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Abstract. The amount of data produced by ubiquitous computing appdies.is quickly growing, due to the pervasive presence
of small devices endowed with sensing, computing and conzatian capabilities. Heterogeneity and strong interdejeace,
which characterize ‘ubiquitous data’, require a (mul@itional approach to their analysis. However, relatiatzh mining
algorithms do not scale well and very large data sets areyhprdcessable. In this paper we propose an extension of a
relational algorithm for multi-level frequent pattern clis’ery, which resorts to data sampling and distributed adatjpn in
Grid environments, in order to overcome the computatidndts of the original serial algorithm. The set of patteriscdvered

by the new algorithm approximates the set of exact solutfonad by the serial algorithm. The quality of approximation
depends on three parameters: the proportion of data in eaghis, the minimum support thresholds and the number of lesmp
in which a pattern has to be frequent in order to be considgl@uhlly frequent. Considering that the first two parangter
are hardly controllable, we focus our investigation on thiedtone. Theoretically derived conclusions are also arpantally
confirmed. Moreover, an additional application in the cahté event log mining proves the viability of the proposegagach

to relational frequent pattern mining from very large datss

1. Introduction

Recent advances in sensor technology and computing envinats are moving toward mobile, finely
distributed, interacting, dynamic environments. The peive presence of such environments in real life
is driving the recent interest in the paradignubfquitous computinfL9], according to which computing
is omnipresent and devices that do not look like computerseadowed with computing capabilities.
All these devices are also capable of communicating andsleergetic activities potentially contribute
to developing electronic environments that are sensitiekrasponsive to the presence of people.

The success of prospected technological advancementsystrdepends on the actual capacity of
newer ubiquitous computing applications to exploit knayge which is hidden in the the huge amount
of data produced by devices. An aspect of ubiquitous soemigithat they are usually described by
many different data types [25]. In sensor networks, foranse, the snapshot of a given situation can be
depicted by different sensors which collect multi-modabda.g., images, sounds, videos, temperature,
light, and acceleration). Furthermore, data involved imulbous scenarios (e.g., blog networks or
cascaded sensors) have a complex inner structure withatewgalicit or implicit relationships. From
a knowledge discovery perspective, the heterogeneity mmdtructure of ubiquitous data are a great
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source of complexity which demands sophisticated prepging and data integration techniques as well
as advanced data mining algorithms.

Studies in (Multi-) Relational Data Mining (MRDM) [14] anddluctive Logic Programming (ILP) [26]
have already addressed issues related to heterogeneaudahg from multiple sources [32], which
can be of many different types and are typically stored iresvdatabase relations. Therefore, their
application to knowledge discovery from data generatedinl@iquitous computing environment is, at
least in principle, both appropriate and effective [13]wéwer, a common problem in the wide range of
MRDM and ILP (or simplyrelational) solutions which can mine different types of patterns ande®
(e.g., classification rules, association rules, and dsstemains their actual scalability. Despite some
advances on this front, such as the declarative bias whigitslithe size of the search space [27], the
guery transformations [10] and the lazy evaluation of exas\fb] which optimize the efficiency of
testing each candidate hypothesis, much remains to be dandeér to make current relational systems
applicable to very large data sets such as those produceidpyitous computing environments.

In this paper we focus on the task of frequent pattern disgptieat is, the generation of those patterns
which occur frequently, with respect to a given threshal@, dlata set. Frequent patterns play an essential
role in association rule mining, sequence mining, outlietedtion, clustering and classification. They
can be itemsets, sequences, subgraphs, and can be expnegstxtent languages. In this work we
are interested in relational patterns, which can be expdeas sets of atomic formulae (or atoms). Our
interest is governed by potential applications to dataectdid in ubiquitous computing environments.

Several systems allow relational frequent pattern disgovadwo representative examples of the
state-of-the-art are WARMR [11] and SPADA [22]. They botipnesent relational data and domain
(or background) knowledge la Datalog [6], a logic programming language with no functigmsols,
specifically designed to implement deductive databasesedider, their design is based on the logical
notions of generality order and downward/upward refineropetrator, which are used to structure and
search the space of relational patterns. The main differenthat WARMR is not able to properly and
efficiently perform multi-level analysis, since it lacks amanisms for dealing properly with concept
hierarchies. By mapping concept hierarchies into diffefevels of granularity it is possible to extract
patterns at different granularity (or abstraction) levéMore abstract patterns tend to be more frequent,
but less informative, hence the need for an inter-level@gion of the pattern space, in order to find the
most interesting patterns. In SPADA, pattern construgtiamteeds from more general to more specific
granularity levels, so that it is possible to profitably eipinformation collected at higher levels, in
order to prevent the generation and evaluation of weak sttt lower levels.

