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Abstract. Politicians, planners and social scientists have an increas-
ing need for tools clarifying the spatial distribution of relevant features.
Special interest is in what-if analyses: what would happen if we change
some features in a specific way. To predict future developments requires
a statistical model with inherent modelling uncertainty. In this paper
we investigate Bayesian models which on the one hand are able to repre-
sent complex relations between geo-referenced variables and on the other
hand estimate the inherent uncertainty in predictions. For solution the
models require Markov-Chain Monte Carlo techniques.

1 Introduction

Spatial interpolation and extrapolation is an essential feature of many Geo-
graphic Information Systems (GIS). It is a procedure for estimating values of a
variable at un-sampled locations. Based on Tobler’s Law of Geography, which
stipulates that observations close together in space are more likely to be similar
than those farther apart, these procedures try to separate spatial correlation
from random noise. They can, however, be divergent and lead to very different
results if the underlying structural assumptions are not fulfilled. As a conse-
quence, an understanding of the initial assumptions and methods used is key to
the spatial interpolation process.

Bayesian statistics offers a way to mitigate these problem. It describes the
uncertainties inherent in a statistical analysis by means of probability distri-
butions, which capture the degree of belief that a quantity is located in some
interval. This applies to observable quantities like the variables of interest as well
as to unobservable quantities as the parameters of models, and their structural
properties. During the last decade a number of new computation strategies have
been developed which allow the solution of large scale problems for very complex
models by means of stochastic simulation.

In this paper we describe the Bayesian variant of a flexible semi-parametric
model, a mizture of experts, which is able to represent a wide variety of complex
dependencies. It is composed of a series of localized component models called
experts, which cover local properties of the relation in question.

In the next chapter we will describe spatial data and their specific properties.
In chapter three we shortly describe classical statistical inference procedures like



least squares and in chapter four its Bayesian counterparts. Chapter five compiles
some ensemble methods which use collections of possible models to describe the
inherent variability or to get better predictions by forming a committee. Chapter
six describes the classical methods of spatial statistics, which mostly are derived
from linear least squares approaches. The last chapter is central to the paper as
it analyses different advanced nonlinear procedures and assesses their potential
in the spatial domain, especially in a Bayesian framework.

2 Bayesian Statistics

2.1 Basic Setup

Bayesian inference is the process of fitting a probability model to a set of data
and summarizing the result by a probability distribution on the parameters of
the model. In addition probability distributions on unobserved quantities such as
predictions for new observations may be derived. Assume we have independent

observations (21,X1),... , (2n,X,) of the inputs x; € R* and outputs z; € R. We
may arrange the observed inputs in the matrix X = X, ») = (x1,... ,X,)" and
the outputs in a vector z = z(,.1) = (21,...,2n)". Bayesian inference assumes

the existence of a joint distribution p(, z, X). We are especially interested in the
conditional distribution p(f,z|X) =p(8|X)p(z|0,X). Let the prior distribution
p(0) = p(81X) describe the information about the parameter 6 before the data
z is available.

Then Bayes’ rule yields the posterior density

_p6,2[X) _ p(6|X)p(z|6,X) _  p(0)p(z]6,X)
p(z|X) p(z]X) S p(8)p(z]6,X) db

which describes the distribution of parameters after X and z have been observed.
To make predictive inferences about an unknown observable and a new input
xo we calculate the prediction p(z|xq,6) for each 6 and xo and weight them
according to the posterior p(f|z, X) of parameters

p(6]z, X) (1)

p(z|x0, 2, X) :/p(z|x0,t9)p(0|z,X)d0 (2)

This gives us the complete distribution of z for a new input xq in the light of the
data z, X. We can evaluate any characteristics of this distribution, for instance
its expected value E(z|xqo,z,X), or a highest posterior density region which is
the smallest region covering the output with a prescribed probability, e.g. 90%.
It may — of course — no longer be contiguous but consist of a set of contiguous
subset.

2.2 Prediction and Markov Chain Monte Carlo

The predictive distribution for the output of interest conditional on the new
input x¢ and the observed data z, X was p(z|xo, 2z, X) = [ p(z|x0,0)p(0)z, X)db.



