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Abstract. The amount of data produced by ubiquitous computing applications is quickly growing, due to the pervasive presence
of small devices endowed with sensing, computing and communication capabilities. Heterogeneity and strong interdependence,
which characterize ‘ubiquitous data’, require a (multi-)relational approach to their analysis. However, relationaldata mining
algorithms do not scale well and very large data sets are hardly processable. In this paper we propose an extension of a
relational algorithm for multi-level frequent pattern discovery, which resorts to data sampling and distributed computation in
Grid environments, in order to overcome the computational limits of the original serial algorithm. The set of patterns discovered
by the new algorithm approximates the set of exact solutionsfound by the serial algorithm. The quality of approximation
depends on three parameters: the proportion of data in each sample, the minimum support thresholds and the number of samples
in which a pattern has to be frequent in order to be consideredglobally frequent. Considering that the first two parameters
are hardly controllable, we focus our investigation on the third one. Theoretically derived conclusions are also experimentally
confirmed. Moreover, an additional application in the context of event log mining proves the viability of the proposed approach
to relational frequent pattern mining from very large data sets.

1. Introduction

Recent advances in sensor technology and computing environments are moving toward mobile, finely
distributed, interacting, dynamic environments. The pervasive presence of such environments in real life
is driving the recent interest in the paradigm ofubiquitous computing[19], according to which computing
is omnipresent and devices that do not look like computers are endowed with computing capabilities.
All these devices are also capable of communicating and their synergetic activities potentially contribute
to developing electronic environments that are sensitive and responsive to the presence of people.

The success of prospected technological advancements strongly depends on the actual capacity of
newer ubiquitous computing applications to exploit knowledge which is hidden in the the huge amount
of data produced by devices. An aspect of ubiquitous scenarios is that they are usually described by
many different data types [25]. In sensor networks, for instance, the snapshot of a given situation can be
depicted by different sensors which collect multi-modal data (e.g., images, sounds, videos, temperature,
light, and acceleration). Furthermore, data involved in ubiquitous scenarios (e.g., blog networks or
cascaded sensors) have a complex inner structure with several explicit or implicit relationships. From
a knowledge discovery perspective, the heterogeneity and the structure of ubiquitous data are a great
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source of complexity which demands sophisticated preprocessing and data integration techniques as well
as advanced data mining algorithms.

Studies in (Multi-) Relational Data Mining (MRDM) [14] and Inductive Logic Programming (ILP) [26]
have already addressed issues related to heterogeneous data coming from multiple sources [32], which
can be of many different types and are typically stored in several database relations. Therefore, their
application to knowledge discovery from data generated in an ubiquitous computing environment is, at
least in principle, both appropriate and effective [13]. However, a common problem in the wide range of
MRDM and ILP (or simplyrelational) solutions which can mine different types of patterns and models
(e.g., classification rules, association rules, and clusters) remains their actual scalability. Despite some
advances on this front, such as the declarative bias which limits the size of the search space [27], the
query transformations [10] and the lazy evaluation of examples [5] which optimize the efficiency of
testing each candidate hypothesis, much remains to be done in order to make current relational systems
applicable to very large data sets such as those produced by ubiquitous computing environments.

In this paper we focus on the task of frequent pattern discovery, that is, the generation of those patterns
which occur frequently, with respect to a given threshold, in a data set. Frequent patterns play an essential
role in association rule mining, sequence mining, outlier detection, clustering and classification. They
can be itemsets, sequences, subgraphs, and can be expressedin different languages. In this work we
are interested in relational patterns, which can be expressed as sets of atomic formulae (or atoms). Our
interest is governed by potential applications to data collected in ubiquitous computing environments.

Several systems allow relational frequent pattern discovery. Two representative examples of the
state-of-the-art are WARMR [11] and SPADA [22]. They both represent relational data and domain
(or background) knowledgèa la Datalog [6], a logic programming language with no function symbols,
specifically designed to implement deductive databases. Moreover, their design is based on the logical
notions of generality order and downward/upward refinementoperator, which are used to structure and
search the space of relational patterns. The main difference is that WARMR is not able to properly and
efficiently perform multi-level analysis, since it lacks mechanisms for dealing properly with concept
hierarchies. By mapping concept hierarchies into different levels of granularity it is possible to extract
patterns at different granularity (or abstraction) levels. More abstract patterns tend to be more frequent,
but less informative, hence the need for an inter-level exploration of the pattern space, in order to find the
most interesting patterns. In SPADA, pattern constructionproceeds from more general to more specific
granularity levels, so that it is possible to profitably exploit information collected at higher levels, in
order to prevent the generation and evaluation of weak patterns at lower levels.

The problem with both relational frequent pattern discovery systems is their actual applicability to very
large data sets. Indeed, frequent pattern discovery is a computationally demanding task, because of the
exponential size of the search space. In addition, the discovery of relational patterns is complicated by
the inefficiency of the test of a single pattern against a dataset. To develop a scalable, high performance
system it is possible to resort to a parallel, distributed approach.

Strategies to parallelize ILP systems and to speed up the learning time are presented in [12,16].
However, all proposed solutions work in a shared-memory architecture and do not permit a real advantage
in terms of space complexity. Almost all methods proposed for distributed memory architectures face
classification tasks [21,18,17], hence they are not appropriate for relational frequent pattern discovery.

In this paper, we propose a parallel, distributed algorithmin order to mine relational frequent patterns
from very large databases. The algorithm wraps SPADA, although it is general enough to be applicable to
any other relational frequent pattern discovery system, such as WARMR. It is three-stepped: 1) multiple
samples from the original data are initially extracted; 2) locally frequent relational patterns are discovered
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by running SPADA on computational nodes of a GRID; 3) the set of globally frequent relational patterns
is approximated by analyzing locally discovered patterns.The quality of approximation depends on three
parameters: the proportion of data in each sample, the minimum support thresholds, and the number of
samples in which a pattern has to be frequent in order to be considered globally frequent. Considering
that the first two parameters are hardly controllable, sincethey depend on main memory capability and
application requirements respectively, we focus our investigation on the third parameter, the number
of samples. We characterize the probability distribution that a pattern is frequent in at leastk out of
n samples and we derive theoretical considerations on the expected quality of approximation. These
considerations are also empirically supported by experiments on two real databases.

The contributions of this paper are three-fold. First, we develop a general parallel, distributed algorithm
for relational frequent pattern mining. Second, we characterize the probability distribution of the patterns
belonging to the set of frequent patterns. Third, we empirically evaluate our parallel, distributed algorithm
on two real databases.

The paper is organized as follows. In the next section, some related works are revised. In Section 3, we
discuss the theoretical background on the relational frequent pattern discovery in SPADA. The distributed,
parallel algorithm, which makes feasible the application of SPADA to large data sets, is presented in
Section 4. Experimental results on two real databases are reported and discussed in Section 5. Finally,
some conclusions are drawn.

2. Related work

In recent years several parallel, distributed extensions of serial algorithms for frequent pattern discovery
have been proposed. For instance, the CD [2], FDM [7], and DDM[34] algorithms parallelize Apriori [1],
and PDM [30] parallelizes DHP [29]. In all these algorithms,frequent patterns are discovered by
partitioning the tuples of a single large database relationamong a set of computational nodes and then
processing the task in a distributed manner.

Schuster et al. [35] propose a distributed frequent patternmining algorithm, called D-sampling, which
is inspired by the Sampling framework originally proposed by Toivonen [38]. The idea behind Sampling
is that a random sample of the database is used to discover allfrequent patterns, which are then validated
in a single database scan. D-sampling parallelizes the computation of frequent patterns by sampling the
original database at several nodes and by locally computingfrequencies associated to patterns that are
then globally validated.

Silvestri and Orlando [36] propose an algorithm for approximate mining of frequent patterns, called
APInterp, which is a distributed version of the frequent pattern mining algorithm DCI [28].APInterp,
computes local patterns independently for each node and then merges them. During a second phase, an
approximate support inference heuristic is used to merge results.

Singh et al. [37] propose a strategy to mine frequent patterns in very large databases by exploiting both
a Grid-platform and an efficient implementation of the standard Apriori algorithm. Random samples of
the original database are generated and then patterns whichare locally frequent in each random sample
are efficiently mined. Approximate globally frequent patterns are generated from locally frequent ones.

Although all these approaches lead to interesting achievements in terms of scalability, they work in the
classical propositional data mining setting and are not able to deal with structured and heterogeneous data
stored in several relations of a database. To the best of our knowledge, the only distributed system for
relational frequent pattern discovery is PolyFARM [8], a distributed version of WARMR. There are three
types of components to PolyFARM: Farmer, Worker and Merger.The Farmer is responsible of generating
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candidate patterns according to a level-wise search strategy [24]. The generation is constrained by both
a language bias and the frequent patterns from the previous level. Once the set of candidate patterns at
a given level is generated, the database is partitioned so that each partition fits in main memory. Each
Worker reads in all the candidates, its own database partition and the common background knowledge,
and then it counts the local frequency of the patterns on the database partition. The Merger collects
results of completed Worker jobs and sums local frequency counts up for each candidate pattern. This
way, the exact frequency count is available for each candidate pattern. These data are reused by the
Farmer to prune infrequent patterns and to generate the nextlevel of candidates. This iterative process
stops when the set of candidate patterns generated by the Farmer is empty. The Workers are run on a
Beowulf cluster (http://www.beowulf.org/).

PolyFARM presents several drawbacks. First, each iteration requires synchronization of all Workers,
i.e., it is not possible to move to the next iteration unless all Worker jobs have been completed. The
number of iterations depends on the size of the most specific frequent pattern, while the number of
Worker jobs depends on the main-memory capabilities. Second, the overhead paid at each iteration is
considerably large, since Workers are necessarily stateless and they need to read a database partition at
each iteration. Third, the number of candidate patterns held in main-memory can grow impractically
large [9].

Our contribution aims to overcome these limits through a different approach based on independent
multi-sample mining [33]. In particular, several samples of the original database are generated such
that each of them can fit in main memory. The number of samples is independent of the main-memory
capability. Samples are shipped to the computation nodes ofa Grid together with the common background
knowledge and sets of locally frequent patterns are independently generated for each sample. Finally,
these sets are post-processed by a combining procedure to produce the final set of approximate global
frequent patterns.

This approach presents several advantages. It is not iterative and it does not require repeated process
synchronization. Jobs activated on different Grid nodes are independent and do not require repeated data
loading to generate (locally) frequent patterns. It is scalable to very large databases. The minimization
of communication overhead makes it more suitable for loosely coupled systems, such as computational
Grids, which transparently tolerate network topology changes and nodes failure. Only locally frequent
patterns are loaded in main memory by the combining procedure. Finally, independent multi-sampling
allows us to characterize the probability distribution of approximate global frequent patterns. The price
paid for these advantages is that the returned set of frequent patterns is not guaranteed to be complete
and correct.

3. Relational frequent pattern discovery

SPADA is the only ILP system which addresses the task of relational frequent pattern discovery by
dealing properly with concept hierarchies. In the following subsections, details on the representation
formalisms for data and background knowledge used by SPADA,as well as details on the search strategy
adopted by SPADA to discover multi-level frequent patterns, are reported. We assume the reader is
familiar with the concepts of logic programming [23] or deductive databases [6].

3.1. Representing data and models

Data stored in distinct tables of a relational database describe distinct objects involved in the phe-
nomenon under investigation. These objects play differentroles and it is necessary to distinguish
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Fig. 1. Three-level hierarchies on activity and actor.

between the setS of reference(or target)objects, which is the main subject of analysis, and the setsRk,
1 6 k 6 M , of task-relevant(or non-target) objects, which are related to the former andcan contribute
to accounting for the variation. For eachRk, a generalization hierarchyHk (k = 1, . . . , M ) is defined.
A functionψk maps objects inHk into a set of granularity levels{1, . . . , L}.

In the logic framework adopted by SPADA, a relational database is converted to a deductive databaseD.
Properties of both reference and task-relevant objects arerepresented in the extensional partDE , while
the background knowledge (BK) is expressed as a normal logicprogram which defines the intensional
partDI . Example 1 shows how the normal logic program inDI allows deductions to be made (i.e.
concluding additional atoms) from data stored inDE .

Example 1. LetD be a deductive database which contains the event log of executed process instances.
The constantsc1 andc2 denote two distinct process instances (reference objects), while the constants
a1, a2, a3, anda4 identify four activities and the constantsu1 andu2 identify two actors (task-relevant
objects).DE includes the ground atoms:

process(c1). process(c2).
activity(c1,a1). activity(c1,a2). activity(c2,a3). activity(c2,a4).
is a(a1,namemaker). is a(a2,workflow). is a(a3,workflow). is a(a4,delete).
time(a1,10). time(a2,25). time(a3,22). time(a4,23).
actor(a1,paul). actor(a2,paul). actor(a3,paul). actor(a4,mary).
is a(paul,user). is a(mary, admin).

whileDI is the normal logic program:
before(A1, A2)← activity(C, A1),activity(C, A2), A1 6= A2,

time(A1,T1), time(A2,T2), T1<T2,
not(activity(C, A), A6= A1, A6= A2, time(A,T), T1<T, T<T2)

which entails the following temporal information: before(a1, a2), before(a3, a4).

The set of predicates can be categorized into four classes. Thekey predicateidentifies the reference
objects inS (e.g., processis the key predicate in Example 1). Theproperty predicatesare binary
predicates which define the value taken by an attribute of an object (e.g.,time). Thestructural predicates
are binary predicates which relate task-relevant objects (e.g.,actor) as well as reference objects with
task-relevant objects (e.g.,activity). Theis a predicate is a binarytaxonomicpredicate which associates
a task-relevant object with a value of someHk. In Example 1, ground atoms ofis a predicate define the
two hierarchies shown in Fig. 1. Each hierarchy has three levels which are naturally mapped into three
granularity levels.

Theunits of analysisD[s], one for each reference objects ∈ S, are subsets of ground facts inDE ,
defined as follows:

D[s] = is a(R(s)) ∪D[s|R(s)] ∪
⋃

ri∈R(s)

D[ri|R(s)], (1)
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where:

– R(s) is the set of task-relevant objects directly or indirectly related tos;
– is a(R(s)) is the set ofis a atoms which define the types ofri ∈ R(s);
– D[s|R(s)] contains properties ofs and relations betweens and someri ∈ R(s);
– D[ri|R(s)] contains properties ofri and relations betweenri and somerj ∈ R(s).

This notion of unit of analysis is coherent with the individual-centered representation [3], which has
both theoretical (PAC-learnability) and computational advantages (smaller hypothesis space and more
efficient search). The set of units of analysis is a partitioning of DE into a number of subsetsD[s],
each of which includes ground atoms concerning the task-relevant objects (transitively) related to the
reference objects (see Example 2).

Example 2. The unit of analysisD[c1] is the set of ground atoms concerning the activities and actors
involved in a specific process executionc1:

is a(a1,namemaker). is a(a2,workflow). is a(paul,user).
process(c1). activity(c1,a1). activity(c1,a2).
time(a1,10). time(a2,25). actor(a1,paul). actor(a2,paul).

In this exampleR(c1) = {a1, a2, paul}.

Relational patterns are conjunctions of Datalog atoms, which can be expressed by means of a set
notation. For this reason they are also calledatomsets[11], by analogy with itemsets introduced for
classical association rules. A formal definition of relational pattern is reported in the following.

Definition 1. A relational patternP is a set of atomsp0(t
1
0), p1(t

1
1, t

2
1), p2(t

1
2, t

2
2), . . . , pr(t

1
r, t

2
r), where

p0 is the key predicate, whilepi, i = 1, . . . , r, is either a structural predicate or a property predicate or
an is a predicate.

Termstji are either constants, which correspond to values of property predicates, or variables, which
identify reference objects either inS or in someRk. Eachpi is either extensionally or intensionally
defined. Patterns in the search space explored by SPADA satisfy the linkedness [20] property, which
means that each task-relevant object in a relational patternP defined as in Definition 1 must be transitively
linked to the reference objectt10 by means of structural predicates.

Each patternP is associated with a granularity levell. This means that all taxonomic (is a) atoms
in P refer to task-relevant objects, which are mapped by someψk into the same granularity levell. In
multi-level association rule mining, it is possible to define anancestorrelation between two patternsP
andP ′ at different granularity levels.

Definition 2. A patternP at granularity levell is anancestorof the patternP ′ at granularity levell′,
l < l′, if P ′ can be obtained fromP by replacing each task-relevant objecth ∈ Hk at granularity levell
(l = ψk(h)) with a task-relevant objecth′, which is more specific thanh in Hk and is mapped into the
granularity levell′ (l′ = ψk(h

′)).

By assigning a patternP with an existentially quantified conjunctive formulaeqc(P ) obtained by
transformingP into a Datalog query, we can now provide a formal definition ofthe support ofP onD.

Definition 3. A patternP coversD[s] if D[s]∪BK |= eqc(P ), i.e.,D[s]∪BK logically entailseqc(P ).
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Each relational patternP is associated with a parametersup(P,D), which is the percentage of units
of analysis inD covered byP (support). The minimum support forfrequentrelational patterns depends
on the granularity levell (1 6 l 6 M ) of task-relevant objects. It is denoted asminsup[l].

Definition 4. A patternP [sup(P,D)] at levell is frequentif sup(P,D) > minsup[l] and all ancestors
of P are frequent at their corresponding levels.

Example 3. Let us consider the deductive database in Example 1 and suppose thatminsup[1] = 80%
andminsup[2] = 40%. Then the following patterns:

process(A), activity(A,B), is a(B,activity), before(B,C), is a(C,activity) [100%].
process(A), activity(A,B), is a(B,namemaker), before(B,C), is a(C,workflow) [50%].

are frequent at levels 1 and 2 respectively.

3.2. Ordering patterns in the search space

Frequent pattern discovery in SPADA is performed accordingto both an intra-level search and inter-
level search. The intra-level search explores the space of patterns at the same level of granularity. It
is based on the level-wise method [24], which performs a breadth-first search of the space, from the
most general to the most specific patterns, and prunes portions of the search space which contain only
infrequent patterns. The application of the level-wise method requires a generality ordering, which is
monotonic with respect to pattern support. The generality ordering considered in this work is based on
the notion ofθ-subsumption [31].

Definition 5. P1 is more general thanP2 under θ-subsumption (P1 �θ P2) if and only if P1 θ-
subsumesP2, that is, a substitutionθ exists, such thatP1θ ⊆ P2.

Example 4. Let us consider the following relational patterns:
P1 ≡ is a(B,namemaker)
P2 ≡ is a(B,namemaker), before(B,C)
P3 ≡ is a(B,namemaker), before(B,C), is a(C,workflow)

whose variables are implicitly existentially quantified. ThenP1 θ-subsumesP2 (P1 �θ P2) and P2

θ-subsumesP3 (P2 �θ P3) with substitutionsθ1 = θ2 = ⊘.

The relation�θ is a quasi-ordering (or preorder), since it is reflexive and transitive but not antisym-
metric. Moreover, it is monotonic with respect to support [22].

Proposition 1. LetP1 andP2 be two relational patterns at the same levell, defined as in Definition 1. If
P1 �θ P2, thensup(P1,D) > sup(P2,D).

It is noteworthy that, ifP1 andP2 are two relational patterns, such thatP1 �θ P2 andP1 is not frequent
(sup(P1,D) < minsup[l]), then alsoP2 is not frequent (sup(P2,D) < minsup[l]). Therefore, the
monotonicity of�θ with respect to support allows for pruning the search space without loosing frequent
patterns.

In the inter-level search, SPADA refines patterns discovered at levell by descending the generalization
hierarchies by one level. Indeed, by the definition of a frequent pattern, a necessary condition for pattern
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P to be frequent at levell+ 1 is that an ancestor patternP ′ exists at levell, such thatP ′ is frequent. The
inter-level search takes advantage of statistics computedat levell to prune the search space at levell+1.

In real-world applications, a large number of frequent patterns can be generated, most of which are
useless. To prevent this, in SPADA it is possible to specify which atoms should occur in the discovered
patterns (language bias). Pattern constraints can also be used to specify exactly both the minimum and
the maximum number of occurrences of an atom in a pattern.

4. Parallel, distributed relational pattern discovery

Despite the general pruning mechanisms described above andthe domain-specific constraints expressed
in the language bias, the application of SPADA to a very largedatabase is still hindered by both the high
computational cost of the search and the usage of an in-memory deductive database. Computational
limits of SPADA in processing large databases are overcome by distributing and (possibly) parallelizing
the discovery of sets oflocally frequent patterns and then deriving an approximation of theexact set of
frequent patterns, which would be discovered on the entire database.

4.1. Data sampling

Sampling can speed up the mining process by more than an orderof magnitude, by reducing I/O costs
and drastically shrinking the number of transactions to be considered [38,40]. Moreover, when data
are kept in main memory, as in SPADA, sampling is the only way to make their analysis feasible. The
sampling procedure considered in this work is similar to that used in bootstrap estimation of a parameter
(e.g., predictive accuracy of a classifier) [15], as well as in some ensemble data mining methods, such
as bagging [4], which combine multiple models to achieve better prediction accuracy than any of the
individual models.

More precisely,n sample extensional databasesDj
E , j = 1, . . . , n, are formed by randomly sampling,

with replacement, theN (N = |S|) units of analysis in the original extensional databaseDE . Each
Dj

E includesm units of analysis, hence,m reference objects are used to compute the support of a local
pattern. The proportion of units of analysis in eachDj

E is p = m/N .
It is noteworthy that then sample extensional databasesDj

E are neither mutually exclusive nor
exhaustive, i.e., they do not partition the original data set, so, even 10 samples withp = 0.1 do not
generally cover the entire database. The probability that aparticular unit of analysis is not in

⋃

j D
j
E is

the following:

(1− 1/N)nm. (2)

Whenn = N/m, i.e.,n = 1/p, the above probability approximatese−1 for largeN , wheree is Euler’s
number (≈ 2.7183). Sincee−1 ≈ 0.368, this means that the expected number of reference objects in
⋃

j D
j
E is 62.3% of the those inS.

Differently from data partitioning, which is affected by only one parametern (the number of partitions),
the data sampling procedure used in this work is controlled by two parameters:p andn. The former
is set on the basis of the actual storage capability of nodes of the distributed architecture. The latter
affects the amount of computational resources required to generate the globally frequent patterns, as
well as the accuracy of the set of global patterns discovered. Indeed, by increasingn, the probability
(2) decreases, thus it is more likely that someDj

E includes at leastp% of reference objects inDE ,



A. Appice et al. / A parallel, distributed algorithm for relational frequent pattern discovery 77

which support a patternP at levell. If P is globally frequent (sup(P,DE) > minsup[l]), it is more
likely thatP is a locally frequent pattern for someDj

E . At the same time, ifP is not frequent inDE

(sup(P,DE) < minsup[l]), then it is unlikely thatP is locally frequent in many of the samplesDj
E

(sup(P,Dj
E) > minsup[l]). By properly choosing the numberk of samplesDj

E in which P has to
be locally frequent in order to be considered globally frequent, it is possible to find the right trade-off
between precision and recall.

Theoretically, the sampling procedure used in this work is different from the sequential random
sampling without replacement used by Zaki et al. [40] to mineconventional association rules from very
large databases. However, it is practically the same whenp is small (p < 0.05), since there is a very small
probability that any unit of analysis will be chosen more than once. The advantages of our procedure
are: (i) it is computationally simpler, since it is not necessary to remove the drawn unit of analysis from
further consideration, (ii) it is potentially more accurate, since the selection of frequent patterns is based
on multiple samples and not a single one, and (iii) the estimate of the support of a pattern is based on
several independent observations (samples) rather than ononly one.

4.2. Distributing computation on Grid

A sample extensional databaseDj
E and the intensional databaseDI may be shipped along with

SPADA to several computation nodes of a Grid using gLite middleware. gLite1 is a middleware for Grid
computing which provides a framework for building Grid applications, utilizing the power of distributed
computation and storage resources across the Internet. Distributed computation is done by submitting
parametric jobs, described in JDL (Job Description Language), through the command line interface. The
submission of jobs on Grid is performed in several steps, namely:

1. authentication,
2. preparation of the jobs,
3. uploading the sample databases (stage-in),
4. submission of a relative parametric job,
5. checking/waiting for the results,
6. getting the results (stage-out).

4.3. Computing approximate global frequent patterns

Once relational patterns have been discovered for each sample database, they are pairwise compared
in order to compute the number of sample databases where theyare locally frequent. The comparison of
two patternsP andQ discovered in two distinct database samples is based on anequivalence testunder
θ-subsumption, which is defined as follows:

P ≡ Q iff (P �θ Q) ∧ (Q �θ P ). (3)

Those patterns which are (locally) frequent in at leastk sample databases, withk 6 n, are selected as
globally frequent patterns and are added to a setGFP (k).

By varying the parameterk from 1 to n it is possible to generate a series of setsGFP (k), such
thatGFP (1) ⊇ GFP (2) ⊇ . . . ⊇ GFP (n) (see Fig. 2). The following proposition characterizes the
probability distribution of frequent patterns inGFP (k).

1http://glite.web.cern.ch/glite/
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Fig. 2. The set of globally frequent patterns (GFP(k)) monotonically decreases with increasingk values. The set of frequent
patterns inDE (exact globally frequent patterns) includes most probablythe set GFP(n) and is most likely included in the set
GFP(1).

Proposition 2. LetP be a relational pattern at levell with supportsup(P,DE). Then:

Pr(P ∈ GFP (k)) =

n
∑

i=k

(

n
i

)

qi(1− q)n−i (4)

where:

q =
∑m

v=⌈m·minsup[l]⌉

(

m
v

)

· sup(P,DE)v · (1− sup(P,DE))m−v

is the probability thatP is frequent in a sample extensional database.

Proof. LetS(P,DE) be the support set of the relational patternP inDE , i.e., the set of units of analysis
in DE that are covered byP . Then

sup(P,DE) =
|{s ∈ S | D[s] ∈ S(P,DE)}|

|S|
. (5)

LetDj
E be a sample extensional database,Dj

E ⊆ DE , with m units of analysis. The random selections
of the m units of analysis to be added toDj

E are independent trials, since units are sampled with
replacement. By checking that each randomly selected unit of analysis belongs to the support set ofP ,
we have a sequence of Bernoulli trials, where the probability of success issup(P,DE). Therefore, the
following random variable:

X
def
= “Dj

E includes exactlyv units of analysis which belong toS(P,DE)”,
has a binomial distribution:

Pr(X = v) =

(

m
v

)

· sup(P,DE)v · (1− sup(P,DE))m−v (6)

The probability thatP is frequent inDj
E can be defined as follows:

Pr(sup(P,Dj
E) > minsup[l]) = Pr(X > ⌈m ·minsup[l]⌉) (7)

From Eq. (6) it follows that:

Pr(X > ⌈m ·minsup[l]⌉) =

m
∑

v=⌈m·minsup[l]⌉

(

m
v

)

· sup(P,DE)v · (1− sup(P,DE))m−v (8)
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Thus the probability thatP is frequent in one sample extensional database is:

q =
m

∑

v=⌈m·minsup[l]⌉

(

m
v

)

· sup(P,DE)v · (1− sup(P,DE))m−v (9)

In the case ofn sample extensional databases, which are drawn independently, the probability that
P is frequent inexactlyk of them again follows a binomial distribution with probability q of success.
Therefore, the probability thatP is frequent inat leastk sample extensional databases is:

Pr(P ∈ GFP (k)) =
n

∑

i=k

(

n
i

)

qi(1− q)n−i (10)

Proposition 2 implies that frequent patterns inDE are more likely to be inGFP (k), for some fixed
k. Indeed, ifP is a frequent pattern inDE at levell, thensup(P,DE) is relatively high (certainly it is
greater thanminsup[l]), therefore bothq andPr(P ∈ GFP (k)) tend to be relatively high. Moreover,
proposition 2 also implies that for largern, Pr(P ∈ GFP (k)) is higher, independently of whetherP is
frequent inDE or not. This means that the recall of frequent patterns increases withn, at the expense of
reduced precision (see next section for an empirical confirmation).

It is noteworthy thatPr(P /∈ GFP (1)) = (1− q)n, therefore, it is very unlikely that frequent patterns
in DE (i.e., patterns with highq value) are not inGFP (1). Moreover,Pr(P ∈ GFP (n)) = qn,
therefore it is very unlikely that patterns locally frequent in all sample extensional databases are not
frequent inDE (i.e., they have a smallq value).

The support of a globally frequent patternP discovered at levell is approximated by averaging the
support values computed on those samples whereP is frequent. Formally:

approximateGlobalSup(P ) =

∑n
j=1 sup(P,D

j
E) ·G(P,Dj

E)
∑n

j=1G(P,Dj
E)

(11)

whereG(P,Dj
E) is the indicator function defined as follows:

G(P,Dj
E) =

{

1 if sup(P,Dj
E) > minsup[l]

0 otherwise.

