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Abstract. This paper shows how data mining can help historians ana-
lyze and understand important social phenomena. Using data from the
Canadian census of 1901, we discover the influences on bilingualism in
Canada at beginning of the last century. Our approach, based around a
decision tree, not only infers theories directly from data but also evaluates
existing theories and revises them to improve their consistency with the
data. One novel aspect of this work is the use of confidence intervals to
determine which factors are both statistically and practically significant,
and thus contribute appreciably to the overall accuracy of the theory.
When inducing a decision tree directly from data, confidence intervals
determine when new tests should be added. If an existing theory is being
evaluated, confidence intervals also determine when old tests should be
replaced or deleted to improve the theory. Our aim is to minimize the
changes made to an existing theory to accommodate the new data. To
this end, we propose a semantic measure of similarity between trees and
demonstrate how this can be used to limit the changes made.

1 Introduction

The aim of this research is to develop a data mining tool that will help historians
explore the influences on the languages spoken in Canada at the beginning of
the last century. At the time of Confederation in 1867, language was a secondary
issue to other concerns, most notably, religion. By the turn of the century, how-
ever, language was becoming an increasingly significant concern in Canada as in
other western countries, and during the following decades, it came to be seen as
a principal indicator of an individual’s identity. While much research has focused
on the changing official views of language in Canada, little is known about the
actual linguistic abilities of the Canadian population before the later twentieth
century.

To address this problem, we apply a data-mining algorithm to the 1901 Cana-
dian census. For the first time, the census asked all residents in Canada three



language questions: mother-tongue, ability to speak English, and ability to speak
French. Our research investigates a random five-percent sample of the 1901 enu-
meration that has been created by the Canadian Families Project. The sample
is composed of all individuals living in households that were randomly selected
from each microfilm reel of the census enumeration for that year. Households
were selected to permit analysis of individuals with relevant social units. The
resulting sample is a cluster sample but given the nature and large size of the
sample, the design effect is not a concern is this study. For a detailed analysis of
this question, see Ornstein [7]. The sample includes data on 231,909 individuals
over the age of five, and it allows us to explore how factors such as ethnic origin,
mother-tongue, place of birth and residence, age and sex influenced the frequency
of bilingualism across Canada. We build upon research that focused on the in-
terpretive implications of how the census questions were posed, and how the
actual enumeration was undertaken [3]. We now focus on the responses to these
questions written down by the census officials at the doorsteps of individuals
and families across the country.

The data mining algorithm we use is the decision tree. Decision trees are easy
to understand, even by non-specialists, and have been used by domain experts
in many diverse applications [6]. In decision tree learning, an important issue is
over-fitting avoidance. A complex tree that fits the training data well typically
has unnecessary structure that does not contribute to the accuracy of the tree
and may even degrade it. To make the trade-off between accuracy and tree size
more principled, we use confidence intervals to prune the tree rather than one
of the existing methods. Using confidence intervals allows the determination of
not only a statistically significant improvement in the accuracy of the tree, but
also to quantify the size of the improvement. A test then will only be added to
the tree if the expected accuracy gained is sufficiently large to justify it.

We are interested not only in inferring theories directly from the data but also
in testing existing theories, such as those representing the views of politicians
of that era, to see if they are confirmed, or indeed contradicted, by the data.
Confirmation is likely to be a matter of degree and not all parts of the theory
will be affected equally. In this paper, we use a measure of the semantics of a
tree to minimize the amount a theory is changed to bring it into accordance with
the data. This should help historians not only evaluate an existing theory but
also to identify any erroneous assumptions on which it was based.

In the following sections, we first will show how confidence intervals are used
to prune a tree grown directly from the data. We then show how our semantic
measure combined with confidence intervals and new data is used to evaluate
and revise an existing theory on the influences on bilingualism in 1901.

2 Inducing A Decision Tree

A binary tree is used to represent the theories induced from the data. Although
sometimes deeper than a tree with a greater branching factor, binary tests should
help historians determine not only what are the important attributes but also



the critical values of those attributes. The tree is grown in the standard greedy
manner, the best test, according a splitting criterion, is selected to be added to
the tree. The main difference is that a test is actually added only when there is
a high confidence that a worthwhile increase in accuracy will result.

f(a,v) = max|P(La|+) = P(La.|-)| (1)

Using the splitting criterion of equation 1, the best split has the greatest
difference in the estimated probability of a positive instance going left P(Lg ,|+)
and a negative instance going left P(L, ,|—) [10]. The criterion is applied to each
attribute and each value and the attribute-value with the greatest difference is
selected. This value becomes the left branch of the split and the right branch
represents the remaining values of the attribute. The difference in likelihood
provides a measure of the probability that positive and negative examples come
from different distributions. A large difference tends to produce branches with a
large difference in class ratios and ultimately leads to better accuracy.

Our aim is to only add tests that improve the accuracy of the tree by a
useful amount. But when greedily growing a decision tree adding a single test
may not improve accuracy at all. This is often due to the strong imbalance in
classes away from the root node. Modifying the class distribution to reduce this
imbalance produces a measure that is more likely to show improvement when a
single test is added but produces negative values if there is unlikely to be any
advantage in adding the test. Based on the training data, the side of split where
the positive likelihood is greater than the negative likelihood is labeled positive
and the other side negative. Equation 2 gives the accuracy of the split if the
left and right hand sides are labeled positive and negative respectively. Here,
the role of the probability of each class, P(—) and P(+), is evident. To make a
statistic less sensitive to class distribution, the values are replaced by ones closer
to 0.5, by applying the squashing function P'(a) = (P(a) + 1)/(1 + 2) to the
class probabilities. The resultant statistic can be viewed either as accuracy with a
modified class distribution or as the linear combination of two statistics, accuracy
and likelihood difference, with the numbers in the squashing function controlling
each statistic’s influence. The statistic is divided by the fraction of instances
reaching the test, and thus estimates the overall improvement in performance.

Acc = P(L|+)P(+) + P(R|—-)P(-) (2)

In decision tree learning, the complexity of the tree is controlled by pruning.
In post-pruning, the tree is first grown until it fits the training set well and
then extraneous tests, not expected to improve accuracy, are pruned away. In
pre-pruning, new tests are only added if they are likely to improve accuracy.
Frank [2] experimentally compared the two techniques based on significance tests
and found little performance difference. Here, we use pre-pruning but based
on confidence intervals rather than significance tests. To generate confidence
intervals, we follow the basic procedure proposed by Margineantu and Dietterich



[4]. We apply the same bootstrapping technique [1] (but for a different purpose)
as each new test is added to the tree. Rather than discuss the method in detail,
we refer to their paper [4]. If two tests are being compared, a three dimensional
confusion matrix is used. If we are considering adding or deleting a test, we
use the confusion matrix and its row marginals. We apply our test statistic to
500 randomly generated matrices. After sorting the resulting values in ascending
order, the fiftieth element will be the lower bound of a 90% one-sided confidence
interval.

If this lower bound is greater than zero, we are confident that the gain is sta-
tistically significant. In Figure 1 a), HO is the null hypothesis that the difference
is less than or equal to zero, H1 is the alternative hypothesis that adding the test
improves accuracy. Not only is the lower bound greater than HO, it is also greater
than 0.5%. We can be confident that this test would improve the accuracy of
the tree by 0.5%, so the test would be added. If the bound is smaller than the
chosen percentage or smaller than HO, see Figure 1 b), the test would not be
added. When starting with an existing theory, we are also interested is deleting
structure. Applying the same test allows us, see Figure 1 c), to determine that
we are confident that removing structure does not degrade performance.

20-5% 999, LB
a) C 5
HO Hi
b) - 5
HO HI
C) ' B \/\

H1 90% UB HO

Fig. 1. Using Confidence Intervals for Pruning

The values used to decide when a test should be added where chosen by the
authors to represent a reasonable confidence in a useful increase in accuracy.
Future work will investigate the effect of varying these values and changing the
test statistic used to estimate the increase in accuracy.

3 Theories Induced from Data

In this section, we explore theories generated directly from the data. We use eight
attributes from the 1901 census data felt to be potentially relevant to the issue of
bilingualism. Some of the nominal attributes have had their values combined into
groups and the continuous attribute age has been divided into three intervals. To
generate the class label Bilingual, we combined the attributes Can speak English



and Can speak French but removed instances where one or both of the attributes
were unknown. For the rest of this paper, unilingual will mean can speak French
or English and bilingual will mean can speak both. To decide whether a new test
should be added, an increase in performance of 0.5% is needed at a confidence
level of 90%. Attributes will only be added if the number of instances on each
side of the split is greater than 10. Numbers less than 10 might belong to a single
family or a related group and be therefore of little interest. The instances are
randomly split into a test and training set, 75% of the instances going to the
training set. A pruning set is produced from a random 25% of the training set.
The splits are all stratified to maintain the class ratios in each set.

Figure 2 is the tree representing the factors that affected bilingualism through-
out Canada in 1901. At each leaf the classification is shown: bilingual is labeled
“Y” and unilingual is labeled “N”. The most important attribute, at the root of
the tree, is mother-tongue. The split is between those that have French as their
mother-tongue “MTONGUE=FR”, and those that do not (divided into English,
German, Gaelic and Others) “MTONGUE=o0th”. Notably, for this latter cate-
gory the tree terminates at a leaf immediately below the root. This classifies
all people that do not have French as their mother-tongue as unilingual. The
former category is further divided by birth place, those born in urban communi-
ties “BPLACE=UR” and can write are mostly bilingual. For rural communities
“BPLACE=RU?”, this is only true for males aged 20 to 49. The accuracy gained
by adding each attribute is shown to the left of the vertical line. To the right of
the line, the total accuracy (80.17%) is labeled “A”, the majority classifier accu-
racy (72.89%) is labeled “MC”, the total gain in accuracy (7.28%) is labeled “G”
and its 90% lower bound (7.00%) is labeled “LB”. The lower bound is generated
using bootstrapping on the overall confusion matrix.

MTONGUE=FR 2.91]

| BPLACE=RU 1.66]

| | AGE=20-49 1.79]

| | | SEX=F: N 0.54|A 80.17 MC 72.89
| | | SEX=M: Y |G 7.28 LB 7.00
| | AGE=oth: N I

| BPLACE=UR |

I CANWRITE=N: N 0.37]

|

CANWRITE=Y: Y I
MTONGUE=oth: N |

Fig. 2. Decision Tree for Canada

We next explore how the factors that affected bilingualism varied across
Canada. Figure 3 shows a map 3 of Canada in 1901 when the census was taken.

3 ©2001. Government of Canada with permission from Natural Resources Canada
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Fig. 3. Map of Canada in 1901

The territories and districts were very sparsely populated at this time. So we
combine them into a single region, with a population size more in accordance
with other regions. We also make a single region out of the eastern provinces;
New Brunswick, Nova Scotia and PEI. We grow decision trees for each of the
regions as shown in Figure 4. For British Columbia, the tree consists of the
single attribute mother-tongue classifying all individuals with a mother-tongue of
French as bilingual and all others as unilingual. The majority classifier is already
quite accurate, see Figure 4, due the large preponderance of unilingual people
in British Columbia. But using the attribute mother-tongue correctly predicts a
bit over a third of the bilingual people without sacrificing much accuracy on the
unilingual ones. Adding extra attributes produces no appreciable improvement.
For the territories, the tree has the same root node, but an additional attribute
can read improves accuracy when the mother-tongue is French. For Manitoba,
the tree also has the same root node, but the additional attribute is now can
write. For Ontario, as for British Columbia, only the single attribute of mother-
tongue is used. The Eastern provinces have a tree which is similar to Manitoba.
Mother-tongue is again the most important attribute, adding the attribute can
write is useful, although it does not improve accuracy on its own. However with
an additional attribute excluding children “AGE=5-19" | accuracy is improved.



British Columbia
MTONGUE=FR: Y
MTONGUE=oth: N

Territories
MTONGUE=FR
| CANREAD=N: N
| CANREAD=Y: Y
MTONGUE=oth: N

Manitoba
MTONGUE=FR

| CANWRITE=N: N
| CANWRITE=Y: Y
MTONGUE=oth: N

Ontario
MTONGUE=FR: Y
MTONGUE=oth: N

Eastern Provinces
MTONGUE=FR

| CANWRITE=N

| | AGE=5-19: N
| | AGE=oth: Y
| CANWRITE=Y: Y
MTONGUE=oth: N
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Fig. 4. Regional Decision Trees



For Quebec, a quite different tree is produced. Although the attribute mother-
tongue is used, it appears much further down the tree, close to the leaves. The
most important attribute is birth place, indicating if the person was born in
a rural or urban community. The attributes used on both sides of this split
are very similar. Although for people born in rural communities, children are
immediately classified as unilingual. The overall tree is much less accurate than
those of the other regions. But as there was a nearly equal number of bilingual
and unilingual speakers in Quebec, it still a considerable improvement over the
majority classifier.

From an algorithmic perspective, attributes seem generally to be added if,
and only if, they result in an increase in accuracy at the leaves of a practically
significant amount. For the larger trees this is not always the case. This might
be due to using a 90% confidence limit, 10% of the time this limit will not
be met. It might also be due to the test statistic not being a direct measure
of accuracy. In the latter case, postpruning using accuracy might address the
problem, but this remains the subject of future work. For Quebec, it was possible
to increase accuracy by about 0.7%, by reducing the confidence interval to 50%
and removing the requirement for any gain. But the number of tests went from 9
to 32, so is of debatable merit. With the statistic we use, it is possible to produce
a split where the majority class for each branch is the same. This is makes no
difference in accuracy and can be removed to make the tree smaller. In fact, for
most of the trees this was unnecessary as there was no additional structure.

From a historical perspective, the decision trees are in keeping with some,
though not all, of the ways in which politicians, census officials, and other ob-
servers at the time discussed the question of bilingualism. The general assump-
tion was that English was becoming an international language of commerce, and
that if Canada were to continue developing, everyone in the country should be
able to speak it. In contrast, no public figure stressed the importance of learning
French. In this sense, the question of bilingualism was directed to two groups:
French-language residents and immigrants who did not speak either French or
English. The decision trees confirm that the mother-tongue francophones ac-
counted for much of the bilingualism in Canada. Similarly, individuals who were
more likely to be involved in commerce were more bilingual. The importance of
economic factors is also seen in the greater tendency of middle-aged males in
rural areas in Quebec (more likely to be working in rural industries or in the
forest economy) to be more bilingual. At the same time, this rural pattern shows
how the decision trees diverge from the theories that underlay the contemporary
public debate. Specifically, the trees reveal an extent of diversity in language
patterns that is inconsistent with how observers characterized Canadian society.
For the most part, for example, Quebec was assumed to be a quite homogeneous
society especially in the countryside. The general picture was of a unilingual
French-language rural world in Quebec that contrasted with the bilingual urban
communities of Montreal and to a lesser extent Quebec City. The decision trees
reveal that Quebec was indeed a quite distinct part of Canada in terms of bilin-
gualism but that within this distinction there was still considerable diversity.



4 Revising an Existing Tree

In this section, we show how an existing tree is revised so as to minimize the
change to the underlying semantics of the theory it represents. The main differ-
ence with other forms of theory revision [5, 9] lies in how we quantify changes to
the theory and how we use confidence intervals to decide when those changes are
worth making. Our notion of the semantics of a decision tree is based on how
the tree partitions the attribute space. We capture this semantics by generating
instances consistent with the tree. To limit the number of instances, we gener-
alize the definition of an instance so that the probability of an attribute having
a particular value is specified. This is similar to the treatment of unknown val-
ues in C4.5 [8]. By adding a weight to the instance we can simulate the effect
of multiple examples without incurring the additional processing cost. In our
approach, the user constructs a decision tree to classify a specified number of
imaginary instances, say 1000. An example of what such a tree might look like
is shown in Figure 5. Each leaf is marked with the number of individuals from
the original thousand that are bilingual and unilingual.

MTONGUE [] [] B
MTONGUE=FR CANWRITE D D
| CANWRITE=N: N Y(17) N(25) O
| CANWRITE=Y: Y Y(120) N(21) AGE — Ea, e
MTONGUE=oth: N Y(52) N(765) Instancel Instance2 Instance3
Wt=17 Wt=120 Wt=52
Fig. 5. Simple Domain Theory Fig. 6. The Positive Instances

To generate instances consistent with the tree, each path through the tree is
represented by as many instances as there are classes at the leaf. Six instances
are needed; three for the positive class, bilingual and three for the negative
class, unilingual. An instance following a left hand branch has the probability of
the attribute value associated with each specified test set to one. For the right
hand side branch, the probability is a uniform distribution over the remaining
values. Figure 6 shows the probability values for some of the attributes for the
positive instances. The negative instances will be identical except for the weights
shown at the bottom of Figure 6. The attribute mother-tongue has five possible
values, indicated by the dashed rectangles. The first two instances travel down
the topmost branch of the decision tree. They have the probability of the mother-
tongue being French set to one, indicated by the bold continuous rectangle. The
third instance, which travels down the bottommost branch, has the probability
of the mother-tongue being French set to zero and all other values of mother-
tongue are set to a probability of one quarter. The first two instances travel
different branches of the attribute can write. The first instance has a one for the
“N” value, the second instance a one for the “Y” value. All unused attributes
on a specific path, such as age, have a uniform distribution across all values.



Using these instances, it is now possible to change the order of the tests, or
indeed to add a new test, and produce the same partition of the attribute space
into classes. Figure 7 shows the effect of changing the root node from mother-
tongue to can write. The same number of instances are classified as bilingual
and unilingual. The distribution on the center branch is the same, but the top
and bottom most branches have changed. As these two branches are a mixture
of instances where the majority class was unilingual, they still classify instances
as unilingual. The topmost branch is made up of the first instance in Figure 6
plus half the third instance. The third instance had a uniform probability for can
write. As this attribute is now the root node, this instance must be sent down
both branches. This is achieved by making an additional copy of the instance.
For the original instance, the probability of value “N” for can write is set to one,
the same as the first instance. For the copy the probability for value “Y” is set to
one, the same as the second instance. As there are only two values, the weight for
both instances is set to half the original weight. If there were more, the weight is
the original weight times the fraction of values represented by the branch. There
is no longer a uniform distribution for the attribute mother-tongue, which was
different for the first and third instances. The splitting criterion would choose
this attribute as a possible additional test. This would not, however, change the
classification of instances. A linear scan across the instances indicates that the
classification will not change if new tests are added, so no split is made.

CANWRITE=N: N :- Y(43) N(407)
CANWRITE=Y
MTONGUE=FR: Y :- Y(120) N(21)
MTONGUE=oth: N :- Y(26) N(383)

Fig. 7. Changing the Root Node

To update the tree at each existing test, the splitting criterion is applied
to a combination of the data generated to be consistent with the tree and the
new data. If the original theory preferred certain attributes, any changes to the
theory will tend to use those attributes, rather than introducing new ones, say
by promoting them higher up the tree. New tests will only be introduced if the
new data has a strong preference for them. To achieve this, the splitting criterion
is applied separately to the old and new data. The values returned are combined
linearly to form a single value. The coefficients are determined by the number
of instances, or weight, of the old data versus the number of new instances.

There are four possibilities that might occur. A new test might be added
where the original tree had a leaf. The original test might be replaced by a dif-
ferent test. The original test might deleted altogether, or the old test maintained.
To determine which takes place, confidence in the new best test is determined.
If the original tree had a leaf at this node, a new test will be added to the tree if
the lower bound of the confidence interval is greater than 0.5. This is the same
as growing the tree directly from the data. If the new test is the same as the



old test nothing will change. If the new test is different and its confidence inter-
val exceeds the threshold it is compared to the new test. If the lower bound of
the confidence interval for the difference exceeds the threshold, the test will be
changed. If the new test does not exceed the threshold and the upper bound of
the confidence interval on the difference does not include zero, the test is deleted.

The old and new data might also differ in how an instance should be classified
at a leaf. A confidence interval can be used to decide which classification should
be used. Again a bootstrapping technique is used, this time based on just the
binomial ratios. At the leaf we can use lower bound of accuracy directly rather
than our test statistic.

5 Evaluating an Existing Theory

In this section, we present an experiment showing how the method discussed
in section 4 is applied to a theory representing the views held by politicians in
Canada in 1901. The theory has been developed from analyses of debate in the
House of Commons and newspaper coverage of political discussion about the
language questions posed in the 1901 census. For a comprehensive analysis of
the political debate about language, see Gaffield [3]. The decision tree represent-
ing the theory, see Figure 8, was designed to classify an imaginary 1000 people.
The design exercise began by ranking attributes according to how politicians of
that era expected them to influence bilingualism. Each branch of the tree was
then assigned some proportion of the 1000 people, indicated by the numbers in
parentheses. Next, each attribute was considered for its effect on the propor-
tion of bilingual speakers, and the appropriate ratio of bilingual to unilingual
individuals was assigned to each branch. Politicians certainly did not all agree
on the importance of various factors and their perceived influence on reported
bilingualism, and therefore the experimental parameters represent a distillation
of somewhat divergent views.

Ethnic origin was assessed to be the most important attribute, only those
of French origin were expected to be bilingual, most other individuals were ex-
pected to be unilingual. The next most important attribute was assessed to be
birthplace, being urban born was more strongly associated with bilingualism than
being rural born. Attributes sezx, age and can write were then added in that or-
der. Once the tree was constructed, instances consistent with it were generated.
The proportions of the classes at the leaves, indicated by the “Y()” and “N()”
in the figure, were then adjusted so that the order of attributes was maintained.
The tree is reasonably accurate (78.960%), only 1.2% less accurate than the tree
grown directly from the data (80.169%).

Figure 9 shows the politicians’ theory after revision using data for the whole
of Canada. This revised theory is more accurate than the politicians’ theory. It
is slightly more accurate (80.204% lower bound 79.926%) than the decision tree
grown directly from the data (80.169%), see Figure 2, although the base of the
tree is identical. Much of the structure from the theory has been deleted, but
quite a lot remains, indicated by the “0” and “+4” in figure 9. The most significant



ORIG=FR :- (400)

| BPLACE=RU :- (212)

| | SEX=F : N :- 0.235 Y(20) N(65)

| | SEX=M :- (127)

| AGE=20-49 :- (72)

[ | CANWRITE=N : N :- 0.444 Y(12) N(15)
[ | CANWRITE=oth : Y :- 0.556 Y(25) N(20)
[ AGE=oth : N :- 0.364 Y(20) N(35)

| BPLACE=oth :- (188)

[ SEX=F :- (78)

| | AGE=20-49 :- (48)

| | | CANWRITE=N : N :- 0.444 Y(8) N(10)
[ | | CANWRITE=Y : Y :- 0.667 Y(20) N(10)
|

|

|

|

|

|

0

| AGE=oth :- : N :- 0.333 Y(10) N(20)
SEX=M :- (110)
AGE=>=50 :- (40)
| CANWRITE=N : N :- 0.444 Y(8) N(10)
| CANWRITE=Y : Y :- 0.545 Y(12) N(10)
AGE=oth : Y :- 0.714 Y(50) N(20)
RIG=oth :- : N :- Y(50) N(550)

Fig. 8. The Politicians’ Theory

change to the theory is the first test, mother-tongue replaces ethnic origin and
accounts for most of the improvement in the revised theory. The additional
structure, indicated by the “4’s” in figure 9, is the part of the politicians’ theory
which was not deleted when the tree was revised. It identifies two bilingual groups
for people whose mother-tongue is not French. Urban males (labeled “+1”) of
French origin are predominantly bilingual, as are urban females (labeled “+2”)
of French origin, aged 20 to 49 who can write. This branch accounts for the slight
increase in the accuracy of the tree. These groups were identified in the original
theory. As the data supports this division, albeit very weakly, they have not been
deleted. The additional structure, indicated by the “o’s”, is not supported by
the data. It was not deleted, however, as the tests did not indicate a statistically
significant increase in accuracy. This structure does not change the classification
of the tree and so could easily be deleted.

From an algorithmic perspective, it seems that attributes were modified and
deleted when there was a clear advantage in doing so. But when the data did not
support such deletion, the semantics of the original theory was maintained. From
a historical perspective, the Canadian politicians of 1901 used mother-tongue to
help clarify ambiguities among the labels used for ethnic groups; they did not
see language as being a good identifier in and of itself. These theory revision
experiments suggest that mother-tongue was more important that politicians
believed at the time. But they were aware that times were changing, but probably
not to the extent to which the data seems to suggest, and this led to addition of
language questions to the census.



MTONGUE=FR :- 0.541
| BPLACE=RU :- 0.467

| | AGE=20-49 :- 0.575

| | | SEX=F : N :- 0.451 Y(1547) N(1886)
| | | SEX=M : Y :- 0.674 Y(2892) N(1399)
| | AGE=oth N :- 0.386 Y(3946) N(6278)
| BPLACE=UR :- 0.674

| CANWRITE=N :- 0.409

[ | ORIG=FR :-
[

|

|

|

|

[

o 0.408

o | | SEX=F : N :- 0.303 Y(240) N(550)

o | | SEX=M : N :- 0.499 Y(451) N(452)

o | ORIG=oth :- : N :- 0.437 Y(35) N(45)

CANWRITE=Y :- 0.732

o SEX=F : Y :- 0.647 Y(2570) N(1405)

o SEX=M : Y :- 0.813 Y(3399) N(782)
MTONGUE=oth :- 0.101

+ ORIG=FR :- 0.404

+ | BPLACE=RU : N :- 0.343 Y(348) N(666)

+ | BPLACE=UR :- 0.506

+ | SEX=F :- 0.448

+ I | AGE=20-49 :- 0.581

+ | | | CANWRITE=N : N :- 0.344 Y(8) N(16)

+2 | | | CANWRITE=Y : Y :- 0.621 Y(90) N(55)

+ I | AGE=oth : N :- 0.295 Y(43) N(103)

+1 | SEX=M :- : Y :- 0.570 Y(162) N(122)

+ ORIG=oth :- : N :- 0.089 Y(3823) N(38942)

Fig. 9. The Revised Theory

6 Limitations and Future Work

From a historical perspective, the census was designed to provide evidence of the
learning of English by French-language individuals. The trees, indeed, show this
but they also show that a constellation of factors underlay the language patterns
including age, sex, and rural-urban differences and this was not uniform across
the country. It is for this reason more research is needed on specific geographic
areas such as the so-called Bilingual Belt as well as on other data from the
census including economic variables. From an algorithmic perspective, the test
statistic and other design choices have proven effective in practice on this data
set but need to be experimentally validated on other data sets. Confidence in
an existing theory might not constant for all parts of the theory. The existing
theory determined the old tests and influenced the choice of new tests but did
not affect the confidence value. An alternative would be to take a more Bayesian
approach, perhaps using credible intervals rather confidence intervals, allowing
locally defined confidence values.
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Conclusions

From a historical perspective, the most compelling conclusions concern the ex-
tent to which the Quebec patterns appear to differ from those of the other regions
of Canada, and the complexity in the patterns of bilingualism at the turn of the
century. From an algorithmic perspective, this work has demonstrated how con-
fidence intervals can be used to identify factors that are both statistically and
practically significant. It has also shown how combining a semantic measure of
similarity between trees with confidence intervals can be used to evaluate and
modify an existing theory.
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