The problem with both relational frequent pattern discgegstems is their actual applicability to very
large data sets. Indeed, frequent pattern discovery is @atationally demanding task, because of the
exponential size of the search space. In addition, the disgmf relational patterns is complicated by
the inefficiency of the test of a single pattern against a sletaTo develop a scalable, high performance
system it is possible to resort to a parallel, distributeprapch.

Strategies to parallelize ILP systems and to speed up theimgatime are presented in [12,16].
However, all proposed solutions work in a shared-memotyigecture and do not permit a real advantage
in terms of space complexity. Almost all methods proposedifstributed memory architectures face
classification tasks [21,18,17], hence they are not apjatapiior relational frequent pattern discovery.

In this paper, we propose a parallel, distributed algorithiwrder to mine relational frequent patterns
from very large databases. The algorithm wraps SPADA, alihdt is general enough to be applicable to
any other relational frequent pattern discovery systech sis WARMR. It is three-stepped: 1) multiple
samples from the original data are initially extractedp2dlly frequent relational patterns are discovered
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by running SPADA on computational nodes of a GRID; 3) the §gtabally frequent relational patterns
is approximated by analyzing locally discovered pattefiiee quality of approximation depends on three
parameters: the proportion of data in each sample, the mmisupport thresholds, and the number of
samples in which a pattern has to be frequent in order to bsidered globally frequent. Considering
that the first two parameters are hardly controllable, siheg depend on main memory capability and
application requirements respectively, we focus our itigafon on the third parameter, the number
of samples. We characterize the probability distributioat ta pattern is frequent in at ledsbut of

n samples and we derive theoretical considerations on thecéxg quality of approximation. These
considerations are also empirically supported by expearismen two real databases.

The contributions of this paper are three-fold. First, wesdiep a general parallel, distributed algorithm
for relational frequent pattern mining. Second, we chands the probability distribution of the patterns
belonging to the set of frequent patterns. Third, we emglisievaluate our parallel, distributed algorithm
on two real databases.

The paper is organized as follows. In the next section, setated works are revised. In Section 3, we
discuss the theoretical background on the relational #atjpattern discovery in SPADA. The distributed,
parallel algorithm, which makes feasible the applicatibiSBADA to large data sets, is presented in
Section 4. Experimental results on two real databases pogtesl and discussed in Section 5. Finally,
some conclusions are drawn.

2. Related work

Inrecentyears several parallel, distributed extensibssrial algorithms for frequent pattern discovery
have been proposed. Forinstance, the CD [2], FDM [7], and D®Malgorithms parallelize Apriori[1],
and PDM [30] parallelizes DHP [29]. In all these algorithniequent patterns are discovered by
partitioning the tuples of a single large database relaimong a set of computational nodes and then
processing the task in a distributed manner.

Schuster et al. [35] propose a distributed frequent patténing algorithm, called D-sampling, which
is inspired by the Sampling framework originally proposgdbivonen [38]. The idea behind Sampling
is that a random sample of the database is used to discofexquient patterns, which are then validated
in a single database scan. D-sampling parallelizes the atatipn of frequent patterns by sampling the
original database at several nodes and by locally compfittngiencies associated to patterns that are
then globally validated.

Silvestri and Orlando [36] propose an algorithm for appmeaie mining of frequent patterns, called
APrnierp, Which is a distributed version of the frequent pattern mgnalgorithm DCI [28]. APryzerp,
computes local patterns independently for each node amdieeges them. During a second phase, an
approximate support inference heuristic is used to mergdtse

Singh et al. [37] propose a strategy to mine frequent patt@mery large databases by exploiting both
a Grid-platform and an efficient implementation of the stmddApriori algorithm. Random samples of
the original database are generated and then patterns at@dbcally frequent in each random sample
are efficiently mined. Approximate globally frequent patteare generated from locally frequent ones.

Although all these approaches lead to interesting achiemésin terms of scalability, they work in the
classical propositional data mining setting and are na ttbfleal with structured and heterogeneous data
stored in several relations of a database. To the best ofrmwlkdge, the only distributed system for
relational frequent pattern discovery is PolyFARM [8], atdbuted version of WARMR. There are three
types of components to PolyFARM: Farmer, Worker and Merglae Farmer is responsible of generating
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candidate patterns according to a level-wise search gir§2d]. The generation is constrained by both
a language bias and the frequent patterns from the prewewas IOnce the set of candidate patterns at
a given level is generated, the database is partitionedagetth partition fits in main memory. Each
Worker reads in all the candidates, its own database martthd the common background knowledge,
and then it counts the local frequency of the patterns on #tabése partition. The Merger collects
results of completed Worker jobs and sums local frequenaytsoup for each candidate pattern. This
way, the exact frequency count is available for each cameligattern. These data are reused by the
Farmer to prune infrequent patterns and to generate thdewettof candidates. This iterative process
stops when the set of candidate patterns generated by theeFar empty. The Workers are run on a
Beowulf cluster (http://www.beowulf.org/).