We may approximate the integral by a sum

N
1
p(zl%0,2, X) m- D plefxo,0;) 0~ p(B]z. X) 3)

=1

If the ; are independently generated according to the posterior then the sum
converges to the desired density by the law of large numbers. Subsequently we
may describe p(z|xg,z,X) by different features, e.g. expectation, variance or
posterior intervals.

The Metropolis-Hastings algorithm allows to generate a sample of parame-
ter values ; distributed according to the posterior density. This involves the
construction of a Markov chain 6(0),6(1), ... designed to be distributed accord-
ing to the posterior density p(6|z,X). If the chain is currently at 6 = 6(t), the
Metropolis-Hastings algorithm |Tie94| requires a proposal density q(6, ), which
is the conditional distribution of proposing a move from 6 to 6. The acceptance
probability is defined as

p(0lz.X) a(6.6) } @
p(flz, X) q(6.0)

With probability pacc(f, [9') the candidate 6 is accepted and the chain moves to
6(t+1) = 6. Otherwise the candidate is rejected and 6(t + 1) takes the old value
0. For the actual transition probability p(,6) := q(0,8)pacc(6,0) the detailed
balance condition holds for all 6,8

pacc(0,0~) = min {1,

p(9|Z,X) p(a,é) :p(§|z,X) p(é, 0) (5)

If the resulting Markov chain is aperiodic and irreducible (i.e. reaches all states
with positive probability) then its distribution converges to an invariant station-
ary limit distribution, which is just the posterior distribution p(6|z, X) [Tie94].

If we have several candidate models, where the number and the interpretation
of parameters is different, the approach cannot be used. [Gre95] has proposed an
MCMC-scheme for varying dimension problems, termed reversible jump MCMC.
When the current state is 6 and p(6|zX) is the target probability measure (the
posterior density) we consider a countable number of different moves m. Depend-
ing on the state § a move m and a destination § is proposed with ¢,,(6,6) as
joint distribution. g,,(6,6) may be a sub-probability measure, with probability
11—, J5am(8,0)df no move is attempted.

For the case that @ and § have the same dimension, the procedure reduces
to the Metropolis-Hastings algorithm (4). Now suppose that starting from 6
a move of type m is proposed that yields a higher-dimensional . This can be
implemented by drawing a vector u of continuous variables distributed according
to a known density p,,(u) independent of 6. It is required that the sum of the
dimensions of § and u is equal to the dimension of §. Then the new state ¢
is defined by an invertible deterministic function § = h,,(#,u). The reverse of



the move can be accomplished by using the inverse transformation, so that the
proposal is deterministic. Then we get the acceptance probability

O (1, 0) p(8]2,X) jum(0) )

(6)

paccm(aae) = min (1’ a(ll,a) ‘ * p(9|Z,X) Jm(e) pm(u)

Here jm(6) and j.,,(6) are the probabilities of selecting move m or its inverse in
states § and 6 respectively. [Gre95] shows that the detailed balance condition
5 holds and consequently the equilibrium distribution of the resulting Markov
chain is the posterior distribution p(6|z,X). Similar to the usual Metropolis-
Hastings formula 4 the densities have to be known only up to a factor, which
cancels out in 6.

The reversible jump algorithm is a major improvement in the Markov Chain
Monte Carlo approach. It allows to explore complete model classes instead of a
single model with a given structure. Note, however, that for the different classes
prior probabilities are required.

Instead of specifying all priors explicitly we may use mixtures between priors
of different shapes, so called hierarchical models [GCSR95, p.119], to introduce
the prior information in a less restrictive way. The final weighting of different
priors then is determined by the data.

3 Mixtures of Experts

Modular and hierarchical systems allow complex learning problems to be solved
by dividing the problem into a set of subproblems, each of which may be simpler
to solve than the original problem. In spatial statistics it is natural to assume
that the data can be well described by a collection of functions, each of which is
defined over a relatively local region of the input space. A modular architecture
can model such data by allocating different modules to different regions of the
space. Hierarchical architectures arise when we assume that the data are well
described by a multi-resolution model — a model in which regions are recursively
divided into subregions. An example is the decision tree model.

The learning algorithm simultaneously has to determine a partition of the
input space into regions as well as the local models (experts) within each re-
gion. The mizture of experts approach developed by [JJNH91] uses different
sub-models for partitioning (gating models) the input space as well as local
prediction (ezpert models). In contrast to the decision tree the regions are not
disjoint but there is a gradual change between regions. For each input point
the predictions of the different experts are computed and used with weights
determined by the gating network.

If we have m expert networks z = f;(x,6;), j = 1,...,m, we need a gating
network g(x, ¢) with one output w; = g;(x, ¢) for each expert network. To arrive
at normalized weights these outputs are transformed by the ’softmax’ function

o exnlgx0)
(5 0) = (@1, ) @
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Fig. 1. In a mixture of experts a gating model defines probabilities for the different
experts. The outputs of the expert models are weighted by these probabilities.

and the final output is the mixture of experts

2= 0i(x,0) fi(x,0;) +¢;  Eg;) =0 (8)

=1

We may use virtually any model as expert model as long as it fits to the data
(z,x). Note that for Bayesian analysis a complete specification of the related
distributions is required.

As an arbitrary number of experts may be combined we may use compu-
tationally simple models, whose combination may represent arbitrary complex
dependencies. Candidates for continuous z € R are

— constants z = ¢;. The gating network generates convex combinations of these
constants. .
— linear regression models z = >, | ;6; + ¢ with normal error £ ~ N(0,0?).

— quadratic or nonlinear regression models z = 3°°"; h;(6;) + & with normal
error € ~ N(0,0?) and fixed basis functions.

— Arbitrary generalized linear models [JPT97].
For discrete z € {1,...,r} we may use any Bayesian classifier, and — in

combination with the softmax function — arbitrary models with values in R.
Simple examples are



— linear logistic model f;(x,6) = exp (x'6;) />~ exp (x'6;)
— radial basis function models f;(x,60) = h;(x,0;,0;)/ > 2, hi(x,6;,01) with

hy(x,6,,00) =TT}, (2n0%) exp (=57 (2 — 6.,)°)

As gating network we may select any models g;(x, ¢) with outputs in R or
any ”probability model” a(x,¢) which generates a probability vector with m
components, i.e. classifier models.

3.1 Prior Distributions

The choice of priors for a model is an important one in Bayesian inference. Priors
embody the assumption about such aspects as the generative processes of the
data and form of the model. The priors on a model are typically placed either on
the structure (number of models) or the parameters of gate and expert models.
The parameters of the gate and expert models are assumed to be mutually inde-
pendent p(6, ¢) =p(0)p(¢). They may depend themselves on hyper-parameters,
which themselves may be varied during the MCMC analysis. For the mean of
radial basis functions as well as the means of regression models we use Normal
priors with diagonal covariance matrix

k 1 = 12
H (27p3) exp( 3,7 (05 — 041) > 9)

For the variance 0% we use a Gamma prior on the inverse variance 3 = 1/0>

ptog) = = (2) e (-2) (10

were 2/vdefines the prior sum of squared error that we might expect and 27
defines the prior number of observations that we might expect an expert to see.

3.2 Comparison to other Models

It is instructive to visualize the regions defined by different types of experts.
As shown in figure 2 logistic units exp (x'6;) put a "soft” threshold into the
input space where they change their value from 0 to 1. Combined with the
softmax function this results in mainly straight boundaries that partition the
input space. It is important that each unit affects the whole partition. On the
other hand radial basis function units h;(x,6;,0;) assign the region around the
mean value §; to the corresponding unit. This leads to a Voronoi tesselation of
the input space with linear boundaries between units, as long as the covariance
terms for all units are identical.

Earlier Mixture of experts approaches therefore used logistic gating models
but in a hierarchical fashion [JPT97], [Wat97]. In the bhighest layer two re-
gions were defined, which were recursively partitioned by other gates of lower



Fig. 2. Maximal probability of membership in a single region if the gates are logistic
(left) or radial basis functions (right).

regions. For the Bayesian analysis these hierarchical mixtures of experts have
a definite disadvantage: it is nearly impossible to change high-level gates in a
MCMC analysis as this means that the whole tree of gates has to be deleted and
rebuilt. Therefore Bayesian analyses tend to concentrate in a local minimum of
the posterior density.

If we use non-hierarchical radial basis functions gates the changes only affect
neighboring points. The MCMC algorithm can generate all plausible structures
and effectively explore the posterior density. Therefore we prefer radial basis
function units in our analysis.

There are a number of advanced statistical methods which may be applied to
spatial problems in a similar way like the mixture of experts. They may be used
in a semi-parametric fashion, i.e. they should be able to fit a wide set of functional
relations in a nearly automatic way. They all can be evaluated in the framework
of Bayesian statistics. This allows the flexible introduction of prior knowledge
and the calculation of the uncertainty of statistical inference. Generalized addi-
tive models [VR97, p.281] and projection pursuit regression [FS82] define models
on marginal variables and therefore are not able to fit arbitrary distributions.
Local regression models are [CGJ95] are an attractive competitor of mixture
of experts. Neural networks in the form of multilayer perceptrons [Nea95] also
use logistic units and have the same convergence problems as hierarchical mix-
tures of experts. Similar problems occur for decision trees [PK98][CGM98] and
multivariate adaptive regression splines (MARS) [Fri91][DMS97] which generate
recursive partitions of the input space.
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Fig. 3. Mean predicted value of long-term illness in Stockport using the Bayesian
model.

4 Markov Chain Monte Carlo

The Markov Chain Monte Carlo analysis uses the following proposals to modify
a model:

— Change the mean values of one gate unit.

— Change the variance of one variable for all gate units.

Change the regression parameters of one expert model.

— Change the error variance of one expert model (not for classifier experts).

Split one expert model into two (with different parameters).

— Merge two randomly selected expert models into one, whose parameters are
the mean values of the components.

After an initial phase of several thousand iterations the MCMC algorithm
reaches the stationary distribution of mixture of expert models. After this burn-
in phase the models with all their parameters are stored for later use. We use
the coda-package of R to determine the convergence to stationarity [BR9S|.

5 Application to Geodata

The mixture of experts model was implemented in the SPIN! system developed
during the SPIN! project of the European community. It is a general tool for



Derivatives of "percentage of long-term illness" w.r. to variables
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Fig. 4. Distributions of derivatives of long-term illness in Stockport for a specific ward.
The boxes indicate 25% and 75% percentiles with the median in between. The outside
"whiskers” are the 10% and 90% percentiles.

simulation Bayesian models by Markov Chain Monte Carlo. The system is im-
plemented in Java to avoid compatibility problems.

As an introductory example we use data from Stockport, a town near Manch-
ester, U.K. For small units of about 100 households (wards) we have statistics
from the 1991 census including the basic demographic features as well as em-
ployment, car ownership, etc.

The Bayesian model was used to predict long-term illness from these figures.
Hence the model is forced to adapt to the relation between the values of the input
variables within the individual wards and the corresponding output variable
variable long-term illness. The derivative of the output variable with respect to
an input variable describes, how many units the output variable probably will
increase if we increase the input variable for one unit. As the model is non-linear,
the derivative will depend on the specific location, i.e. the input variables of the
ward.

This figure may be important for planners if the want to check the stochastic
relation between variables. It does not, however, imply, that the input variable
actually may be changed, as many variables may not be controlled.

As our Bayesian model explicitly captures uncertainties the derivative is un-
certain too. In figure 4 the resulting distribution of derivatives for a specific ward
is shown. The graph can be generated interactively by clicking on a ward in the
map above. The derivatives show that long-term illness in wards like the current



ward usually grows with the fraction of females aged higher than 16 years, which
are economically inactive. This probably mainly applies to female pensioners. On
the other hand long-term illness decreases if the number of economically active
men increases.

On the workshop we will apply the approach to other data of North-West

England.
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