5. Experimental results

In order to evaluate the proposed distributed frequent pattern discovery algorithm, we performed
experiments on data derived from event logs. In ubiquitous computing applications event logs are
generated by systems in charge of polling sensors and registering which events happen in the environment
when executing a given process instance. In this case, frequent pattern discovery is a mature technology to
reconstruct an explanatory model of the underlying phenomenon from fragments of temporal sequences
of actions performed by various actors. This model can then be used to explain (temporal) relationships
between events, to simulate/predict future behavior of anyprocess as well as to understand and optimize
the process itself. Since events may include activities andtheir properties, actors and their properties,
relationships between activities and actors (who does what), temporal relationships between activities
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Fig. 3. ProM three-level hierarchy on activity.

and additional relationships between actors, the natural choice for discovering frequent patterns is to
resort to the relational data mining setting. In addition, multi-level analysis is a desirable characteristic,
since activities and actors are often organized in hierarchies of classes. For example, an activity can be a
‘create’ task, a ‘delete’ task or an ‘execute’ task. An actorcan be a user or an administrator. Multi-level
analysis allows the mapping of these hierarchies into different levels of granularity and the extraction of
fragments of process models (patterns) at various abstraction levels.

Experiments are performed by processing both an event log publicly available on ProM web site2 and
an event log provided by THINK3 Inc3. The goal of the experiments on the ProM data is to compare
approximate global patterns, which are discovered in a distributed manner, with the exact global patterns,
which are discovered by SPADA on the whole dataset. Statistics collected refer to both precision and
recall of the parallel, distributed algorithm, as well as tothe accuracy of the support estimation procedure.
Statistics on time required for database sampling, local pattern discovery and globally frequent patterns
approximation are also collected. The goal of experiments on the THINK3 data is to prove the actual
scalability of the proposed method and its applicability tovery large databases.

5.1. ProM data

ProM database collects 374 executions of processes which handle the complaints (namelyAfschriften)
in a municipality in The Netherlands. The period under analysis is from May 4th 2005 to November 8th
2005. For each process instance, the database collects 24.5activities on average. The total number of
activities is 9,174, while the number of distinct actors is 29. Activities are classified as complete (1,343),
schedule (6,673), resume (178), start (809), suspend (166)and unknown (5). Taxonomic knowledge on
activities is encoded in a three level hierarchy (see Fig. 3). Process instances play the role of reference
objects, while activities and actors play the role of task-relevant objects.

For each activity, a textual description is registered in the event log. This description corresponds to
the workflow name. In this experiment, we deal with 14 distinct workflows. The extensional database
DE includes 37,070 ground atoms. The intensional databaseDI includes the definition of the temporal
relationssimultaneousandbeforewhich take into account the temporal autocorrelation of activities.

simultaneous(A1, A2)← activity(C, A1), activity(C, A2), A16= A2,
time(A1,T1), time(A2,T2), T1=T2.

before(A1, A2)← activity(C, A1),activity(C, A2), A16= A2,
time(A1,T1), time(A2,T2), T1<T2,

2http://is.tm.tue.nl/∼cgunther/dev/prom/
3http://www.think3.com/en/default.aspx
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not(activity(C, A), A6= A1, A6= A2, time(A,T), T1<T, T<T2).

Different minimum support thresholds are defined for each level, so that the higher the level (i.e.
the more abstract the task-relevant objects involved in themodel), the higher the support (i.e. the more
selective the discovery process). We set the following parametersminsup[1] = 0.25,minsup[2] =
0.1 andmax len pat = 9. The latter defines the maximum number of atoms in the frequent relational
patterns, which are evaluated during the search.

With the thresholds defined above, a set of 2,460 relational frequent patterns (FP ) is discovered by
mining the entire database. Two examples of frequent patterns discovered at levell = 2 are reported
below.
P1: process(A), activity(A,B), is a(B,suspend), before(B,C), C6=B,

is a(C,resume), before(C,D), D6=B, D6=C, is a(D,schedule),
simultaneous(D,E),E6=B, E6=C, E6=D, is a(E,complete).

[#ro=61, sup=16.31%].

P1 describes the execution order between three activities.P1 is supported by 61 out of 374 executions
(i.e., reference objects).

P2: process(A), activity(A,B), is a(B,start), actor(B,C), C6=B, is a(C,actor),
before(B,D), D6=B, D6=C, is a(D,schedule), workflow(B,ag08 GBA afnemer),
workflow(D,ar01 Wacht Archief).

[#ro=39, supp=10.42%].

P2 involves both activities and actors and is supported by 39executions.
The frequent pattern discovery is then distributed onn sample databases, which containp% units

of analysis stored in the original database. Multi-level frequent patterns are locally discovered at each
computation unit and global patterns are approximated fromthe local ones, by varyingk from 1 ton.

To evaluate the quality of the approximation of the set of frequent patterns inDE , we consider three
statistics, namelyrecall, precision, andF-score, which are defined as follows [39]:

recall =
|GFP (k) ∩ FP |

|FP |
(12)

precision =
|GFP (k) ∩ FP |

|GFP (k)|
(13)

F − score =
2× precision× recall

precision + recall
. (14)

All these measures range between 0 and 1: the higher their values, the better the parallel, distributed
algorithm performs. The recall estimates the probabilityPr(P ∈ GFP (k)|P ∈ FP ), while the
precision estimates the probabilityPr(P ∈ FP |P ∈ GFP (k)). The F-score is the weighted harmonic
mean of precision and recall, with equal weight for both recall and precision.

Some experiments are performed to empirically prove that recall decreases (conversely, precision
increases) whenk increases. We keep constant the exponent in formula 2, by settingn = 1/p. This way
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Fig. 4. Precision (a), recall (b), and F-score (c) obtained with n = 5, p = 20%,n = 10, p = 10% andn = 20, p = 5%, by
varyingk in [1,20].

we ensure that about 62.3% of process instances are considered in the analysis. In particular, experiments
are performed with the following parameter settings:n = 5 andp = 20%,n = 10 andp = 10%,n =
20 andp = 5%.

The values of recall, precision and F-score obtained by varying the parameterk are reported in Fig. 4.
As expected, whenk = 1 recall is high (100%), although precision is low (between 40% and 60%).
Conversely, recall decreases for increasingk values. The F-score increases withk up to a maximum
and then decreases. The maximum is obtained whenk ≈ n

2 , which represent the best trade-off between
precision and recall. For example, whenn = 10 andp = 10% the distributed version of SPADA discovers
2,732 patterns withk = 5. A closer analysis of these patterns reveals that they cover 99.67% of the
patterns that are frequent on the entire database, at the expense of some false positives (about 10.24%).

An additional set of experiments is performed by doubling the number of database samples, i.e., by
settingn = 1/p. The F-score for various values ofk is reported in in Fig. 5. Also in this set of
experiments, the maximum of the F-score is observed for values ofk approximately equal ton2 .

The last observation raises the question of the real advantage of increasing the number of database
samples, oncep is fixed. To answer this question, the difference between theapproximated support,
computed according to formula 11, and the exact support, computed onDE , is analyzed. The difference
is computed for each exact pattern discovered by the distributed version of SPADA whenp = 10% and
n is set to either1/p or 1/2p. Box plots (see Fig. 6) are drawn by varyingk ∈ {1, n/2, n}. We observe
that:

– whenk approximatesn, although the recall decreases, the estimated support of globally frequent
patterns becomes closer to the exact support value;

– by doubling the number of samples, the support of globally frequent patterns is more accurate,
independently of the chosenk.
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Fig. 5. F-score obtained withn = 10,p = 20%,n = 20,p = 10% andn = 40,p = 5%, by varyingk in [1,40].

Fig. 6. Box plots of the differences between the approximatesupport of each pattern and the exact support, computed on the
entire database. In both casesp = 10%. In (a)n = 1/p while in (b)n = 1/2p.

Therefore, the real advantage of choosing larger values ofn is the increased accuracy of the estimated
support, i.e., the increased maximum value of the F-score. The disadvantage is the higher computational
cost.

Running SPADA on the entire ProM database takes 1,350 secs. Statistics on time required by the
distributed version of SPADA to generate database samples,to discover locally frequent patterns and to
select those in GFP(k) are reported in Tables 1, 2 and 3 respectively. Time of locally frequent pattern
discovery is averaged over the database samples, while timeof pattern selection is averaged over thek
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Table 1

Time (in secs) of database
sampling

p
n 5% 10% 20%
5 − − 8
10 − 11 14
20 20 26 −

40 56 − −

Table 2

Average time (in secs) of locally
frequent pattern discovery

p
n 5% 10% 20%
5 − − 1053
10 − 1286 1047
20 1480 1189 −

40 1493 − −

Table 3

Time (in secs) of pattern
selection for GFP(k)

p
n 5% 10% 20%
5 − − 4
10 − 6 7
20 11 40 −

40 17 − −

values.
We observe that time required for database sampling and pattern selection is negligible with re-

spect to the average time required by the locally frequent pattern discovery processes. Therefore, if
f(N, l,minsup[l]) is the time required by SPADA when it searches for frequent patterns of levell in the
entire databaseDE ofN units of analysis, the amount of work done by the parallel, distributed relational
pattern algorithm is approximatelyn · f(p · N, l,minsup[l]). Table2 shows that for ProM database,
f(p · N, l,minsup[l]) is of the same order of magnitude off(N, l,minsup[l]). Therefore, for small
databases, like ProM, which fit in main memory, the generation of an approximate set of globally frequent
patterns is not even beneficial from a computational viewpoint. The parallel, distributed algorithm is
suitable when the database does not fit in main memory (see next section) or, more in general, when
f(N, l,minsup[l])≫ f(p ·N, l,minsup[l]).4

Table 2 also shows the behavior off(p · N, l,minsup[l]). Indeed, the average time decreases from
1,493 to 1,053 whenp increases from 5% to 20%. Moreover, it starts increasing forhigher values ofp
(it is 1,350 whenp = 100%). This is justified by the following observation. For small datasets (smallp
values), the cost of evaluating a single pattern is low, but the number of false frequent patterns is high
(see the difference in precision ofGFP (1) for various values ofp in Figure 4a) and the pattern space is
not pruned enough. On the contrary, for large datasets (large p values), the cost of evaluating a single
pattern is higher, but there are few false frequent patternsand the search space is properly pruned.

5.2. THINK3 data

THINK3 event log describes 353,490 executions of business processes in a company. The period under
analysis is from April 7th 2005 to January 10th 2007 for a total of 1,035,119 activities and 103 actors.
Activities are classified as administrator tools (131), workflow (919,052), namemaker (106,839), delete
(2,767), deleteEnt (2,354), prpDelete (471), prpSmartDelete (53), prpModify (34) and cast (1,430).
Actors are classified as user (103), viewer (3) or administrator (2). Taxonomic knowledge on activities
and actors is encoded in two distinct hierarchies (see Fig. 7).

For each activity a textual description is registered in theevent log, while for each actor a working
group is defined. In this experiment, we have thirteen distinct descriptions of the activities and thirty-
three distinct groups of actors. The extensional databaseDE includes 4,374,840 ground facts, while the
intensional partDI includes the definition of the relationbefore. Additional predicates are intensionally
defined to group together similar activities. For example, the following clauses:

release(X)← description(X,freigabe).
release(X)← description(X,freigabeh).
release(X)← description(X,freigabej).
release(X)← description(X,freigabem).

define the predicate “release”, which describes the releasing activity (“freigabe” in German), indepen-
dently of the release type (H, J or M). Similarly, other clauses inDI provide a definition of new

4When the database does not fit in main memory, we assumef(N, l, minsup[l]) = ∞.
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Fig. 7. THINK3 three-level hierarchies on activity and actor.

predicates, such as,pruefung, techaend, cancelled, construction, ktgprocess, musterbau, nullserie,
techniche, tiffprocess, undermodifyand workinprogress, which describe different kinds of activities.
Process instances play the role of reference objects, whileactivities and actors play the role of task-
relevant objects.

