
An Introduction to Progol

Sam Roberts

January ��� ����

Contents

� Introduction �
��� What Progol is �

����� Machine Learning �
����� Inductive Logic Programming � � � � � � � � � � � � � � � � �

��� What Progol is not �
��� How to obtain Progol �
��� Overview �

� An Introduction to Prolog �
��� Facts �
��� Variables � 	
��� Rules �

��� Recursion ��
��� Lists ��

� An example of Progol ��
��� The Problem ��

����� A Positive Example ��
����� Head Mode Declarations and Types � � � � � � � � � � � � ��
����� Testing for correctness with � � � � � � � � � � � � � � � � � ��
����� The listing facility ��
����� Body Mode Declarations ��
����� The modes facility �	
����� Negative Examples �

����	 Generalising ��
����
 Batch mode ��

� Mode Declarations ��
��� �
 �
 and � types ��

����� Input and output variables � � � � � � � � � � � � � � � � � ��
��� Mode Declaration Recall ��

�

� Parameter Settings ��

� Testing Procedures ��
��� N � ��� � test�� �

��� N � �� � leave�one�out with leave�� � � � � � � � � � � � � � � � � ��
��� �� � N � ��� � ���fold cross validation � � � � � � � � � � � � � � ��

� Learning from positive data ��
��� The posonly parameter and range�restricted clauses � � � � � � � ��

	 Other commands ��

�

Chapter �

Introduction

��� What Progol is

� Progol is a Machine Learning procedure

� Progol is a form of Inductive Logic Programming

����� Machine Learning

How is learning achieved in humans� There are many forms of human learning

stretching from �learning by being told� to �learning by discovery�� At the �rst
extreme
 the teacher explicitly tells the learner everything which is to be learned�
This can be compared in a machine learning context to computer programming�
At the other extreme
 the learner autonomously discovers new facts
 either by
observing the environment in an unstructured fashion �as a child might do� or
by planning and performing carefully constructed experiments �as a scientist
might do��

Between these two extremes lies a third form of learning� learning from
examples� The teacher provides examples
 and the learner abstracts what is
common to these examples to �nd a generalization� The teacher can help this
process by providing a range of appropriate examples�

This is the way which Machine Learning procedures work
 and Machine
Learning techniques have produced many impressive results� For example
 many
tasks such as patient diagnosis
 predicting properties of chemical compounds

and designing computer circuits can be learned� Machine Learning techniques
are most appropriate where it is easier for the teacher to provide a range of good
examples than a complete and explicit theory�

�

����� Inductive Logic Programming

All these tasks can be formulated as learning concepts from examples� the learn�
ing system develops its concepts �say
 its concept of what makes a diabetic pa�
tient� by generalizing from training examples �of past diabetic and non�diabetic
patients� provided by the teacher� This concept can be used to predict future
examples �in this case
 by diagnosing incoming patients��

Declarative Knowledge

Inductive Logic Programming has been de�ned as the intersection of Machine
Learning and Logic Programming� This means that the examples which are
given to the learning system are expressed by the teacher in a logic programming
language such as Prolog
 an introduction to which is contained in chapter ��
Moreover
 the concepts which the learning system develops from the examples
are also expressed in the same language�

This can be an advantage of Inductive Logic Programming over other forms
of Machine Learning� Let us compare the situation with another Machine Learn�
ing technique
 neural networks� A neural network is trained on examples of a
concept and synaptic strengths between neurons are strengthened or weakened
as a result of this training until the network can identify future examples of the
concept with high regularity� The network has learnt a procedure for identifying
new examples� One problem with this situation is that it is often a di�cult
and complex task to determine how exactly this procedure is working� no ex�
plicit rules are generated by the network� The knowledge which the network
has gained is known as procedural knowledge�

By contrast
 examples are given to an Inductive Logic Programming system
in a simple logic programming language� The system generalizes these examples
and produces an explicit
 general rule
 also expressed in a simple and clear form

which can be used to identify future examples� The system has not procedural
but declarative knowledge�

This distinction is analogous to the distinction between knowing how and
knowing that� Someone might
 for example
 know how to distinguish evergreen
from deciduous trees � he may have learned the distinction by example as a
child� However
 he may nevertheless not know that a tree is deciduous if it loses
it leaves in winter and evergreen if it is does not�

Background knowledge

Inductive Logic Programming also makes use of background knowledge
 also sup�
plied by the teacher� and expressed in a logic programming language� This is
also an advantage� it can be viewed as mixing �learning by being told� and

�In fact� this is not always the case� Progol can use information it has previously learned

as background knowledge for future learning� this is known as incremental learning�

�

�learning by examples�� It was said earlier that Machine Learning approaches
are most appropriate when it is easier for the teacher to provide good exam�
ples than a complete
 explicit theory� In some circumstances
 of course
 it may
be possible to provide a partial theory to aid the process of learning by exam�
ple� Inductive Logic Programming systems can make use of this background
knowledge in constructing general rules�

��� What Progol is not

� Progol is not a programming language
� although it is an extension of the programming language Prolog�

� Progol is not an automatic programming tool
� although it can aid the development of logic programs�

� Progol is not a neural net package

��� How to obtain Progol

Progol is freely available for academic research� Progol is also available under
license for commercial research� To apply for such a license
 please write to
steve�comlab�ox�ac�uk�

Progol is available from Oxford University Computing Laboratory�s ftp site�
To obtain it
 type the following�

	 ftp ftp�comlab�ox�ac�uk

When asked
 enter username anonymous and your complete e�mail address
as password� Then type the following at the ftp
 prompt�

ftp
 get pub�Packages�ILP�progol����

and

ftp
 quit

You should now have a directory named progol����
 containing four �les�
expand
 retract
 README
 and progol����tar�gz� Now type the following
shell command�

	 expand

This should produce the subdirectories examples� and source�
 and compile
progol in the subdirectory source��

Include Progol�s source directory in your �login �le to allow you to run
Progol as a command�

�

��� Overview

Chapter � is an introduction to simple Prolog syntax� Prolog is the logic pro�
gramming language in which examples
 background knowledge and the general
rules which Progol constructs are expressed� Chapter � provides a worked ex�
ample of how to use Progol to solve a simple problem involving concept learning�
Mode declarations are introduced in this chapter without great discussion
 but
because of their importance they are discussed in more detail in Chapter �� User
de�ned parameters are the topic of Chapter �
 and Chapter � concerns a variety
of testing procedures� The special area of learning from positive data only is
discussed in Chapter �
 and in Chapter 	 there is an explanation of all Progol�s
commands and facilities�

�

Chapter �

An Introduction to Prolog

Prolog is a programming language for symbolic computation and reasoning� It is
particularly useful for tasks which involve the representation of facts and rules�
A simple task involves reasoning about a family tree
 shown below in Figure
����

��� Facts

The fact that Charles is a parent of William is represented in Prolog as follows�

parent
charles�william��

Thus the entire family tree can be represented in Prolog as follows�

parent
george�elizabeth��

parent
edward�diana��

parent
frances�diana��

parent
elizabeth�charles��

parent
elizabeth�anne��

parent
philip�charles��

parent
philip�anne��

parent
diana�william��

parent
charles�william��

This program contains nine clauses
 concerning the parent relation� It is a
relation between two people� we say it has arity �
 and write parent��� Another
word commonly used in place of �relation� is �predicate�� Once Prolog has been
given this program
 it can be asked questions concerning the parent relation�
The following is such a question�

�� parent
charles�william��

�

George

Edward Frances Elizabeth Philip

Diana Charles Anne

William

�
�
�R

�
�
�R

�
�
��

�
�
�R

�
�
��

PPPPPPPPPq

�
�
�R

HHHHHHj

�������

Figure ���� A family tree

Prolog �nds this fact in the program and replies as follows�

yes

We can also ask Prolog the following question�

�� parent
philip�william��

to which Prolog answers as follows�

no

Prolog also answers no to the following question�

�� parent
charles�hirohito��

This is because it has never heard of Hirohito�

��� Variables

All the names in the family tree program are written with a small letter� This
is because they represent constants� All constants in Prolog must start with a
small letter� Variables are represented in Prolog starting with a capital letter�

For example
 we can ask Prolog the following question�

�� parent
diana�X��

	

This meaning �Who is Diana a parent of��
 to which Prolog replies as follows�

X � william

Some questions may have more than one answer
 for example �Who is Philip
a parent of��� All the answers which Prolog can �nd can be obtained by typing
semi�colons after answers�

�� parent
philip�X��

X � charles�

X � anne�

no

Prolog answers no when it cannot �nd any more answers�

��� Rules

It is not only simple facts such as that Charles is a parent of William which are
expressible in Prolog� Also expressible are rules such as that if X is a parent
of Y then Y is a child of X� This is represented in a Prolog program by the
following clause�

child
Y�X��� parent
X�Y��

�child
Y�X�� is the head of the clause and �parent
X�Y�� is the body of
the clause�

Let us add the above clause to the family tree program� We can now ask
Prolog questions concerning our new child relation� For example
 to the ques�
tion

�� child
william�diana��

Prolog replies�

yes

and to the question

�� child
X�elizabeth��

Prolog replies

X � charles�

X � anne�

no

The use of the child rule is much simpler than adding another complete set
of child facts to the program�

Prolog can handle more complicated rules than this� The grandparent

relation can be represented in Prolog by the clause�

grandparent
X�Z��� parent
X�Y��parent
Y�Z��

The comma between the two conditions in the body indicate that both con�
ditions must be true�

Prolog
 given the question

�� grandparent
X�william��

will now answer

X � edward�

X � frances�

X � elizabeth�

X � philip�

no

Let us add some more facts to our family tree program
 to represent the sex
of the family members�

male
george��

male
edward��

female
frances��

female
elizabeth��

male
philip��

female
diana��

male
charles��

female
anne��

male
william��

We can then add the following rule for father�

father
X�Y��� parent
X�Y��male
X��

��

��� Recursion

So far the family tree program contains facts concerning the parent relation and
the sex of familymembers
 as well as rules for child
 grandparent
 and father�
Many other rules could be similarly represented
 such as mother
 grandmother

great�grandparent etc�

Not all such relations can be so simply represented
 however� Consider what
is involved in the ancestor relation� X is a ancestor of Y if X is a parent of Y

or X is a grandparent of Y
 or � � � � A �rst attempt at a program representing
the ancestor relation might then be as follows�

ancestor
X�Z��� parent
X�Z��

ancestor
X�Z��� parent
X�Y��parent
Y�Z��

ancestor
X�Z��� parent
X�Y���parent
Y��Y���parent
Y��Z�

It is clear that this �rst attempt program will only get ancestors up to great�
great�grandparents� Moreover
 it is clear that if we attempted to extend this
program in the obvious way to catch the general idea of an ancestor
 the program
would have to be in�nite�

Fortunately there is another way in Prolog of constructing the ancestor re�
lation� The idea is to de�ne it in terms of itself� We have the following two
clauses�

ancestor
X�Y��� parent
X�Y��

ancestor
X�Z��� parent
X�Y��ancestor
Y�Z��

Such de�nitions are called recursive clauses� With this addition to the family
tree program
 Prolog will now answer as follows�

�� ancestor
X�charles��

X � elizabeth�

X � philip�

X � george�

no

�� ancestor
george�X��

X � elizabeth�

��

X � charles�

X � anne�

X � william�

no

Recursive clauses are vital to Prolog programming and occur in almost all
programs of complexity�

��� Lists

Lists are a simple data structure used commonly in Prolog programming� A list
is a sequence of items
 for example elizabeth
 charles
 william
 anne� This
list is represented in Prolog as�

�elizabeth�charles�william�anne�

A special case
 the empty list
 or list containing no items
 is represented as
follows�

��

It is often useful in Prolog to split a list into two parts�

� the �rst item
 or head of the list
 and

� the rest
 or tail of the list�

There is a special notation in Prolog for this purpose� Lists can also be
written in the following form�

�Head�Tail�

It should be remembered that Tail is another list� Thus the following lists
are all equivalent�

�elizabeth�charles�william�anne��

�elizabeth��charles�william�anne���

�elizabeth�charles��william�anne���

�elizabeth�charles�william��anne���

�elizabeth�charles�william�anne����

As an example of the use of list notation �and a further example of recursion�

consider the member relation� Observe that X is a member of a list L if

��

� X is the head of L
 or

� X is a member of the tail of L�

Clauses for the membership relation can therefore be written as follows�

member
X��X�Tail���

member
X��Head�Tail���� member
X�Tail��

Lists are especially useful when combined with recursion� Let us add the
following facts to the family tree program�

enjoys
william�tennis��

enjoys
charles�polo��

enjoys
philip�grouse�shooting��

enjoys
anne�equestrianism��

We can then de�ne the recursive clause

enjoy
�������

enjoy
�Person�Others���Sport�Sports����

enjoys
Person�Sport��

enjoy
Others�Sports��

Prolog will now give the following answer�

�� enjoy
�anne�charles�william�philip��X��

X � �equestrianism�polo�tennis�grouse�shooting�

��

Chapter �

An example of Progol

This chapter contains a worked example of how to use Progol to solve a simple
problem� Many ideas are introduced in this chapter without much comment�
they are covered in more detail in later chapters� This chapter is meant as a
broad introduction to the sort of problem with which Progol can help
 and to
the sort of solution which it provides�

��� The Problem

We are given a sequence of trains �see �g ����� Each train has attached a number
of cars
 each of which may have a number of di�erent properties such as being
long or short
 having a roof or no roof
 and having a shape painted on the side�
In addition
 we are given that each train is either travelling east or travelling
west� The problem is to �nd a rule which will predict
 from the properties of
its cars
 in which direction a train is travelling� Before seeing how Progol deals
with this problem
 it is worthwhile attempting to solve this problem manually
to get a measure of its di�culty�

����� A Positive Example

The �rst thing is to start Progol� This is done �assuming the Progol source
directory has been added to the �login �le� by typing the following�

	 progol

Progol is now running in interactive mode
 and a ���� prompt is seen�
The �rst positive example can now be given to Progol�

�� eastbound
train���

Progol responds with the following�

��

E W

1.

2.

3.

4.

5.

6.

Figure ���� Eastbound and Westbound Trains

�� eastbound
train���

�Reduced clause is eastbound
train���

��eastbound
train���
 added to clauses�

�Testing for contradictions�

�No contradictions found�

�eastbound
train��� � Time taken ����s�

��

This is saying that Progol has added the clause to its stock of examples
 and
has tested the examples to see if they are contradictory� They are not
 since we
have so far only told Progol the one fact that train number one is eastbound�

����� Head Mode Declarations and Types

We now need a mode declaration� Mode declarations are used by Progol to
guide the process of constructing a generalization from its examples� We type
the following�

�� modeh
��eastbound
�train���

Mode declarations are discussed in more detail in Chapter �� As we have
said in Chapter �
 the general rules which Progol constructs are also expressed
in Prolog clauses
 which have a head and body� This mode declaration says
that the general rules may have heads �it is a modeh declaration� we will come
across a corresponding modeb declaration soon for clause bodies� containing

��

eastbound
X�
 where X is a variable of type train� The number � is called the
recall and is discussed in Chapter ��

Progol responds to the mode declaration as follows�

�� modeh
��eastbound
�train���

yes

��� modeh
��eastbound
�train��� � Time taken ����s�

��

Having said that eastbound is applied to things of type train
 we must
ensure that train number one is indeed of type train� We do this by typing the
following�

�� train
train���

����� Testing for correctness with �

Progol now has a minimal amount of information about the sequence of trains
and how to construct general rules concerning whether or not they are east�
bound� To check whether or not we have entered this information correctly
 we
can type the following�

�� eastbound
train���

This instructs Progol to construct the most speci�c clause from the example
given and the mode declarations� The most speci�c clause is an object which
Progol uses in the process of constructing general rules from examples� We
will not go into details of the theory underlying its use
 but we can use it as a
convenient test to ensure that we are entering the information in roughly the
correct manner� In any case where we have entered a single positive example of
a property p
 along with a head mode declaration and type
 we expect the most
speci�c clause to be p
A�� Thus
 if all is correct
 Progol will respond as follows�

�� eastbound
train���

�Testing for contradictions�

�No contradictions found�

�Most specific clause is�

eastbound
A��

�eastbound
train��� � Time taken ����s�

��

��

����� The listing facility

This reassures us that we are entering the information in a correct manner
 and
we can continue to add more� We can add some more positive examples �rst�

�� eastbound
train���

�� eastbound
train���

�� train
train���

�� train
train���

Let us check what information Progol now knows about the sequence of
trains� We can do this by using the listing facility� We type the following�

�� listing
eastbound����

eastbound
train���

eastbound
train���

eastbound
train���

�Total number of clauses � ��

yes

��� listing
eastbound���� � Time taken ����s�

��

The listing facility presents a complete rundown of all clauses Progol cur�
rently knows with heads containing eastbound� The �� in eastbound�� is its
arity �see Chapter ��
 which must accompany a predicate when using listing�
We can do the same for train��� The listing facility is used regularly to
check what Progol currently knows�

����� Body Mode Declarations

We can add more information about the trains and their cars� Let us adopt the
convention that the nth car after train number m is called carm�n�

�� nextcar
train��car�����

�� nextcar
train��car�����

�� nextcar
train��car�����

We now need a body mode declaration� We type the following�

�� modeb
��nextcar
�train��car���

��

This mode declaration says that the general rules which Progol constructs
may have bodies containing predicates of the form nextcar
X�Y� where X is a
variable of type train and Y is a variable of type car� Again
 the � is the recall
and is explained in Chapter �
 as is the use of � and � with types�

We also remember to add the correct type information�

�� car
car�����

�� car
car�����

�� car
car�����

����� The modes facility

We can also add information about the shapes on the cars� We type the follow�
ing� �The use of � with types is explained in Chapter ���

�� �� modeb
��shape
�car��shape���

�� shape
car����circle��

�� shape
car����circle��

�� shape
car����circle��

�� shape
circle��

We have now entered all the information relating to the eastbound trains�
We have already introduced the listing facility for checking what Progol knows
about a particular predicate� there is a similar method of checking what infor�
mation Progol has about the current mode declarations� We simply type the
following�

�� modes�

Progol replies to this as follows�

�� modes�

Head modes

mode
��eastbound
�train��

Body modes

mode
��nextcar
�train��car��

mode
��shape
�car��shape��

yes

��� modes� � Time taken ����s�

��

�	

����	 Negative Examples

The only task remaining is to enter information relating to the trains which are
not eastbound
 i�e� the negative examples of eastbound� Negative examples are
given to Progol as follows�

�� ��eastbound
train���

�� ��eastbound
train���

�� ��eastbound
train���

The fact that the example is negative rather than positive is marked by the
occurrence of �� before the example�

We must also enter additional type and background information for the new
trains and cars�

�� train
train���

�� train
train���

�� train
train���

�� nextcar
train��car�����

�� nextcar
train��car�����

�� nextcar
train��car�����

�� car
car�����

�� car
car�����

�� car
car�����

�� shape
car����square��

�� shape
car����square��

�� shape
car����square��

�� shape
square��

�

����
 Generalising

Having entered all the information we have relating to the trains
 we can ask
Progol to generalise from these examples and form a more general rule� We type
the following�

�� generalise
eastbound����

Progol replies to this as follows�

�� generalise
eastbound����

�Generalising eastbound
train����

�Most specific clause is�

eastbound
A� �� nextcar
A�B�� shape
B�circle��

�C��������� eastbound
A���

�C��������� eastbound
A� �� nextcar
A�B���

�C�������� eastbound
A� �� nextcar
A�B�� shape
B�circle���

�� explored search nodes�

f���p���n���h��

�Result of search is�

eastbound
A� �� nextcar
A�B�� shape
B�circle��

�� redundant clauses retracted�

eastbound
A� �� nextcar
A�B�� shape
B�circle��

�Total number of clauses � ��

yes

��� generalise
eastbound���� � Time taken ����s�

��

This requires some explanation� What Progol does when asked to construct
a general rule can be divided into three parts� Without going into detail
 the
�rst part
 which takes up to the third line of the above output
 is to construct the
most speci�c clause of the �rst positive example� In this case
 the �rst positive
example is eastbound
train��
 and its most speci�c clause is eastbound
A�
�� nextcar
A�B�� shape
B�circle��

The second part is to make new clauses by combining the predicates con�
tained in the most speci�c clause� It compares these new clauses by considering
how many of the original examples they explain �positive and negative�� When
it �nds a clause which explains most of the positive examples �and none of the
negative ones�
 Progol selects this clause as its general rule� In this case
 the
result is in fact the most speci�c clause itself�

��

The third part is to add this general rule to its information concerning
the trains
 and remove any of the original positive examples which are now
redundant� In this case
 the new clause explains all of the original positive
examples
 and all three are removed� Progol reports the current state of its
knowledge concerning the eastbound predicate
 which is now that a train is
heading east if its �rst car has a circle on it�

����� Batch mode

So far we have been running Progol in interactivemode� This is especially useful
for small amounts of data and for testing a small part of larger data sets to see
if we are entering the data in a sensible way�

An alternative is to give Progol all the data at once
 rather than in the
piecemeal way we have been doing so far� We can enter the data into a text �le

using an editor such as emacs� A �le containing the data for the trains example
is given in �gure ����

We can then run Progol on this dataset from the command line as follows�

	 progol trains

This causes Progol to generalise every predicate with a modeh declaration
in the �le� In this case
 the only such predicate is eastbound
 and Progol out�
puts the same result as when asked to generalise
eastbound��� in interactive
mode�

��

�� Mode Declarations

�� modeh
��eastbound
�train���

�� modeb
��nextcar
�train��car���

�� modeb
��shape
�car��shape���

�� Types

train
train��� train
train��� train
train���

train
train��� train
train��� train
train���

car
car����� car
car����� car
car�����

car
car����� car
car����� car
car�����

shape
circle�� shape
square��

�� Background Information

nextcar
train��car����� nextcar
train��car�����

nextcar
train��car����� nextcar
train��car�����

nextcar
train��car����� nextcar
train��car�����

shape
car����circle�� shape
car����circle��

shape
car����circle�� shape
car����square��

shape
car����square�� shape
car����square��

�� Positive Examples

eastbound
train��� eastbound
train���

eastbound
train���

�� Negative Examples

�� eastbound
train��� �� eastbound
train���

�� eastbound
train���

Figure ���� The �le trains�pl

��

Chapter �

Mode Declarations

Mode declarations are at the heart of Progol�s method of generalising examples

and it is important that they are understood if Progol is to learn in the most
e�cient way� So far we have introduced them in the context of a simple example

and have said that they are used by Progol in constructing the general rules from
particular examples�

In particular
 we have said that they restrict the predicates which can occur
in the head and body of the general rules� Thus in our trains example
 the mode
declarations were as follows�

�� modeh
��eastbound
�train���

�� modeb
��nextcar
�train��car���

�� modeb
��shape
�car��shape���

The �rst of these says that the general rules may have heads containing the
predicate eastbound
X�
 where X is of type train� The second says that the
general rules may have bodies containing the predicate nextcar
X�Y�
 where X
is of type train and Y is of type car� The third is similar�

There are two other ways in which the mode declarations are used by Progol
in constraining its search for a general rule
 however� the recall and the use of
�
 �
 and � with types�

��� �� �� and � types

We have seen that the �rst mode declaration above gives the information that
the rules may have heads containing the predicate eastbound
X�
 where X is of
type train
 but the declaration actually tells us slightly more than this� because
the type is �train
 it says that X must be a variable of type train� Thus
 we
can have rules with heads containing
 for example
 eastbound
A�
 but not heads
containing eastbound
train���

��

Conversely
 the � in the �shape type says that we must have constants

not variables
 of type shape� Thus we can have rules with bodies containing
shape
B�circle� but not shape
B�C��

There is
 however
 a complication� The �
 as well as �
 also requires its types
to be instantiated with variables rather than constants� What is the di�erence�

����� Input and output variables

The simplest way to demonstrate the di�erence is to give examples of input and
output variables in Prolog� Let us recall some of the examples of Chapter �
 in
particular the member predicate
 which was de�ned as follows�

member
X��X�Tail���

member
X��Head�Tail���� member
X�Tail��

We can ask Prolog questions such as the following�

�� member
���������

yes

�� member
X��������

X � ��

X � ��

no

��

Consider what would happen if we asked Prolog the following question�

�� member
��X��

This question is asking Prolog what lists � is a member of� Clearly there are
an in�nite number of answers
 and Prolog cannot �nd all of them� In fact Prolog
does give a series of answers
 but none are of much help� The member predicate
was not really written with those sorts of questions in mind� the �rst argument
was meant to be the variable
 not the second� This is expressed by saying that
the �rst argument is an output variable and the second is an input variable�
The distinction is not always clear �for example
 both parent
X�william��

and parent
charles�X� are sensible questions�
 but many predicates may give
unexpected results if questions are asked concerning them in which the variables
occur in input arguments�

This sort of di�culty is prevented in Progol by the use of � and � in con�
junction with types� � types are used where there is an input argument of a
predicate
 and � types are used for an output argument� In cases where argu�
ments can be both input and output
 two mode declarations can be given�

��

��� Mode Declaration Recall

The number � is the recall of the mode declarations� The recall can be any pos�
itive whole number n � �
 or ���� The recall is used as a bound on the number
of alternative instantiations of the predicate� An instantiation of the predicate
is a replacement of the types by either variables or constants in accordance with
the �
 �
 and � information�

If we know that there are only a certain number of solutions for a particular
instantiation
 we can tell this to Progol in the recall to save Progol searching
fruitlessly for further solutions� For example
 we know that each train only has
one car following it
 so we can give the recall of the nextcar mode declaration
as �� If we were giving a mode declaration for the parent predicate in some
problem
 we might give the recall as �
 since everyone has at most two parents

and similarly � for a grandparent declaration�

The ��� recall is used when there is no limit to the number of solutions
for an instantiation� For example
 there is no limit on the number of ancestors
people have
 so we might have ��� for the recall in an ancestor mode declaration�
In fact
 Progol substitutes an arbitrary large number �by default ���� for ���
recalls
 and will stop after this number of instantiations� in practice this does
not cause any di�culties�

��

Chapter �

Parameter Settings

There are several user settable parameters which control the way in which Pro�
gol carries out its tasks� Each is described below� Some parameters take integer
values� these are marked below with �
N��
 and are set with the system pred�
icate set
Parameter�Value��� The remainder take as values either ON or
OFF� They are turned on and o� with the system predicates set
Parameter��
and unset
Parameter��� The values of all user de�nable parameters can be
examined by typing settings��

c
N� c is the maximum length of �i�e�
 number of atoms in� the body of the
general rules which Progol constructs� Thus
 when Progol is considering
the various clauses it can make out of combinations of predicates in the
most speci�c clause �see p����
 it will discard any clauses of length greater
than c� This can be useful as in many applications the most speci�c clause
may be very large
 and consideration of every combination may be a long
and fruitless job� The default for c is ��

condition
ON�OFF� The condition setting is used when learning from
positive data� See Chapter � for more details on this subject� When
condition is set to ON
 Progol will construct the probability distribu�
tion from the examples given� When set to OFF
 it assumes they are
drawn from a uniform distribution� The default for condition is ON�

cover
ON�OFF� When set to ON
 Progol uses cover searching� This is
essential for learning recursive clauses� When set to OFF
 Progol uses
implicational searching� This is faster but recursive clauses cannot be
learned� The default is ON�

h
N� Progol constructs the most speci�c clause from an example using an
inference rule known as resolution� h is the maximum number of appli�
cations of this rule which Progol may use in deriving the most speci�c

��

clause� Often Progol will not need to use this many
 but if it hits this
barrier it will give a warning indicating so� The default for h is ���

i
N� Progol is constrained in constructing the most speci�c clause not only
by h
 but also by i� i is the maximum depth of the variables which may
occur in the most speci�c clause
 where the depth d�v� of a variable v in
a clause C is de�ned as follows�

d�v� �

�
�� if v is in the head of C
�minu�Uvd�u�� � �� otherwise

where Uv are the variables in atoms in the body of C containing v�

As an example of the depth of a variable
 consider the following clause�

eastbound
A��� nextcar
A�B�� shape
B�C��

In this clause
 variable A has depth �
 B has depth �
 and C has depth ��

The default for i is ��

in
ate
N� When Progol is searching through the combinations of predicates
from the most speci�c clause
 in order to construct its general rule
 it
is looking for the combination which
 in a general rule
 would compress

