, household expenditure data are 
provided for each enumeration district (ED), the smallest areal unit for which census 
data are published. At the same time, vectorized boundaries of the 1991 census EDs 



enable the investigation of socio-economic phenomena in association with the 
geographical location of EDs. These advances cause a growing demand for more 
powerful data analysis techniques that can link population data to their spatial 
distribution.  

Spatial data mining methods and techniques have been proposed for the 
extraction of implicit knowledge, spatial relations, or other patterns not explicitly 
stored in spatial databases [13]. In this paper we focus our attention on the specific 
task of discovering spatial association rules, that is, association rules involving 
spatial objects and relations. 

The problem has already been tackled by [12], who implemented the module Geo-
associator of the spatial data mining system GeoMiner [10]. This method, however, 
suffers from severe limitations due to the restrictive data representation formalism, 
known as single-table assumption. More specifically, it is assumed that data to be 
mined are represented in a single table (or relation) of a relational database, such that 
each row (or tuple) represents an independent unit of the sample population and 
columns correspond to properties of units.  

In spatial data mining applications this assumption turns out to be a great limitation. 
Indeed, different geographical objects may have different properties, which can be 
properly modeled by as many data tables as the number of object types. In addition, 
attributes of the neighbors of some spatial object of interest may influence the object 
itself, hence the need for representing object interactions. From a database 
perspective, this means that two relations are required, one for the reference EDs, that 
is, the EDs whose socio-economical factors are the subject of investigation, and one 
for the neighboring EDs, which are considered task relevant, because they are 
spatially adjacent to some reference EDs.  

The recently promoted relational approach to data mining [6], looks for patterns 
that involve multiple relations of a relational database. Thus data taken as input by 
these approaches typically consists of several tables and not just a single one, as is 
the case in most existing data mining approaches. Patterns found by these approaches 
are called relational and are typically stated in a more expressive language than 
patterns defined in a single data table.  

The following is an example of a relational association rule: 

male-full-time-employee%(X,low) ∧  male-part-time-employee%(X,low) ∧  
neighbor(X,Y) ∧  comm-activities(Y,high) → male-self-employed%(X,high)  

(32%,70%) 

which states that in 70% of the cases, the low percentage of full-time and part-time 
male employees in some reference ED X, adjacent to another task relevant ED Y, with 
many commercial activities, implies a high percentage of self-employed males in X. The 
relational pattern   

male-full-time-employee%(X,low) ∧  male-part-time-employee%(X,low) ∧  
neighbor(X,Y) ∧  comm-activities(Y,high) ∧ male-self-employed%(X,high) 

occurs in 32% of reference EDs.  
It is noteworthy that in this example, and more generally in relational association 

rules, the items are first-order logic atoms, that is, n-ary predicates applied to n terms. 



In this example terms can be either variables, such as X and Y, or constants, such as 
low or high. In other words, subsets of first-order logic, which is also called predicate 
calculus or relational logic, are used to express relational patterns and relational 
association rules.  

Considering this strong link with logics, it is not surprising that many algorithms for 
multi-relational data mining originate from the field of inductive logic programming 
(ILP) [19, 5, 14, 20]. Extending a single table data mining algorithm to a relational one is 
not trivial. Efficiency is also very important, as even testing a given relational pattern 
for validity is often computationally expensive. Moreover, for relational pattern 
languages, the number of possible patterns can be very large and it becomes 
necessary to limit their space by providing explicit constraints (declarative bias).  

However, mining spatial association rules is a more complex task than mining 
relational association rules, whose solutions have already been reported in the 
literature [4]. Two further degrees of complexity are: 
1. the implicit definition of spatial relations and  
2. the granularity of the spatial objects.  

The former is due to the fact that the location and the extension of spatial objects 
implicitly defines spatial relations such as topological, distance and direction 
relations. Therefore, complex data transformation processes are required to make 
spatial relations explicit (see the application of machine learning techniques to 
topographic map interpretation [16]).  

The latter refers to the fact that spatial objects can be described at multiple levels of 
granularity. For instance, UK census data can be geo-referenced with respect to the 
following hierarchy:  

ED → Ward → District → County 
based on the inside relationship between locations. Interesting rules are more likely to 
be discovered at low granularity levels (ED and ward) than at the county level. On the 
other hand, large support is more likely to exist at higher granularity levels (District 
and County) rather than at low levels.  

In the next section, a new algorithm for mining spatial association rules is reported. 
The algorithm, named SPADA (Spatial Pattern Discovery Algorithm), is based on an 
ILP approach to relational data mining and permits the extraction of multi-level 
association rules, that is, association rules involving spatial objects at different 
granularity levels. SPADA has been implemented in Sictus Prolog and is interfaced to 
an Oracle8i™ database, empowered by an Oracle Spatial cartridge, which enables 
spatial data to be stored, accessed, and analyzed quickly and efficiently. The system 
also performs the appropriate data transformation by extracting spatial features 
(FEATEX module) and by discretizing numerical attributes (RUDE module). The 
application of SPADA to two data mining tasks involving UK census data is reported 
in Section 3.  

2   Mining spatial association rules with SPADA 

The discovery of spatial association rules is a descriptive mining task aiming to detect 
associations between reference objects and some task-relevant objects. The former 



are the main subject of the description, while the latter are spatial objects that are 
relevant for the task in hand and are spatially related to the former. For instance, we 
may be interested in describing a given area by finding associations between large 
towns (reference objects) and spatial objects in the road network, hydrography, and 
administrative boundary layers (task-relevant objects). The following is an example of 
spatial association rule that can be generated:  

is_a(X,large_town) ∧  intersects(X,Y) ∧  is_a(Y,road) →  
intersects(X,Z) ∧  is_a(Z, road) ∧  Z≠Y  (91%, 85%). 

It states that “If a large town X intersects a road Y, then X intersects a road Z 
distinct from Y with 91% support and 100% confidence”.  

Since some kind of taxonomic knowledge on task-relevant objects may also be 
taken into account to obtain descriptions at different granularity levels (multiple-level 
association rules), finer-grained answers to the above query are also expected, such 
as: 

is_a(X,large_town) ∧  intersects(X,Y) ∧  is_a(Y,regional_road) →  
intersects(X,Z) ∧  is_a(Z, main_trunk_road) ∧  Z≠Y  (45%, 90%)  

which provides more insight into the nature of the task relevant objects Y and Z, 
according to the spatial hierarchy reported in Fig. 1. It is noteworthy that the support 
and the confidence of the last rule changed. Generally, the lower the granularity level, 
the lower the support of association rules. Therefore, we follow Han and Fu’s [9] 
proposal to use different thresholds of support and confidence for different 
granularity levels.  

 The problem of mining association rules can be formally stated as follows:  
Given 
• a spatial database (SDB), 
• a set of reference objects S, 
• some sets Rk, 1≤k≤m, of task-relevant objects 
• some spatial hierarchies Hk involving objects in Rk  
• M granularity levels  in the descriptions (1 is the highest while M is the lowest) 

(see Fig. 1) 
• a set of granularity assignments ψk which associate each object in Hk with a 

granularity level 
• a domain specific knowledge DK 
• a declarative bias DC  

Fig. 1. Two spatial hierarchies and their association to three granularity levels (l). 
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• a couple of thresholds minsup[l] and minconf[l] for each granularity level 
Find strong multi-level spatial association rules. 

An ILP approach to mining spatial association rules has already been reported in 
[17]. Representation problems, and algorithmic issues related to the application of our 
logic-based computational method are discussed in the next two sub-sections. 

2.1   The representation 

The basic idea in our proposal is that a spatial database boils  down to a deductive 
relational database (DDB) once the spatial relationships between reference objects and 
task-relevant objects have been extracted. The expressive power of first-order logic in 
databases also allows us to specify background knowledge (BK), such as spatial 
hierarchies and domain specific knowledge expressed as sets of rules, which are 
stored in the intensional part of the DDB and can support, amongst other things, 
spatial qualitative reasoning.  

Henceforth, we denote the DDB in hand D(S) to mean that it is obtained by adding 
the spatial relations extracted from SDB regarding the set of reference objects S to the 
previously supplied BK. The ground facts in D(S) can be grouped into distinct 
subsets: Each group, uniquely identified by the corresponding reference object s∈S, is 
called spatial observation and denoted O[s]. It is given by: 

O[s] = O[s|s] ∪ { } )(in  exists )r(s,relation  spatial a | s]|O[r SDθ  

It contains not only spatial relations between s and some task-relevant object r∈Rk 
but also spatial relations between r and some s′∈S. It is noteworthy that a spatial 
observation refers to one and only one reference object s∈S. The unique reference 
object associated to a spatial observation allows us to define the support and the 
confidence of a spatial association rule (see definition below).  

Let A={a1, a2, …, at} be a set of atoms whose terms are either variables or constants 
(Datalog atoms [2]). Predicate symbols used for A are all those permitted by the user-
specified declarative bias, while the constants are only those defined in DDB. 
Conjunctions of atoms on A are called atomsets [3] like the itemsets in classical 
association rules. In our framework, a language of patterns L[l]  at the granularity level 
l is a set of well-formed atomsets generated on A. Necessary conditions for an atomset 
P to be in L[l]   are the presence of the key atom defining a reference object ω at level l, 
the linkedness [11], and safety. To a pattern P we assign an existentially quantified 
conjunctive formula eqc(P) obtained by turning P into a Datalog query. 

Definition A pattern P covers an observation O[s] if eqc(P) is true in O[s]∪BK. 

Definition Let O be the set of spatial observations in D(S) and OP denote the subset of 
O containing the spatial observations covered by the pattern P. The support of P is 
defined as σ(P) = | OP | / |O|. 

Definition A spatial association rule in D(S) at the granularity level l is an implication 
of the form  

P→Q (s%, c%) 



where P∪Q∈L[l] , P∩Q=∅, P includes the key atom and at least one spatial 
relationship is in P∪Q. The percentages s% and c% are respectively called the support 
and the confidence of the rule, meaning that s% of spatial observations in D(S) is 
covered by P∪Q and c% of spatial observations in D(S) that are covered by P is also 
covered by P∪Q. 

Definition The support and the confidence of a spatial association rule P→Q are 
given by s = σ(P∪Q) and c = ϕ(Q|P) = σ(P∪R) / σ(P). 

In multi-level association rule mining, an ancestor relation between two patterns at 
different granularity levels  PL[l]  and P'∈L[l'] , l<l', exists if and only if P' can be 
obtained from P by replacing each spatial object h∈Hk at granularity level l=ψk(h) with 
a spatial object h' < h in Hk, which is associated with the granularity level l'=ψk(h'). 

The frequency of a pattern depends on the granularity level of task-relevant spatial 
objects. 

Definition Let minsup[l] and minconf[l] be two thresholds setting the minimum 
support and the minimum confidence respectively at granularity level l. A pattern P is 
large (or frequent) at level l if σ(P)≥minsup[l] and all ancestors of P with respect to the 
hierarchies Hk are large at their corresponding levels. The confidence of a spatial 
association rule P→Q is high at level l if ϕ(Q|P)≥minconf[l]. A spatial association rule 
P→Q is strong at level l if P∪Q is large and the confidence is high at level l. 

2.2   Method 

The task of mining spatial association rules itself can be split into two sub-subtasks: 
1. Find large (or frequent) spatial patterns; 
2. Generate highly-confident spatial association rules. 

Algorithm design for frequent pattern discovery has turned out to be a popular 
topic in data mining. The blueprint for most algorithms proposed in the literature is the 
levelwise method [18], which is based on a breadth-first search in the lattice spanned 
by a generality order ≥ between patterns. The space is searched one level at a time, 
starting from the most general patterns and iterating between the candidate generation 
and candidate evaluation phases. The algorithm SPADA implements the afore-
mentioned levelwise method.  

The pattern space is structured according to the θ-subsumption [21]. Many ILP 
systems adopt θ-subsumption as the generality order for clause spaces. In this context 
we need to adapt the framework to the case of atomsets. More precisely, the restriction 
of θ-subsumption to Datalog queries (i.e. existentially quantified conjunctions of 
Datalog atoms) is of particular interest. 

Definition Let Q1 and Q2 be two queries. Then Q1 θ-subsumes Q2 if and only if there 
exists a substitution θ such that Q1 ⊇ Q2θ. 

We can now introduce the generality order adopted in SPADA. 

Definition Let P1 and P2 be two patterns. Then P1 is more general than  P2 under θ-
subsumption, denoted as P1 ≥θ P2, if and only if P2 θ-subsumes P1. 



It is noteworthy that ≥θ on patterns represented as Datalog queries is monotone 
with respect to support, which is the criterion for candidate evaluation in SPADA. The 
quasi-ordered set spanned by ≥θ can be searched by a refinement operator, namely a 
function which computes a set of refinements of a pattern. In particular, we need a 
refinement operator under θ-subsumption that enables the bottom-up search of the 
pattern space from the most specific to the most general patterns. 

Definition Let <G, ≥θ> be a pattern space ordered according to ≥θ. An upward 
refinement operator under θ-subsumption is a function ρ such that  
ρ(P)⊆{Q | Q ≥θ P}. 

Such a refinement operator drives the search towards patterns with decreasing 
support, therefore all refinements ρ(P) of an infrequent pattern P are infrequent. This 
is the first-order counterpart of one of the properties holding in the family of the 
Apriori-like algorithms [1], on which the pruning criterion is based. 

For each granularity level (l), SPADA generates and evaluates candidates by 
searching the pattern space. The candidate generation phase consists of a refinement 
step followed by a pruning step. The former applies the refinement operator under θ-
subsumption to patterns previously found to be frequent by preserving the property 
of linkedness [11]. The latter mainly involves verifying that candidate patterns do not 
θ-subsume any infrequent pattern. Further pruning criteria have been implemented in 
SPADA. In particular, the system checks that candidates are not alphabetic variants of 
previously discovered patterns. The complexity of this test is O(n2), where n is the 
number of atoms in the two patterns to be compared. The candidate evaluation phase 
is performed by comparing the support of the candidate pattern with the minimum 
support threshold set for the level being explored. If the pattern turns out not to be a 
large one, it is rejected.  

2.3   Integrating SPADA with other software components  

The application of the ILP approach to spatial databases is made possible by a middle-
layer module for feature extraction, as shown in Fig. 2. This layer is essential to cope 
with one of the main issues of spatial data mining, namely the requirement of complex 
data transformation processes to make spatial relations explicit.  

Fig. 2.  Integration of SPADA with other software modules which support spatial feature 
extraction (FEATEX) and discretization of numerical features (RUDE). Additional input to 
SPADA, such as declarative bias and background knowledge, is directly provided by the user. 
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This function is partially supported by the spatial database (SDB), which offers 
spatial data types in its data model and query language and supports them in its 
implementation, providing at least spatial indexing and efficient algorithms for spatial 
join [8]. Thus spatial databases supply an adequate representation of both single 
objects and spatially related collections of objects. In particular, the abstraction 
primitives for spatial objects are point, line and region. Among the operations defined 
on spatial objects, spatial relationships are the most important because they make it 
possible, e.g., to ask for all objects in a given relationship with a query object. The 
Oracle Spatial cartridge implements the 9­intersection model [7] to support the 
computation of some topological relations.  

Many spatial features (relations and attributes) can be extracted from spatial objects 
stored in SDB. They can be categorized as follows:  
1. geometric, that is, based on the principles of Euclidean geometry;  
2. directional, that is, regarding relative spatial orientation in 2 or 3D;  
3. topological, that is, binary relations that preserve themselves under topological 

transformations such as translation, rotation, and scaling;  
4. hybrid, that is, features which merge properties of two or more of the previous three 

categories.  
This variety requires the development of a feature extractor module, named 

FEATEX, which also enables the coupling of SPADA with the SDB. FEATEX is 
implemented as an Oracle package of procedures and functions implemented in the PL-
SQL language. In this way, it is possible to formulate complex SQL queries involving 
both spatial and aspatial data (e.g., census data). The set of spatial features that can 
be extracted by this module is reported in Table 1.  

Table 1.  Spatial features extracted by the feature extractor module . 

Feature Meaning Type Values 

almost_parallel(Y, Z) Parallelism relation 
between Y and Z 

Hybrid 
relation 

{true, false} 

almost_perpendicular(Y,Z) Perpendicularity relation 
between Y and Z 

Hybrid 
relation 

{true, false} 

density(Y, Z) AREA(Y)/AREA(Z) 
Hybrid 
relation 

Real 

direction(Y) Geographic direction of 
object Y 

Directional 
attribute 

{north, east, 
north_west, 
north_east} 

distance(Y,Z) Distance between Y and Z 
Geometrical 

relation 
Real 

layer_name(Y) Object Y type 
Aspatial 
attribute 

Layer name 

line_shape(Y) Object Y shape 
Geometrical 

attribute 
{Straight, 

curvilinear} 

relate(Y,Z) Topological Relation 
between Y and Z  

Topological 
attribute 

Type of 
topological relation 



Since SPADA, like many other association rule mining algorithms, cannot process 
numerical data properly, it is necessary to perform a discretization of numerical 
features with a relatively large domain. For this purpose we have implemented the 
relative unsupervised discretization algorithm RUDE [15] which proves to be suitable 
for dealing with numerical data in the context of association rule mining. At the end of 
all this  data processing, query results are stored in temporary database tables. An ad-
hoc PL-SQL function transforms these tuples into ground Datalog facts of D(S).  

3   Application to Stockport census data 

In the context of the SPIN! project we investigated the application of spatial data 
mining techniques to some issues reported in the Unitary Development Plans (UDP) of 
Stockport, one of the ten Metropolitan Districts of Greater Manchester, UK.  

3.1 The data 

Spatial analysis is made possible by the use of the Ordnance Survey’s digital maps of 
the district, where several interesting layers are available, namely ED/ward/district 
boundaries, roads, bus priority lines, and so on. In particular, Stockport is divided into 
twenty-two wards for a total of 589 EDs. By joining UK 1991 census data available at 
the ED summarization level with ED spatial objects it is possible to investigate socio-
economic issues from a spatial viewpoint. In total 89 tables, each having 120 attributes 
on average, have been made available for policy analysis. Census attributes provide 
statistics on the population (resident at the census time, ethnic group, age, marital 
status, economic position, and so on), on the households in each ED (number of 
households with n children, number of households with n economically inactive 
people, number of households with two cars, and so on) as well as on some services 
available in each ED (e.g., number of schools). 

For the application of our spatial association rule mining method we have focused 
our attention on transportation planning, which is one of the key issues in UDP.  

3.2 Characterizing the area crossed by the M63 motorway 

One of the problems is a decision-making process concerning the M63 motorway. 
More precisely, we are asked to describe the area of Stockport served by the M63 (i.e. 
the wards of Brinnington, Cheadle, Edgeley, Heaton Mersey, South Reddish) from the 
sociological viewpoint, in order to provide some hints for transport planners. The data 
considered in this analysis concerns census statistics on commuters. The description 
of the area is expressed by some spatial association rules at two levels of granularity. 
A hierarchy for the Stockport ED layer has been obtained by grouping EDs on the 
basis of the ward they belong to (see Fig. 3) and expressed as Datalog facts in BK. 

 



Spatial association rules should relate EDs crossed by the M63 (reference objects) 
to EDs in the area served by the M63 (task relevant objects). The relations of 
intersection (EDs-motorways) and adjacency (EDs-EDs) have been extracted for the 
area of interest and transformed into Datalog facts of D(S). The following census 
attributes have selected for this experiment: 
• s820161, persons who work outside the district of usual residence and drive to 

work; 
• s820213, employees and self-employed workers who reside in households with 3 

or more cars and drive to work; 
• s820221, employees and self-employed workers who reside in households with 3 

or more cars and work outside the district of usual residence. 
Since they refer to residents aged 16 and over, they have been normalized with 

respect to the total number of residents aged 16 and over (s820001). Moreover, they 
have been discretized by RUDE, since they are all numeric (more precisely, integer 
valued). At the end of this transformation process, each ED is described by three 
ground atoms in D(S), namely dr_out(X, [a..b]), cars3_dr(X, [a..b]), cars3_out(X, [a..b]), 
where X denotes an ED, while [a..b] is one of the intervals returned by RUDE.  

The key atom defining the reference objects in S is ed_on_M63(X), which is 
intensionally defined in the BK by means of the following rule: 

ed_on_M63(X) :- intersect(X, m63). 

The BK also includes the declarative specification of some rules for spatial 
qualitative reasoning, namely 

can_reach(X, Y) :- intersect(X, m63), intersect(Y, m63), Y\=X. 
close_to(X, Y) :- adjacent_to(X, Z), adjacent_to(Z, Y), Y\=X. 

Finally, the following thresholds for support and confidence were defined: 
min_sup[1]=0.7 and min_conf[1]=0.9 at the first level, and min_sup[2]=0.5 and 
min_conf[2]=0.8 at the second level.  

SPADA was run on the D(S) obtained. The runtime was 331 secs for association 
rules at granularity level 1, and 310 secs for level 2 (data refers to a PC Pentium III 
1GHz with 256 Mb RAM). 

Initially, the system returned 12,925 frequent patterns out of 74,338 candidate 
patterns, for a total of 12,466 strong rules. By analyzing them we observed that some 
were actually useless, since they did not relate spatial data to census data. In other 
words, some association rules were pure spatial patterns, such as the following: 

ed_on_M63(X) , can_reach(X,Y)  à is_a(Y,ward_on_m63_ED)    (90.0%, 100.0%)  

Fig. 3. An is-a hierarchy for the Stockport ED layer 
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which states that if an ED (Y) in the area served by the M63 can be reached from an ED 
crossed by the M63, then that ED is certainly (100% confidence)  an ED of a ward 
crossed by the M63. Despite the high support and confidence, this pure spatial 
pattern is of no interest for transport planners. 

In a second run, we decided to declare a bias for patterns containing at least one of 
the census attributes dr_out(X, [a..b]), cars3_dr(X, [a..b]) and cars3_out(X, [a..b]). The 
system generated 10,513 strong association rules in 1520 secs (time increased because 
of constraint checking for each generated pattern). Some of them have a very high 
support and confidence and provide the expert with some hints on the habits of 
commuters, such as the following association rule discovered at level 2: 

(rule 27) ed_on_M63(X), close_to(X,Y), is_a(Y,Bedgeley_ED)  à 
  cars3_out(X,[0.0..0.037]) , cars3_dr(X,[0.0..0.037])      (100%,100%)  

which states that “if an ED crossed by the M63 (X) is close to another ED of the ward 
of Bedgeley (Y), then in that ED the percentage of people living in households with 3 
or more cars and going/driving out of the district to work is very low (less than 4%)”. 
It is important to point out that this is simply an association and does not define any 
kind of cause-effect relationship between the place where people live and their social 
habits. Another interesting spatial association rule at the same granularity level is the 
following: 

(rule 177) ed_on_M63(X), can_reach(X,Y)  →  is_a(Y,heaton_mersey_ED) ,  
dr_out(Y,[0.2857..0.4782]) , cars3_out(Y,[0.0..0,037])       (80.0%,88.88%)  

which states that “if an ED Y in the M63 area can be reached from another one crossed 
by the M63 motorway (X), then it is in the Heaton Mersey ward and has quite a high 
percentage of people that drive to work but don’t live in households with 3 ore more 
cars”.  

Finally, we decided to constrain the search space further, by asking only for those 
spatial patterns involving EDs where people have the same commuting habits. This 
time SPADA found only 345 strong rules (79 for level 1 and 266 for level 2) in about 
833 secs. The following is an example of association found by the system at the 
granularity level 2: 

(rule 76) ed_on_M63(A) → can_reach(A,B), is_a(B,cheadle_ED), can_reach(A,C), 
 C≠B, is_a(C,edgeley_ED), cars3_dr(C,[0.0..0.037]), cars3_dr(B,[0.0..0.037]) 

(90%, 90%)  

which states that from an ED crossed by the M63 it is possible to reach (by the same 
motorway) two EDs, one in Cheadle and one in Edgley, with the same low percentage 
of people living in families with three or more cars and driving out of the district to 
work. 

3.3 Accessibility of the Stepping Hill Hospital  

Another problem concerning transport planning is the accessibility of the Stepping 
Hill Hospital in Stockport. To study this problem we decided to mine association rules 
relating five EDs close to the Stepping Hill Hospital (task relevant objects) with EDs 



within a distance of 10 Km from the hospital  (reference objects). The goal is that of 
understanding which reference EDs have direct access to the task relevant EDs. To 
define the accessibility we used the Ordnance Survey data on transport network 
(roads and bus priority line). In the domain knowledge we defined a predicate 
can_reach(X,Y)  stating that ED Y can be reached from ED X if one of the two 
following conditions hold: 

1. Both are crossed by the same road or bus priority line; 
2. From X it is possible to reach Z and from Z it is possible to reach Y (transitivity 

property) 
This is the only spatial relation used in the spatial association rules. Our 

observation is that the accessibility of an area cannot be defined on the basis of the 
transport network alone. Even though some roads connect a reference ED X with a 
task relevant ED Y, people leaving in X might have problems to reach Y because they 
do not drive. This means that sociological data available in the census data tables can 
be profitably used to give an improved definition of accessibility. We selected four 
attributes on the percentage of households with zero, one, two, and three or more cars, 
we discretized them with RUDE and generated the following four binary predicates for 
SPADA: no_car, one_car, two_cars, three_more_cars. The first argument of the 
predicate refers to an ED, while the second argument is an interval returned by RUDE. 

  In this task we have two spatial hierarchies mapped into three granularity levels 
(Fig. 4).  The declarative bias requires that the spatial association rules contain at least 
one of the four predicates above. SPADA generated 63 rules in 12 secs. Two of the 
rules returned by SPADA are the following: 

ed_around_stepping_hill(A), can_reach(A,B), is_a(B,stepping_hill_ED) →  
two_cars(A,[9.0e-003..0.179])  

(11.84%, 66.66%)  
ed_around_stepping_hill(A), can_reach(A,B), is_a(B,stepping_hill_ED) →  
no_car(A,[0.266..0.653])  

(13.15%, 74.07 %) 
They state that if from an ED it is possible to reach the area of the Stepping Hill 

Hospital, then the percentage of households without car can be between 26.6% and 
65.3% while the percentage of households with two cars is between 9% and 17.9%. 
These association rules are interesting for urban planners, since they relate data on 
the transport network with data on sociological factors. In the future work, this task 
will be more deeply investigated. 

transport_net  

road bus_priority_line 

roads_10837 roads_10833 
roads_10836 

bus_1  

stepping_hill_ED 

davenport_ED great_moor_ED hazel_grove_ED 

ed_03bsfk28  ed_03bsfk18 

ed_03bsfk24 ed_03bsfg25  ed_03bsfl24  

Fig. 4. Two spatial hierarchies defined for the mining task concerning the accessibility 
of the Stepping Hill Hospital. 



4   Conclusions 

In the above application we have seen that some of the discovered rules actually 
convey new knowledge, however the search for these “nuggets” requires a lot of 
tuning and efforts by the data analyst in order to constrain the search space properly 
and discard most of the obvious or totally useless patterns hidden in the data. This is 
typical of exploratory data analysis, and SPADA can be considered one of the most 
advanced tools that data analysts currently use in their iterative knowledge discovery 
process.  

One of the main limitations of SPADA, which is also a problem of many other 
relational data mining algorithms, is the requirement of some expertise in data and 
knowledge engineering. Indeed, the user should know how data are organized in the 
spatial database (e.g., layers and physical representation of objects), the semantics of 
spatial relations that can be extracted from digital maps, the meaning of some 
parameters used in the discretization process and in the generation of spatial 
association rules, as well as the correct and most efficient way to specify the domain 
knowledge and declarative bias. Finally, in future work, we will investigate some 
“interestingess measures” of rules for presentation purposes, so that the user can 
browse the output XML file of spatial association rules as simply as possible. 
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