Data are sampled withn = 100 andp = 1%, and the discovery of the local patterns is parallelized on
100 nodes. The size of the original database prevents the original algorithm SPADA from processing
units of analysis all at once. We set the following parameters: minsup[1] = 0.25,minsup[2] = 0.1,
minsup[3] = 0.01 andmax len path = 14. Actually, with the thresholds defined above, there are no
frequent patterns with more than twelve atoms, and very few with more than fourteen atoms.

The exact set of global patterns is approximated from the sets of patterns which are locally discovered
on each sample, by varyingk from 1 to 100. The number is reported in Table 4 and, as expected, it
decreases whenk increases. The average number of local patterns (at any level) discovered on each
sample is 673.11, while the standard deviation is relatively small (53.47). As reported in the last column
of Table 4, 369 local patterns (about 54% on average) are common to all samples.

A pattern which expresses a fragment of a process model at level l = 2 is as follows:
P3: process(A), activity(A,B), is a(B,workflow), before(B,C), C6=B,

is a(C,workflow), before(C,D), D6=B, D6=C, is a(D,workflow), actor(B,E),
is a(E,user), workinprogress(B), release(D), construction(C).

[k=90, #ro=19,789, approximateGlobalSup≈20.78].
This pattern reports the execution order between three activities (B,C andD), within a process instance
(A). BothB, C andD are workflow activities, butB is described aswork in progress,C asreleaseand
D asconstruction. The actor ofB is a simple user (E). The pattern P3 provides an explanatory model
for at least 19,789 process executions traced in the entire event log and it is found to be frequent in at
least 90 of the original 100 samples (k = 90). Its approximate support is 20.78% (> minsup[2]).
P3 is an ancestor of the following globally frequent pattern:
P4: process(A), activity(A,B), is a(B,workflow), before(B,C), C6=B,

is a(C,workflow), before(C,D), D6=B, D6=C, is a(D,workflow), actor(B,E),
is a(E,andrea), workinprogress(B), release(D), construction(C).

[k=90, #ro=1,139, approximateGlobalSup≈1.26]
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Table 4
Number of global frequent patterns discovered by varyingk in [1,100]

k 1 10 20 30 40 50 60 70 80 90 100
#P 1244 1043 820 747 669 619 574 539 498 468 369

which provides us with a deeper insight into the actor of the work-in-progress, who is identified as
andrea. This pattern, however, covers only 1,139 process executions and its approximate global support
is 1.26% (> minsup[3]).

As reported before, for this data set it was not possible to apply the original algorithm SPADA to the
entire database, as done for ProM data. Therefore, statistics on precision, recall and F-score could not be
collected. The main goal of this experiment is to prove the scalability of the proposed distributed method,
even in the presence of very large databases. However, a careful setting of the two parametersp andn
is likely to lead to good approximations of the global set of patterns, as in the previous experiments.

6. Conclusions

Data generated by ubiquitous computing applications present several distinctive characteristics which
complicate the knowledge discovery process [25]. First, they are produced asynchronously in a highly
decentralized way. Second, they emerge from a very high number of partially overlapping, loosely
connected sources. Third, they are produced in large quantities. Fourth, they are usually described by
many different data types. Fifth, they have a complex inner structure with several explicit or implicit
relationships. This paper faces the last three issues when mining frequent patterns. In particular,
we advocate a relational approach, in order to face the last two issues (heterogeneity and complex
interactions) and a distributed, parallel approach, in order to face the scalability issue.

The algorithm proposed for relational frequent pattern discovery is based on random sampling. In
particular,n samples are extracted from the original data set, such that each of them fits in main memory.
Data are shipped to computational nodes of a Grid and relational patterns, which are locally frequent,
are mined by means of the system SPADA. The sets of locally frequent patterns are then used to generate
the set of globally frequent patterns,GFP (k), by selecting only those relational patterns which are
locally frequent in at leastk (k 6 n) samples. A characterization of the probability distribution of
frequent patterns inGFP (k) allows us to draw some conclusions on precision and recall ofGFP (k),
with respect to the set of frequent patterns (FP ) computed on the whole data set. These conclusions
have been empirically proved by evaluating the proposed algorithm on a data set of logged events (ProM
data), which could be wholly processed in main memory. Statistics on the differences between estimated
and actual support of globally frequent patterns show that whenk approximatesn, although the recall
decreases, the estimated support of globally frequent patterns becomes closer to the exact support value.
Scalability of the proposed method has been proved on a very large data set of logged events (THINK3
data), which could not be directly processed by the originalserial version of SPADA.

The choice ofk is crucial in our proposal. Experimental results on ProM data showed that the best
trade-off in maximizing both precision and recall is found whenk ≈ n

2 . However, the dependence of
k on bothn and minimum support thresholds has to be more deeply investigated, both theoretically, by
characterizing and maximizing the conditional probabilitiesPr(P ∈ GFP (k)|P ∈ FP ) andPr(P ∈
FP |P ∈ GFP (k)), and empirically, by means of additional experiments undercontrolled conditions.
We also observe that SPADA is able to generate frequent patterns at different levels of granularity.
Generally, the higher the level, the lower the support of discovered patterns. Therefore, we expect that
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our future investigations on the selection of the bestk value will also allow us to define a suitable choice
of this parameter for the various granularity levels.

We also intend to extend our analysis to alternative sampling-based approaches proposed in the
literature for conventional association rule mining [38,40], which are based on a single sample whose
size is theoretically derived either on the basis of the Chernoff bound or on the basis of (an approximation
of) the binomial distribution.

This work is limited to frequent pattern discovery, while SPADA is actually able to generate association
rules from frequent patterns. The efficient evaluation/estimation of the confidence of association rules
generated fromGFP (k) requires further investigation.

Finally, we intend to study an alternative approach to the scalability issues, which is based on the
transformation of relational data into a propositional form. For this purpose, globally frequent patterns
can be used to define the new boolean features of the propositional data set, while efficient algorithms
for (propositional) frequent itemset mining can be appliedto the whole transformed data set.
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