the data the most � in other words
 reduce the number of predicates
the most� We can
 in this search
 give a weighting to the data or to the
predicates in a general rule� This weighting is inflate
 and is expressed as
a percentage� Thus
 for example
 if Progol was constructing a general rule
from � examples with inflate set to ����
 it would not bother learning
a rule of length � as it would not compress the data into anything smaller�
However
 if inflate were set to ����
 it would � since the data now has
�size� ����� The default for inflate is �����

memoing
ON�OFF� When Progol is searching for a general rule
 it con�
structs many combinations and calculates various statistics for each com�
bination� It may happen occasionally that Progol has to consider the same
rule more than once� Its search will clearly be faster if it can remember
the statistics from last time� This can be achieved by setting memoing

to ON� The downside of setting memoing to ON is that more memory
is taken up in remembering the statistics � a time�space tradeo�� The
default is ON�

nodes
N� Progol will give up searching for a general rule after it has searched
through N combinations without success� The default is ������

noise
N� We may not always require our rules to be perfect� in some cases

we may want to allow them to predict a small percentage of the negative
examples� This percentage can be set by noise� The default is ��

��

posonly
ON�OFF� When set to ON
 this sets Progol to learn from positive
examples only� See Chapter � for more details on learning from positive
data� The default is OFF�

reductive
ON�OFF� We can constrain the form of the general rules in an�
other way by setting reductive to ON� When this is done
 the terms in
the body of a learnt rule must be less complex than those in the head

where the complexity of a term is the number of its subterms� The default
is OFF�

searching
ON�OFF� We can change the behaviour of � by setting searching
to ON� Normally � constructs the most speci�c clause� When searching

is ON
 however
 the e�ect of � is the same as generalise� The default
is OFF�

splitting
ON�OFF�

tracing
ON�OFF� This ag turns on the Progol tracing facility� It can also
be set by the system predicate trace� and unset by notrace�� The
default is o��

verbose
N� This sets the amount of output Progol gives
 and takes values �

� or �� � gives virtually no output
 just the answer itself
 whereas � gives
information
 runtime statistics etc� as well� The default is ��

�	

Chapter �

Testing Procedures

Once Progol has learnt a general rule from examples
 the problem arises as
to how to evaluate the rule� There are
 of course
 many di�erent properties
which a rule may have
 and which we might wish to evaluate
 such as how
easily understandable the rule is
 how original it is
 or how much insight the
rule provides into the nature of the original problem� These are all important
characteristics of general rules
 and may
 in some cases
 be more important than
the topic which is the concern of this chapter� predictive accuracy� However

the property of predictive accuracy lends itself to a quanti�able analysis
 which
unfortunately the others do not�

The methods used to evaluate the predictive accuracy of a rule vary accord�
ing to the number N of examples which we have available to test the rule with

since statistical measures are in general decreasingly valid for smaller data sets�

��� N � ��� 	 test��

The test
File� predicate computes the predictive accuracy of a pre�learnt
rule on a �le of examples File�pl from the current directory� The procedure
for carrying out this task is as follows�

�� Use generalise�� to learn the rule to be tested�

�� Add to the current program all relevant types
 background information
etc�
 concerning the examples in File�pl�

�� test
File��

An example of this procedure is the following�� Let us assume that we
have carried out the tasks in Chapter �
 and that Progol therefore has all the

�N�B� In this example� N � � �� ���� The example is for illustrative purposes only and

would not be statistically signi	cant�

�

information from the �le trains�pl
 and has used it to learn the following
general rule�

eastbound
A��� nextcar
A�B��shape
B�circle��

This is step ��

�� 	 progol

�� consult
trains��

�� generalise
eastbound����

Step � is to add to the current program the background information relating
the test examples from the �le extra�background�pl
 which is displayed in
�gure ����

�� �� consult
extra�background��

Note that in this �le we have an eastbound train �number ��� with a square

and a westbound train �number ���
 with a circle�

We create a new �le of test examples
 traintest�pl
 which is shown in
�gure ����

The �nal step � is to test the learnt rule on the test examples�

�� �� test
traintest��

This produces the following output�

�� test
traintest��

�False positive��eastbound
train����

�False negative���� eastbound
train����

�PREDICATE eastbound���

Contingency table� ��������A���������A

P� �� �� �

�
 �����
 �����

�P� �� �� �

�
 �����
 �����

�������������������

� �

�Overall accuracy� !����� ��� �������

�Chi�square � �����

�Without Yates correction � �����

�Chi�square probability � ���!"��

yes

��� test
traintest�� � Time taken ����s�

��

nextcar
train!�car!���� nextcar
train �car ����

nextcar
train"�car"���� nextcar
train���car������

nextcar
train���car������ nextcar
train���car������

nextcar
train���car������ nextcar
train���car������

train
train!�� train
train ��

train
train"�� train
train����

train
train���� train
train����

train
train���� train
train����

car
car!���� car
car ����

car
car"���� car
car������

car
car������ car
car������

car
car������ car
car������

shape
car!���circle�� shape
car ���circle��

shape
car"���circle�� shape
car�����square��

shape
car�����square�� shape
car�����square��

shape
car�����square�� shape
car�����circle��

Figure ���� The �le extra�background�pl

�� Positive Examples

eastbound
train!��

eastbound
train ��

eastbound
train"��

eastbound
train����

�� Negative examples

�� eastbound
train����

�� eastbound
train����

�� eastbound
train����

�� eastbound
train����

Figure ���� The �le traintest�pl

��

This output requires explanation� Progol has taken each of the examples
from the test �le
 and checked whether the information in its current program
�which includes the learnt rule and the new background information� predicts
it or does not predict it� In this case
 it predicted all except for train number
��
 an eastbound train with a square on it
 and number ��
 a westbound train
with a circle on it� It reports these failures as false positives and false negatives
respectively�

The remaining section is a range of statistics concerning the predictions of
the general rule� The �rst is a contingency table � P is for predicted
 and A for
actual results � and then accuracy and �� statistics�

��� N � �� 	 leave
one
out with leave��

In the case where N � ��
 there may only just be enough examples for Progol
to learn a rule at all
 leaving none for testing purposes� What is done to deal
with this problem is the following� Taking each example in turn
 Progol puts it
to one side and learns what it can from the remaining N � � examples� It then
tests this learnt rule against the one it has left out� This is repeated for all of
the N examples� The procedure is thus the following�

�� Give Progol the examples to be learned from
 but do not use generalise��
to learn from them�

�� leave
Predicate�Arity��

An example of this procedure is the following� We give Progol the �le
trains�pl
 and for technical reasons� an extra positive example�

	 progol

�� consult
trains��

�� eastbound
train!��

�� train
train!��

�� nextcar
train!�car!����

�� car
car!����

�� shape
car!���circle��

�� leave
eastbound����

�The 	le trains�pl contains only three positive examples� If we leave one out� Progol will

only have two to learn from� and will not produce a general rule�

��

Progol responds to this with a long list of results for each omitted example

followed by a contingency table
 accuracy and �� statistics as before� In fact

Progol manages to predict each of the omitted examples correctly�

��� �� � N � ��� 	 ��
fold cross validation

The procedure for ���fold cross validation is similar to leave�one�out
 but since
there a few more examples to play with
 we can a�ord to leave more than one
out for testing� What is done is the following�

� Randomize the order of the example set

� Divide the resulting set of examples into ten subsets
 each containing ���
of the examples

� For each of the ten ��� subsets

� Use generalise to learn from the remaining
��

� Use test to �nd the accuracy of the rule on the ���

��

Chapter �

Learning from positive

data

There are special di�culties associated with learning which takes place from
solely positive examples� To see that this is not surprising
 imagine that we
ourselves were trying to learn the concept �brillig��� We are given many exam�
ples of entities which are brillig
 but none which are not brillig� Two hypotheses
might suggest themselves to us� �rstly that everything is brillig
 and secondly
that the only things which are brillig are exactly the examples which we have
seen
 and no more� Without any information about what things are not brillig

it is impossible for us to come up with a sensible rule for what things are brillig
and what things are not
 other than these�

In fact
 Progol can get round this di�culty in the following way� It supposes
that examples are randomly chosen to construct the training set
 but only those
that are positive are given to the learner� The probability of particular examples
being chosen is assessed from the positive examples provided�

��� The posonly parameter and range
restricted

clauses

Very little of what has been said so far in this manual has to be changed when
Progol is learning from positive data only� There are only two things to remem�

�

Twas brillig� and the slithy toves

Did gyre and gimble in the wabe�

All mimsy were the borogroves�

And the mome raths outgrabe�

Lewis Carroll� Jabberwocky

��

ber
 and the �rst is simple� we have to set the posonly parameter to ON� This
is done by typing the following�

�� set
posonly��

The second is that all clauses in the de�nitions of types used in the modeh
declarations must be what is known as range�restricted
 a term which will be
explained below� The reason for this is as follows� In order to get information
about the unavailable negative examples �as described above�
 Progol needs to
estimate the probability distribution of the positive and negative examples� It
does this by constructing what is known as a Stochastic Logic Program from the
original �le of examples and background knowledge� Unfortunately
 however

this method only works if all types in the original �le are range�restricted�

A clause C is range�restricted if every variable occurring in the head of C also
occurs in the body of C� An example of a range�restricted type is the following
de�nition of a list of people�

list
����

list
�P�L�� �� person
P��list
L��

person
charles��

person
diana��

This is range�restricted since no variables occur in list
���
 person
charles�
or person
diana�
 and since all variables occurring in the head of clause � �i�e�
P and L� also occur in the body of clause ��

��

Chapter 	

Other commands

This chapter contains a complete overview of all system predicates and facilities�

��� �� ��� is a built in Prolog predicate which decomposes a compound term
into a list of the function and its arguments� For example

f
T��T��T�� ��� �f�T��T��T��

�� �� �� is a built in Prolog predicate which is true if its arguments are
identical�

advise�� advise
File�� writes the current program to the �le File�pl�

any�� any is a predicate which is true of any argument� It is often used in
typing information in a case where a predicate can be applied to any
object
 not just objects of a particular type�

arg�� arg
N�Term��Term�� is a predicate which is true if the Nth argument of
the compound term Term� is Term��

asserta�� asserta
Clause�� causes the Clause to be inserted into the cur�
rent program�

bagof�� bagof
X�Clause�B� is a built in Prolog predicate which is true if B
is the bag of X such that Clause is true
 where Clause is some clause
containing the variable X� A bag is the same as a set except that elements
can have multiple occurrences�

chisq�� chisq
AP� AP�A P� A P�� prints �� statistics
 where AP is the num�
ber of actual and predicted results
 A P is the number of actual but un�
predicted results
 etc�

clause�� clause
Head�Body� is a built in Prolog predicate which is true if in
the current program there is a clause with head Head and body Body�

��

clause�� clause
Head�Body�N� is a predicate which is true if clause number
N has head Head and body Body�

commutative�� commutative
Predicate�Arity�� tells Progol that
Predicate is commutative
 i�e� that its arguments can be taken in any
order� For example
 if we consider the family tree situation of Chapter �

we would want to declare a related predicate as commutative since X is
related to Y if and only if Y is related to X�

commutatives commutatives� displays a list of the predicates which Progol
currently knows to be commutative�

constant�� constant
X� is a built in Prolog predicate which is true if X is a
constant�

consult�� consult
File�� reads in File�pl from the current directory�

determination�� determination
Predicate��Arity�Predicate��Arity� tells
Progol that Predicate� is de�ned in terms of Predicate�� When form�
ing rules with heads containing Predicate�
 Progol thus disregards body
mode declarations other than those containing Predicate��

edit�� edit
Predicate�Arity�� allows editing of the current clauses con�
taining Predicate via the default text editor�

element�� element
Element�List� is a predicate which is true if Element is
a member of the list List�

�xedseed fixedseed sets the seed for the random number generator to �� This
is used to generate a repeatable series of random numbers�

oat�� float
X� is a predicate which is true if X is a oating point number�

functor�� functor
Term�Symbol�Arity� is a built in Prolog predicate which
is true if the compound term Term has function symbol Symbol with arity
Arity�

generalise�� generalise
Predicate�Arity�� tells Progol to generalise the
predicate Predicate� See Chapter � for more details�

help help� returns a list of system predicates and procedures
 and information
about how to �nd out more about them�

help�� help
Predicate�Arity�� returns a line or two of information con�
cerning the predicate�

hypothesis�� hypothesis
Head�Body�N� is true if the current rule under con�
sideration has head Head and body Body
 and number N�

��

int�� int
X� is a built in Prolog predicate which is true if X is an integer�

is�� X is Y is a built in Prolog predicate which is true if expression Y evaluates
to X�

label�� label
Clause� increments the label of the clause�

label�� label
Clause�N� is true if the label of Clause is N�

leave�� leave
Predicate�Arity�� performs leave�one�out testing on Predicate�
See Chapter � for more details�

length�� length
List�Length� is a predicate which is true if list List has
length Length�

listing listing� returns a list of all current user�de�ned predicates�

listing�� listing
Predicate�Arity�� returns a list of all the current clauses
of Predicate�

modeb�� modeb
Recall�Clause
Type�����Typen��� adds a body mode
declaration to the current program� See Chapter � for more details�

modeh�� modeh
Recall�Clause
Type�����Typen��� adds a head mode dec�
laration to the current program� See Chapter � for more details�

modes modes� returns a list of all current mode declarations�

name�� name
Constant�List� is a predicate which is true if List is a list of
ASCII codes for Constant�

nat�� nat
X� is a predicate which is true if X is a natural number�

nl nl� produces a blank line�

normal�� normal
X�Mu�Sigma�� gives a random X taken from a normal dis�
tribution with mean Mu and standard deviation Sigma�

nospy nospy� turns o� all spies� See spy�� for more details�

not�� not
Clause� is true if Clause is not true�

notrace notrace� sets the tracing ag to OFF�

number�� number
X� is a predicate which is true if X is anumber�

op�� op
Precedence�Associativity�Symbol�� de�nes an operator
with symbol Symbol� The precedence of the operator over others is given
by Precedence
 which must be an integer
 and its associativity by
Associativity
 which must be one of the following� xfy � Right As�
sociative
 yfx � Left Associative
 xfx � Non Associative �bracketing must
be speci�ed�
 or fx � Unary Operator�

�	

ops ops� returns a list of all user de�ned operators�

otherwise otherwise is a predicate which is always true�

quit quit exits Progol�

randomseed randomseed sets the seed of the random number generator to a
number based on the internal date�

read�� read
X� is a predicate which
 when called
 reads X from input and is
true for this value�

read�� read
File�X� is a predicate which behaves as for read��
 except that
X is read from File rather than from input�

read��� read�
X�� reads continually from input until an end�of�file char�
acter is received�

reconsult�� reconsult
File�� reconsults File�pl from the current direc�
tory
 replacing any changes made since the last consultation�

record�� record�� is a predicate used by bagof to record instances�

reduce�� reduce
Predicate�Arity�� removes any redundant clauses from
the given predicate�s de�nition�

repeat repeat is a predicate which succeeds inde�nitely on recall� It behaves
as if de�ned by the following clauses�

repeat�

repeat��repeat�

retract�� retract
Clause�� removes Clause from the current program�

sample�� sample
Predicate�Arity�N�S�� returns in S a list of N randomly
sampled atoms of Predicate�

see�� see
File�� opens File�pl for reading�

seen seen closes a �le open for reading�

set�� set
Setting�� sets Setting to ON
 where Setting is one of the fol�
lowing� condition
 cover
 memoing
 posonly
 reductive
 sampling

searching
 splitting
 tracing� See Chapter � for more details�

set�� set
Setting�N�� sets Setting to N
 where Setting is one of the fol�
lowing� c
 h
 i
 inflate
 nodes
 noise
 verbose�

�

setof�� setof
X�Clause�S� is a built in Prolog predicate which is true if S
is the set of X such that Clause is true
 where Clause is some clause
containing the variable X�

settings settings� returns a list of the user de�nable parameters and their
current values�

size size� returns a list of the size in bytes of various data types�

sort�� sort
List��List�� is a predicate which is true if List� is a sorted
version of List��

spies spies� returns a list of all predicates being spied� See spy�� for more
details�

spy�� spy
Predicate�Arity�� places a spy on Predicate� A spy is like a
mini�tracer� Whenever Predicate is called
 Progol switches the tracing
parameter to ON
 and back to OFF again when the call is �nished�

stats stats returns information on the current use of memory�

tab�� tab
N�� returns N spaces�

tell�� tell
File�� opens File�pl for writing�

test�� test
File�� tests the predictive accuracy an File�pl� See Chapter �
for more details�

told told� closes a �le open for writing�

trace trace� sets the tracing parameter to OFF�

true true is a built in Prolog predicate which is always true�

uniform�� uniform
X�Lo�Hi�� returns a random X from a uniform distribu�
tion in the interval !Lo
Hi"�

unset�� unset
Setting�� sets Setting to OFF
 where Setting is one of the
following� condition
 cover
 memoing
 posonly
 reductive
 sampling

searching
 splitting
 tracing� See Chapter � for more details�

var�� var
X� is a built in Prolog predicate which is true if X is a variable�

write�� write
X� is a predicate which
 when called
 outputs X and succeeds�

��

