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Abstract. Because of data privacy regulations, census data are available for 
analysis only in aggregated form. Primary data (responses of persons) are aggre-
gated in many cross tabulations for small geographical units. Thus the target ob-
jects of secondary analysis are small areas (enumeration districts or wards ). Any 
cell or marginal of a cross tabulation can be used as variable on these target ob-
jects. The target objects can be linked with other spatial objects (e.g. rivers, roads, 
railway lines) for spatial analyses. In this paper we discuss the special require-
ments that occur for this type of aggregate data mining including spatial analyses. 
We show an application of SubgroupMiner, which is an advanced subgroup mining 
system supporting multirelational hypotheses, efficient data base integration, dis-
covery of causal subgroup structures, and visualization based interaction options.  

1   Introduction: Mining Spatial Subgroups 

The goal of spatio-temporal data mining is to discover attributive, spatial and tem-
poral patterns and to analyse their potential interactions. The patterns describe hy-
potheses about spatially and timely referenced data. Spatial patterns additionally 
include variables that do not only refer to properties of the analysis objects them-
selves (attributive patterns), but also to spatially neighbored objects and their 
properties. Te mporal patterns include analyzing change and trend. In this paper we 
focus on spatial patterns from the perspective of the subgroup mining paradigm. 

Subgroup Mining [Klösgen 1991, 1996, 2002] is used to analyze dependencies be-
tween a target and a large number of explanatory variables. The approach can be ap-
plied for exploration, classification, or optimization. Interesting subgroups with 
some designated type of deviation, change, or trend pattern are searched, e.g. sub-
groups with an over proportionally high target share (mean) for a value of a discrete 
(continuous) target, or subgroups for which the target share (mean) has significantly 
changed between two time points, or shows a trend pattern for a sequence of time 
points. Subgroups are subsets of analysis objects described by selection expressions 
of a query language, e.g. simple conjunctional attributive selections, or multirela-
tional selections joining several tables representing different (spatial) objects. Inter-
estingness aspects include statistical significance, interpretability, and non-
redundancy of subgroups. 



A spatial query language that includes operations on the spatial references of ob-
jects describes spatial subgroups. A spatial subgroup, for instance, consists of the 
young children that live near a nuclear power plant of type boiling water reactor. A 
spatial predicate (nearby) operates on the coordinates of the spatially referenced 
objects persons and power plants. Further some attributive selectors (age = young, 
type = boiling_water_ reactor) define which objects belong to the subgroup. 

While the spatial dimension is covered by spatial description languages for sub-
groups, the temporal dimension is represented by change or trend patterns that de-
termine the evaluation criteria for an interesting or statistically significant subgroup. 

The subgroup-mining paradigm provides the main components for these ap-
proaches: description languages for subgroups, search strategies in hypothesis 
spaces, hypothesis evaluation, scaling, visualization, and causality analysis.  

This paper describes an application of SubgroupMiner on census data. The goal 
of the system is to provide a spatial and temporal mining tool. The system improves 
all stages of the knowledge di scovery cycle:  
– Data Access: Subgroup Mining is partially embedded in a spatial database, where 

analysis is performed. No data transformation is necessary and the same data is 
used for analysis and mapping in a GIS. This is important for the applicability of 
the system since pre-processing of spatial data is error-prone and complex. 

– Pre-processing and analysis: SubgroupMiner handles both numeric and nominal 
target attributes. For numeric explanatory variables on-the-fly discretization is 
performed. Spatial and non-spatial joins are executed dynamically.  

– Post-processing and Interpretation:  Similar subgroups are clustered according to 
degree of overlap of instances to identify multicollinearities. A Bayesian net-
work between subgroups can be inferred to support causal analysis. 

– Visualisation. SubgroupMiner is dynamically linked to a GIS, so that spatial sub-
groups are visualized on a map. This allows to bring in background knowledge 
into the exploration process, performing several forms of interactive sensitivity 
analysis and exploring relations to further variables and spatial features. 

 
The paper is organized as follows. Section 2 introduces the context of census 

data. In section 3, the representation of spatial data and spatial subgroups is di s-
cussed. The analysis framework is presented in section 4.  

2 Census Data 

We discuss an application example to illustrate the special requirements of cen-
sus data mining and especially show the interaction between spatial subgroup mining 
and GIS mapping. The UK Census, undertaken every ten years, collects population 
and other statistics essential to those who have to plan and allocate resources. Major 
customers include departments of national and local government, and provi ders of 
services such as health and education.  



In the example, we analyse UK 1991 census data for North West England, one of 
the twelve regions in UK. The basic geographical units used in our analyses are the 
1011 wards situated in the 43 local authorities of NW England. Deprivation indices 
that are the focus of our analysis are given for these wards. The next geographical 
level below wards are enumeration di stricts. 

Census data can be aggregated to any level of spatial unit. The appropriate level 
for an analysis depends of the problem and especially the available secondary data 
(e.g. on deprivation). Lower levels ensure a higher homogeneity of aggregated vari-
ables thus providing a higher potential to identify and evaluate hypotheses on indi-
viduals (persons). On the other side, lower levels require scalable methods, since the 
number of the main analysis objects can get very large when the overall region (as 
North West England) is not strongly limited. 

 For the 2001 Census England and Wales had 116,895 EDs with an average size 
close to 200 households (450 people). Census data are available as aggregated cross 
tabulations for each geographical unit (wards). Table 1 is one (small) cross tabul a-
tion of the about 100 tabulations that are provided for different dimensions (eco-
nomic position, ethnic group, gender in Table 1). Each of the cells of the cross tabu-
lations (e.g. 54 cells of Table 1) can be used as a variable on the ge ographical units. 
Thus some 10.000 variables are avai lable for the main analysis objects (wards ). 
Typically a small subset of these variables is selected for a special analysis. 
     |------------------------------------------------------------------------------------------------------ | 
     | Table S09 Economic position and ethnic group: Residents aged 16 and over           | 
     |------------------------------------------------------------------------------------------------------ | 
     |                                |                |                   Ethnic group                       |                  | 
     |                                |               |------------------------------------------------|                  | 
     |                                |               |          |               |     Indian     |               |                  | 
     |                                |               |          |               |  Pakistani   |   Chinese|   Persons  | 
     |                                | TOTAL     |          |     Black|        and      | and other|   born in   | 
     |  Economic position| PERSONS| White|    groups|Bangladeshi|    groups |   Ireland  | 
     |------------------------------------------------------------------------------------------------------ | 
     |TOTAL PERSONS         1            2             3             4                  5                   6                       | 
     |                                                                                                                                                        |    
     | Males 16 and over           7            8            9            10                11                 12     | 
     |  Economically active     13          14          15            16                17                 18     | 
     |   Unemployed                 19         20           21            22               23                 24     | 
     |  Economically inactive   25         26          27            28                29                 30     | 
     |                                                                                                                                                        | 

                     | Females 16 and over       31         32         33             34                35                 36                    | 
                     |  Economically active       37         38         39             40               41                 42     | 
                     |   Unemployed                  43         44         45             46               47                 48     | 
                     |  Economically inactive    49         50         51              52              53                 54                     | 
                    ------------------------------------------------------------------------------------------------------------------- 

Table 1: An aggregated cross tabulation available e.g. for all wards 
 
Also available are detailed geographical layers, among them streets, rivers, build-

ings, railway lines, shopping areas. Table 2 shows these layers including subtypes for 
some layers. These layers have own attributes such as featcode (indicating the sub-
type of the spatial object) or length (of line). Only a few of the many point layers on 
sports and tourist facilities are included in our analyses, because most of them seem 
not relevant for the selected target variables. 



Layer name       Description                                  Type Objects 
-------------------------------------------------------------------------------------------------------------------------       
Motorway           Motorway                                     Line    494 
                   Motorway (over), Motorway tunnel 
PrimRoad           Primary route, dual carriageway            Line  3945 
                   Primary route, dual carriageway (over) 
                   Primary route, single carriageway 
                   Primary route, single carriageway (over) 
                   Primary route, narrow 
                   Primary route, narrow (over) 
                   Primary route tunnel 
A_Road              A road, dual carriageway                   Line  3882 
                   Other subtypes: see PrimRoad 
B_Road             B road, dual carriageway                    Line  4368 
                   Other subtypes: see PrimRoad  
Mnr_Rd4o          Minor road over 4 meters wide              Line  9705 
                   Minor road over 4 meters wide (over) 
                   Minor road over 4 meters wide tunnel 
Mnr_Rd4u          Minor road under 4 meters wide / over / tunnel            Line             8756          
Railway            Railway, standard gauge                     Line  4231 
                   Railway, standard gauge (over) 
                   Railway, narrow gauge / narrow gauge (over)  
                   Railway tunnel / Railway station 
UrbAreaL           Large Urban Area (outer limit)              Line    384 
                   Large Urban Area (inner limit) 
UrbAreaS           Small Urban Area (outer limit) /  (inner limit)             Line  2235 
Water  Inland water (inner limit)                  Line    438 
                   Inland water (outer limit) 
River              River (primary), source  / middle / lower                   Line 12103 
                   River (secondary), source  / middle / lower                   
                   River (other and drains) 
Canal              Canal                                        Line    968 
                   Canal tunnel  / Canal (over)                    
Wood               Wood/Forest (inner limit)                  Line    859 
                   Wood/Forest (outer limit) 
Foreshor           Foreshore (sand, inner limit)               Line    209 
                   Foreshore (other) and offshore rocks (il) 
                   Foreshore (sand, outer limit) 
                   Foreshore (other) and offshore rocks (ol)  
National           National boundary                                              Line     12 
County             County boundary                             Line     88 
District           District boundary                                              Line     61 
Park               National park/forest park                   Line      11 
CampCara           Camping and caravanning combined sites      Point    212 
… 
Table 2: Geographic Layers (spatial objects of type line / point) 
 
Deprivation indices are selected as target variables, i.e. the analysis goal is to gain 

some information on attributive and spatial dependencies of these variables and their 
interactions. Information from the Census (sometimes in combination with other 
variables) is often combined into a single index score (Table 3) to show the level of 
deprivation in an area. Over the years a number of different such indices have been 
deve loped for different applications. In general, these measures show a strong corre-
lation between the level of deprivation and a variety of health indicators. 



 
Variable Jarman Tow nsend Carstairs DoE  

Unemployment X X X(males) X 

Low social class X   X   

Overcrowded households X X X X 

Households lacking basic amenities      X 

Single parent X       

Under age  5 X       

Lone pensioner X       

residents who have changed address 
in the previous year X       

head of household born in the new 
commonwealth  X       

Households with no car   X X X 

Not owner occupied   X     

Children living in flats       X 

Children in low earning households       X 

Low educational participation       X 

Low educational attainment       X 

Standard Mortality Ratios       X 

Male long term unemployment       X 

Income Support recipients       X 

Home Insurance Weightings       X 

 
Table 3: Variables used in the calculation of four deprivation indices 

 
Individual variables are usually weighted before they are combined. One of the 

simplest approaches is to normalize the scores around a mean of zero and express 
individual components in terms of the number of standard deviations. As a result, the 
measures are ordinal, hence they are often accompanied by ranking.  

3   Representation of Spatial Data and of Spatial Subgroups 

 
Census data, deprivation indices, and the data for the other geographic layers are 

loaded into a spatial database system (Oracle Spatial). Before analysing the data, a 
special view is constructed by selecting a subset of the very many census variables 
and their normalization.  



Most modern Geographic Information Systems (GIS) use an underlying Database 
Management System (DBMS) for data storage and retrieval. In object-relational 
databases spatial data is represented as follows: 

A spatial data base S is a set of relations R1,...,Rn such that each relation Ri in S 
has a geometry attribute Gi or an identifier Ai such that R i can be linked (joined) to a 
relation Rk in S having a geometry attribute Gk.  

A geometry attributes Gi consists of ordered sets of x,y-pairs defining points, 
lines, or polygons.  

Different types of spatial objects are organized in different relations R i, e.g. roads, 
rivers, enumeration districts or wards, buildings. Each such relation is called a geo-
graphical layer.  Each layer can have its own set of attributes A1, … An, called the-
matic data, and at most one geometry attribute G. The attributes A1,..., An are the 
usual numeric or nominal attributes found in a relational database. 

For querying multirelational spatial data, a major extension a spatial database adds 
is the efficient implementation of a spatial join. A spatial join links two relations 
each having a geometry attribute based on distance or topological relations (inside, 
covers, adjacent, touches). For supporting spatial joins efficiently, special purpose 
indexes like KD-trees or Quadtrees are used. 

 
Preprocessing vs. dynamic approaches 

The above description shows that a GIS representation is multi-relational. A rel a-
tion graph is shown in Figure 1 for seven tables. A link in this graph connects two 
tables. Foreign keys are simple links: e.g. from diagnoses to persons. Implicit spatial 
links are given by the spatial references of objects. E.g. a spatial predicate relates 
persons and industrial plants: a person lives near a plant (either precalculated and 
materialized as in Figure 1, or dynamically calculated during analysis).  

   
Figure 1:  Object classes (tables) of a multirelational spatial application 

 
While the relation graph of Figure 1 has a maximal depth of 3 (e.g. persons, diag-

noses, therapies), the relation graph for the cens us application is a simple star 
shaped graph. The spatial objects (table 2) are arranged around the target analysis 
units (wards) such that the maximal depth is only 2. 

  
There are different strategies to deal with multi-relational data in data mining. One 
possibility is to preprocess the data and join the relevant variables from secondary 
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tables to a target table. The resulting table has a rectangular form and can be analysed 
using standard methods like decision trees or regression. Multirelational analysis 
approaches are not necessary in this case. 

 However the preprocessing approach has disadvantages. First, the set of relations 
S and the set of possible joins L between tables in S constrain the hypothesis space. 
Each type of object can spatially interact with any other type of spatial object in 
numerous ways according to the topological relations . When all these joins are 
meaningful, the set L is prohibitively large. It would be desirable to set up the prob-
lem in such a way that at least in principle all hypotheses are in the search space of 
an algorithm, or, at least, that it is not the preprocessing that pr events this.  

The extended target table gene rated by preprocessing will include only a small part 
of the information available in the original tables. But often, it is not known before, 
in which parts of the data the interesting results can be found. Thus it may be diffi-
cult to select the potentially relevant variables and aggregations. When e.g. the num-
ber of diagnoses of a person is aggregated from the diagnoses table to the persons 
table, the correlation of this number with other attributes from the diagnoses table is 
lost (e.g. number of diagnoses of a special type). Thus it would be necessary to ag-
gregate the diagnosis numbers for each value of (some) attributes of the diagnoses 
table and possibly also for combinations of values. Thus the number of derived at-
tributes will easy explode for complex relation graphs.  

Thus secondly, there is an obvious trade-off between the computing time needed 
for pre-processing, and the required space for redundant storage on one hand, and the 
computational complexity of the analysis run. Preprocessing may take a long time, 
and much of the preprocessing may turn out to be unnecessary since a certain part of 
the hypothesis space will be pruned away by the data-mining algorithm anyway. It 
would be desirable to perform expensive spatial joins only for that part of the hy-
pothesis space that is really explored during search.  

Thirdly, a further disadvantage occurs in applications where the data can change, 
either due to adding, deleting or updating. Since pre-processing leads to redundant 
data storage, we suffer the usual problems of non-normalized data storage, thor-
oughly investigated in the database literature.   

An advantage of preprocessing with respect to a dynamic approach is that once the 
data is preprocessed the calculation has not to be done again. But here a dynamic 
approach could cache search results to improving efficiency. 

The general approach we apply for multi-relational data mining relies on dynami-
cally joining the tables. The joins that are arranged during search follow paths in a 
prespecified relation graph. The relation graph includes the edges between table 
nodes. In the multirelational model we have k object classes O 111 , ... , Ok that are rep-
resented by tables. They are the nodes of the relation graph. Further we have a set of 
links where each link is a relation between two object classes and is represented by a 
prespecified link condition that defines a subset of the product of the two object 
classes. These links are the edges in the relation graph. 

 
When deciding on dynamic versus static spatial joins for the census application, 

the following characteristics are important: structure of the relation graph, number 



of thematic attributes in geographical layers, size of the relations, and data dynamics. 
The number of attributes that can be induced for the primary table (e.g. wards) de-
pends on the depth of the relation graph and the number of thematic attributes. E.g. 
for discrete thematic attributes, an own attribute can be induced for each value and 
for each combination of values of several attributes (when combinations of attrib-
utes are included). Such an attribute could hold the information that a ward is inter-
sected by a road of type A (or of type A and length L). The number of potential in-
duced attributes exponentially grows with the depth of the relation graph. With each 
additional layer joined, the number of induced attributes is multiplied by the number 
of combinations of attribute values of the additional layer. Since the structure of the 
relation graph is simple (depth = 2; only joins between wards and geographic layers 
and no joins between geographic layers) and the number of thematic attributes is 
small, the number of induced attributes is manageable for this application. 

Also the data dynamics are extremely low. The UK census is undertaken every ten 
years and also the other layers are faily stable, such that no data update problems 
occur. Therefore the generation of an overall ward relation extended by all the pos-
sible induced attributes from the geographical layers would be preferable, because 
efficiency (computation time) of analyses will be higher avoiding expensive joins 
during analyses. This would especially be necessary for finer levels of target objects 
resulting in large tables (enumeration districts instead of wards). We apply a dy-
namic join approach (no precalculated universal join) for the analyses (section 4), 
because the joins are performed for these table sizes (1011 wards and e.g. 9705 
roads) within some few seconds such that an interactive analysis is still possible. 

In general, an extended dynamic strategy could be useful. This strategy would not 
require an universal target relation constructed in a preprocessing step, but would 
dynamically store the induced attributes, which are generated during a multirelation 
search by joining several tables, into the target table. In a subsequent analysis, it 
would not be necessary any more to construct the join again, but the stored induced 
attributes could be accessed from the target table. 

 
Spatial subgroups  

A multirelational subgroup is a subset of target objects that is defined by condi-
tions on variables including variables induced from secondary tables. These condi-
tions are described by a query that consists of conjunctive selectors. The query lan-
guage of SubgroupMiner is described in (Klösgen and May 2002) and is only sum-
marized here referring to the main options of a multirelational subgroup language. 

The first option determines which links (joins) between the various (spatial) ob-
ject classes are selected, i.e. which links are used to construct a (next) conjunctive 
selector. SubgroupMiner exploits a predefined Relation Graph (Figure 1), that in-
cludes the possible links and their details (which attributes and aggregations ). 

As a basic aggregation option, SubgroupMiner uses the existential quantifier, e.g. 
the subgroup Wards.male=high and Rivers.type=primary  is a condensed descrip-
tion of the set of wards with a high share of males and intersected by at least one 
primary river. 



A next option includes aggregate functions such as count, average, max, min 
(Knobbe et al  2001). The subgroup Wards.area=large and Rivers.max(length)<l 
describes wards with a large area and only intersected by rivers with a limited length. 

Another option includes variables to distinguish several objects of one class for 
applying a predicate on these objects, e.g. wards situated near two industrial 
plants with special conditions (e.g. distance between two plants is small). Such 
selections are typically included in ILP approaches such as Malerba and Lisi (2001). 

The type of refinement is another option. There are two possibilities how a fur-
ther thematic attribute can refine a subgroup. E.g. the wards intersected by at least 
one primary river  can be refined (introducing an additional conjunctive condition) 
by wards intersected by at least one primary river and intersected by at least one 
polluted river . Another refinement are wards intersected by at least one primary 
and polluted river. The type of refinement is important for aggregation functions. 

Details on how these options are applied (e.g. which aggregation functions on 
which variables, the number of objects to be distinguished and the predicate(s) to be 
applied on the objects) are prespecified in the Relation Graph.  

4   Applying Subgroup Mining to Deprivation Indices  

After loading census, deprivation, and geographical data, an Oracle Spatial data-
base holds a table for each census cross tabulation and each geographical layer.  As a 
next preprocessing step, a tool is used to select variables from the very many census 
tables and to normalize them. Generally we select variables from the margins of t he 
cross tabulations and not so often the inner cells (e.g. for cross table 1: total Ch i-
nese persons and not Chinese unemployed males). Especially for cross tabulations 
with very deep classifications, the cells are correlated providing (too much) redun-
dancy. Normalization is necessary to adjust the different sizes of wards, thus not the 
number of Chinese pe rsons, but the number of Chinese persons divided by the total 
number of persons is included in the resulting ward table. Several normalization 
options can often be useful, e.g. unemployed males wrt males or total persons. The 
selection and normalization tool will typically be used many times during an analysis 
process to include additional variables or to modify normal izations. 

With this preprocessing step performed, we can analyse a target table including 
numerical variables derived from the census (shares such as white persons in a ward 
related to all residents) and join the target table with geographic layers. Selectors of 
subgroup descriptions (section 3) need discretizations for numerical variables. Sub-
group Miner can automatically discretize the numerical variables during an analysis 
or rely on predefined discretizations. We at first use the simplest automatic option 
that generates only two selectors for a numerical variable, e.g. Wards.males=high 
and Ward.males=low comparing the percentage of males in a ward to the average 
percentage over all wards. 

In a first experiment, we select carstairsidx  as target variable and include all se-
lected census variables as well as the other deprivation variables into search to build 
subgroups. The target variable is numeric and the system uses the mean pattern as a 



default. Thus subgroups are searched for which the mean of the target variable is 
significantly higher than the total mean (over all wards). The found subgroup 
low_social=high and married=low and unempl_male=high   (subset of wards with 
above average value of low_social and below average value of percentage of married 
persons and above average value of unempl_male) has e.g. an average value for the 
Carstairs index of 6,24 compared to the overall average of 0,94.  

  
Figure 2: Subgroups with high Carstairs index (all selected census attributes included) 
 
The found subgroups (shown in Figure 2) are ordered by clusters after applying  a 

clustering option (complete linkage method, similarity measure for pair of sub-
groups based on their overlapping). Five clusters and five remaining single element 
clusters (999) have been identified. The first cluster includes subgroups with re-
finements of low_social=high and the second cluster subgroups with no-
car_household= high. The third and fourth cluster include subgroups with un-
empl_males=high (third cluster consists of refinements of fourth cluster). These 
clusters fairly well reproduce the definition of the Carstairs index (compare section 
2). The fourth variable included in the definition of the Carstairs index (overcrowd-
ing) occurs in two single element clusters. The results also show the high correla-
tion between the four deprivation indices. 



This first experiment has been performed to check the validity of subgroup re-
sults. Although some very simple default options have been used such as discretiza-
tion by average value and mean pattern for ordinal target variable (compare section 
2), the results reproduce the definition of the target variable (similar results are 
found for the negative index, i.e. subgroups with a significantly low average value of 
the index). More detailed subgroup analyses (not shown here) study the relative 
importance of the contributing variables of the indices (an index is constructed as a 
weighted sum of not independent variables that strongly correlate). Other analyses 
compare the four depr ivation indices (e.g. subgroups with a difference of  indices). 

Since the distribution of many census variables is very skew for the wards, we 
next apply a more profound discretization based on clustering. Then dense discreti-
zation intervals are constructed. When there are e.g. very many small values of a 
variable and some middle and a few high values, two or three homogeneous intervals 
are ident ified based on optimizing the boundary points where e.g. the first interval 
includes all the small values. This clustering method can especially exclude variables 
that are not useful to build subgroups (e.g. one cluster includes nearly all values due 
to the extremely skew distribution of the variable).  

 
 

Figure 3:  Subgroups dependent of high Carstairs index  



Further we exclude all variables that are included in the definition of the Carstairs 
index from search and also the other deprivation indices. To avoid problems of the 
mean pattern with only ordinally scaled target variables, we select as target variable 
the binary variable carstairsidx=high  (high interval identified with discretization).  

Seven subgroup clusters and some single subgroups are identified by the subgroup 
clustering method (Figure 3). To reduce these results, a redundancy elimination 
algorithm is run suppressing subgroups that are conditionallly independent of the 
target group given another subgroup. This Bayesian Network based causality ap-
proach (Klösgen 2002) suppresses 24 of the 40 subgroups resulting in the following 
“causal” subgroups (in the ordering of Figure 3). 

Causal Subgroups:  5   7   13  14   23   25   27   28   30   31   33   34   36   37   38   40 
 
A summary of the main “causal” factors (including the dual problem: wards wi th 
low Carstairs index) is shown in Table 4. 
 
Variable  Cate-

gory 
Subgroup 
Size  

TargetRate T in Su bgroup 
T = High Carstairs index 
(14 % of all wards) 

TargetRate T in Su bgroup 
T = Low Carstairs index  
(52 % of all wards) 

lone_parent high 11 % 82 %  
 low 50 %  86 % 
age0-4 high 19 % 50 %  
 low 35 %  87 % 
unskilled high      16 % 53 %  
 low 45 %  84 % 
long_term_illness high   22 % 42 %  
 low 34 %  90 % 
partly-skilled high   15 % 49 %  
 low 43 %  89 % 
married low 17 % 71 %  
 high 46 %  91 % 
managerial_technical low    44 % 31 %  
age6-29 low 34 %  88 % 
cohabit  low 41 %  75 % 

    
 Table 4:   Main single factors causing  high / low Carstairs index 

 
Underpriviledged wards (e.g. high Carstairs index defined by a combined high rate 

of unemployed males, low social status, overcrowded households, households with 
no car) tend to be populated by lone parents, families with young children, unskilled 
and partly skilled persons, long term ill persons, unmarried persons. The dual prop-
erties characterize priviledged wards. Since data are only given as aggregates thus 
characterizing wards and not individual persons, it can not be concluded that these 
subgroups (e.g. lone parents or unmarried persons) hold the Carstairs properties on 
the individual level. Lone parents have not necessarily a low social status, but tend to 
live in areas with a high rate of persons with a low social status. Using a lower aggre-
gation level (enumeration units or the still more homogeneous output areas) will 
increase the possibility to infer individual hypotheses. Discussing these problems of 
aggregate data analysis are beyond the scope of this paper. 

 



Next we analyse the dependence of the Carstairs index of the spatial objects. We 
include all line objects listed in Table 2 and two thematic attributes for each spatial 
object class (featcode  represents subtypes and length is a numerical attribute hold-
ing the length of the line object). Table 5 summarizes the results. 

 

Subgroups with high average Carstairs index 
 overall carstairs ave rage for all wards = 0.94 

Quality  
(significance) 

Support 
(wards#) 

Carstairs 
Average 

DISTRICT.DISTRICT_ID=6   6.23  36 5.32 
DISTRICT.DISTRICT_ID=22 3.99  35 3.79 
DISTRICT.LENGTH=high   3.48 174 1.97 
DISTRICT.ALL   3.16 240 1.71 
COUNTY.COUNTY_ID=5   4.38  12 6.34 
RIVER.ALL   3.26 857 1.13 
MNR_RD4U.ALL   1.22 734 1.05 
PARK.PARK_ID=2   1.20  76 1.51 

Subgroups with low average Carstairs index    

WOOD.LENGTH=high 6.20 215 -0.67 
WOOD.FEAT=inner limit     5.90  48 -2.62 
WOOD.ALL                          5.74 344 -0.13 
WATER.LENGTH=high      6.06 128 -1.20 
WATER.ALL                       4.70 263 -0.12 
WATER.FEAT=inner limit   2.23    6 -2.95 
PRIMROAD .FEAT=dual carriageway, over other feature   5.14  44 -2.31 
PRIMROAD.FEAT= dual carriageway 4.74 152 -0.58 
RIVER.FEAT=secondary, source   4.99 301 -0.09 
RIVER.FEAT=secondary,middle    4.81 160 -0.55 
RIVER.FEAT=primary,lower       2.80   35 -1.05 
RIVER.FEAT= primary,source     2.33   45 -0.51 
MOTORWAY.LENGTH=low      4.77 145 -0.66 
MOTORWAY.ALL                     4.60 210 -0.27 
MOTORWAY.FEAT=over other feature   4.35 125 -0.62 
RAILWAY.FEAT=standard gauge, over other feature   4.68 248 -0.16 
RAILWAY.FEAT=tunnel         4,09   34 -2.02 
B_ROAD .FEAT=single carriageway, over other feature   4.24 162 -0.36 
MNR_RD4O .FEAT=over other feature   4,12 220 -0,11 
URBAREAL.LENGTH=low    4,07 247 -0,02 
URBAREAL.FEAT=large , inner limit   2,99  79 -0,44 
NATIONAL.ALL      3.94  21 -2,71 
CANAL.FEAT=over other feature   3,77  38 -1,63 
CANAL.LENGTH=high   2,86 141 -0,01 
COUNTY.LENGTH=low    3,65  87 -0,66 
COUNTY.COUNTY_ID=31   3,02   8 -3,62 
PARK.PARK_ID=1   3,54   26 -1,99 
DISTRICT.DISTRICT.ID=2   3,47   22 -2,19 
MNR_RD4U.FEAT=over other feature   3,47 134 -0,25 
A_ROAD .FEAT=single carriageway, over other feature   3,13 105 -0,29 
A_ROAD.FEAT=dual carriageway   2,41 102 -0,02 

 

Table 5:  Spatial Subgroups with high / low average Carstairs index 
 
(Underprivilidged) wards with a high Carstairs index are situated near (large) di s-

trict boundaries or boundaries of special single districts or counties, near rivers, and 



near main roads under 4 m wide. However, wards situated near the source or middle 
part of a secondary river or near the source or lower part of a primary river have a 
low Carstairs index. Also main roads under 4 m wide with this feature dominating 
another feature (over other) have a low Carstairs index. 

There are more spatial characteristics for wards with a low Carstairs index 
(privilidged wards). They are e.g. located near woods (especially large woods or 
inner areas of woods), near waters (especially large waters or inner areas), near dual 
carriageway primeroads, motorways, tunnels of railways, inner parts of large urban 
areas, national boundaries, long canals.   

 
The way these data mining results are presented to the user is essential for their 

appropriate interpretation. We use a combination of cartographic and non-
cartographic displays linked together through simultaneous dynamic highlighting of 
the corresponding parts.  

 

 
Fig. 5. Wards satisfying the subgroup description C (lone_parent=high) are highlighted with a 
thicker black line. Wards also satisfying the target (high Carstairs index) are in a lighter color. 

The user navigates in the list of subgroups (Fig. 3), which are dynamically high-
lighted in the map window (Fig. 5). As mapping tool, the the CommonGIS system 
[Andrienko and Andrienko 1999] is integrated, whose strengths lie in the dynamic 
manipulation of spatial statistical data.  

The application has been developed within the IST-SPIN!-project, that integrates a 
variety of spatial analysis tools into a spatial data mining platform based on Enter-



prise Java Beans [May and Savinov 2001]. Besides Subgroup Mining these are Spatial 
Association Rules [Malerba and Lisi 2001], Bayesian Markov Chain Monte Carlo 
and the Geographical Analysis Machine GAM [Openshaw et al. 1999]. Data are pro-
vided by the partners Manchester University and Metropolitan Unive rsity. 

 
Conclusion and Future Work 
Two-layer database integration of multirelational subgroup-mining search strategies 
has proven as an efficient and easy portable architecture. Scalability of subgroup 
mining for large datasets has been realized for single relational and multi-relational 
applications with a not complex relation graph. The complexity of a multirelational 
application mainly depends of the number of links, the number of secondary attrib-
utes to be selected, the depth of the relation graph, and the aggregation operations. 
Scalability is also a problem, when several tables are very large. Some spatial predi-
cates are expensive to calculate. Then sometimes a grid for approximate (quick) 
spatial operations can be selected that is sufficiently accurate for data mining pur-
poses. When several large tables are spatially joined, it is advantageous to precalcu-
late the spatial operations. We are currently investigating options to combine static 
and dynamic links; links can e.g. be declared as static in the relation graph definition. 
The specification of textual link conditions and predicates in the relation graph that 
are then embedded into a complex SQL query has proven as a powerful tool to con-
struct multirelational spatial applications. While the analyses of deprivation indices 
described in this paper treat very general problems with fairly obvious results, a 
more detailed study on the differences and problems of the various indices is pe r-
formed as a pilot application within the SPIN! P roject. 
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