PolyFARM presents several drawbacks. First, each iteragquires synchronization of all Workers,
i.e., it is not possible to move to the next iteration unles\mrker jobs have been completed. The
number of iterations depends on the size of the most speo#fipiént pattern, while the number of
Worker jobs depends on the main-memory capabilities. Skdbtwe overhead paid at each iteration is
considerably large, since Workers are necessarily ststaled they need to read a database partition at
each iteration. Third, the number of candidate patternd lmemain-memory can grow impractically
large [9].

Our contribution aims to overcome these limits through &ediint approach based on independent
multi-sample mining [33]. In particular, several sampléshe original database are generated such
that each of them can fit in main memory. The number of sampleglependent of the main-memory
capability. Samples are shipped to the computation node&adfl together with the common background
knowledge and sets of locally frequent patterns are indaguetty generated for each sample. Finally,
these sets are post-processed by a combining proceduredoger the final set of approximate global
frequent patterns.

This approach presents several advantages. It is hotivesatd it does not require repeated process
synchronization. Jobs activated on different Grid nodesratependent and do not require repeated data
loading to generate (locally) frequent patterns. It is @k to very large databases. The minimization
of communication overhead makes it more suitable for lgoselpled systems, such as computational
Grids, which transparently tolerate network topology ademand nodes failure. Only locally frequent
patterns are loaded in main memory by the combining proedtinally, independent multi-sampling
allows us to characterize the probability distribution ppeoximate global frequent patterns. The price
paid for these advantages is that the returned set of frequagterns is not guaranteed to be complete
and correct.

3. Relational frequent pattern discovery

SPADA is the only ILP system which addresses the task ofioglat frequent pattern discovery by
dealing properly with concept hierarchies. In the follogiisubsections, details on the representation
formalisms for data and background knowledge used by SPAaBell as details on the search strategy
adopted by SPADA to discover multi-level frequent patterr® reported. We assume the reader is
familiar with the concepts of logic programming [23] or detive databases [6].

3.1. Representing data and models

Data stored in distinct tables of a relational databaseriesdistinct objects involved in the phe-
nomenon under investigation. These objects play differelgs and it is necessary to distinguish



A. Appice et al. / A parallel, distributed algorithm for rélanal frequent pattern discovery 73

activity actor
namemaker workflow deLte admin user
al a2 a3 P mary paul

Fig. 1. Three-level hierarchies on activity and actor.

between the sef of referenceor target)objects which is the main subject of analysis, and the $g&ts
1< k < M, of task-relevanfor non-target) objects, which are related to the formeraardcontribute
to accounting for the variation. For eaél}, a generalization hierarchy, (k =1, ..., M) is defined.
A function ¢, maps objects irH, into a set of granularity level§l, ..., L}.

In the logic framework adopted by SPADA, a relational datsia converted to a deductive databBse
Properties of both reference and task-relevant objecteegresented in the extensional paxt, while
the background knowledge (BK) is expressed as a normal fmgigram which defines the intensional
part D;. Example 1 shows how the normal logic programZin allows deductions to be made (i.e.
concluding additional atoms) from data storedJi.

Example 1. Let D be a deductive database which contains the event log of B@ptocess instances.
The constantgl andc2 denote two distinct process instances (reference objetksle the constants
al, a2, a3, anda4 identify four activities and the constani$ andu?2 identify two actors (task-relevant
objects).Dg includes the ground atoms:
procesgcl). proceséc?).
activity(cl,al. activity(cl,a?. activity(c2,a3. activity(c2,a4.
is_a(al,namemak@ris_a(a2,workflovy. is_a(a3,workflov. is_a(a4,delet.
timgal,10. timga2,23. timga3,29. timga4,23.
actor(al,pau). actor(a2,pau). actor(a3,pau). actora4,mary.
is_a(paul,usey. is_a(mary, admin.
while Dy is the normal logic program
befordAl, A2 — activity(C, Al,activity(C, A2, A1+ A2,
timg(A1, T, timgA2,T2, T1<T2,
not(activity(C, A), A% Al, A~ A2, timdA,T), TI<T, T<T2)
which entails the following temporal informatiobeforgal, a2, beforda3, aj.

The set of predicates can be categorized into four clasdeskély predicatedentifies the reference
objects inS (e.g., processis the key predicate in Example 1). Tipeoperty predicatesre binary
predicates which define the value taken by an attribute obgato(e.g.time). Thestructural predicates
are binary predicates which relate task-relevant objexts,@ctor) as well as reference objects with
task-relevant objects (e.@g¢tivity). Theis_a predicate is a binariaxonomigredicate which associates
a task-relevant object with a value of sog. In Example 1, ground atoms @&f a predicate define the
two hierarchies shown in Fig. 1. Each hierarchy has thregldewvhich are naturally mapped into three
granularity levels.

Theunits of analysisD([s], one for each reference objeck S, are subsets of ground facts i»y,
defined as follows:

Dls] = is.a(R(s)) U D[s|R(s)]U | DIrilR(s)], 1)
ri€R(s)
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where:

— R(s) is the set of task-relevant objects directly or indirecéliated tos;
—is_a(R(s)) is the set ofs_a atoms which define the typesafe R(s);

— DJ[s|R(s)] contains properties af and relations betweenand some; € R(s);

— D[r;|R(s)] contains properties of; and relations between and some; € R(s).

This notion of unit of analysis is coherent with the indivadhcentered representation [3], which has
both theoretical (PAC-learnability) and computationavautages (smaller hypothesis space and more
efficient search). The set of units of analysis is a partitigrof Dz into a number of subset8|s],
each of which includes ground atoms concerning the tagkaal objects (transitively) related to the
reference object (see Example 2).

Example 2. The unit of analysi|[c1] is the set of ground atoms concerning the activities andracto
involved in a specific process executian

is_a(al,namemakeris_a(a2,workflow. is_a(paul,use}.

proces¢cl). activity(cl,al). activity(cl,a?.

timeg(al,10. timga2,29. actor(al,pau). actora2,pau).
In this exampleR(cl) = {al, a2, paul}.

Relational patterns are conjunctions of Datalog atomschlvitian be expressed by means of a set
notation. For this reason they are also cabeédmsetd11], by analogy with itemsets introduced for
classical association rules. A formal definition of relatibpattern is reported in the following.

Definition 1. A relational patternP is a set of atomsy (t3), p1(t1,12), p2(t3,t3), ..., p-(tL,t2), where
po is the key predicate, whilg;, i = 1,...,r, is either a structural predicate or a property predicate or

anis_a predicate.

Termst{ are either constants, which correspond to values of prppeedicates, or variables, which
identify reference objects either i# or in someR;. Eachp; is either extensionally or intensionally
defined. Patterns in the search space explored by SPADAysHtes linkedness [20] property, which
means that each task-relevant objectin a relational paftelefined as in Definition 1 must be transitively
linked to the reference objet} by means of structural predicates.

Each patternP is associated with a granularity leviel This means that all taxonomics(a) atoms
in P refer to task-relevant objects, which are mapped by sgmiato the same granularity levél In
multi-level association rule mining, it is possible to defanancestorelation between two patterid3
and P’ at different granularity levels.

Definition 2. A patternP at granularity level is anancestorof the patternP’ at granularity level’,

[ < I',if P’ can be obtained fron® by replacing each task-relevant objéct H;, at granularity level

(I = ¥x(h)) with a task-relevant objeét’, which is more specific thah in H;, and is mapped into the
granularity level’ (I = ¢ (1)).

By assigning a patter® with an existentially quantified conjunctive formutgc(P) obtained by
transformingP into a Datalog query, we can now provide a formal definitiothef support of® on D.

Definition 3. A patternP coversD[s]if D[s|UBK = eqc(P), i.e.,D[s]UBK logically entailseqc(P).
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Each relational patter® is associated with a parametearp(P, D), which is the percentage of units
of analysis inD covered byP (suppor}. The minimum support fairequentrelational patterns depends
on the granularity level (1 < I < M) of task-relevant objects. It is denotedrasnsupli].

Definition 4. A patternP [sup(P, D)] at levell is frequentf sup(P, D) > minsup[l] and all ancestors
of P are frequent at their corresponding levels.

Example 3. Let us consider the deductive database in Example 1 and sepatninsup[l] = 80%
andminsup|[2] = 40%. Then the following patterns:

procesgA), activity(A,B), is_a(B,activity), befordB,C), is_a(C,activity) [100%].
procesgA), activity(A,B), is_a(B,namemakégr befordB,C), is_a(C,workflowy [50%].

are frequent at levels 1 and 2 respectively.
3.2. Ordering patterns in the search space

Frequent pattern discovery in SPADA is performed accortlinigoth an intra-level search and inter-
level search. The intra-level search explores the spacattérps at the same level of granularity. It
is based on the level-wise method [24], which performs aditefirst search of the space, from the
most general to the most specific patterns, and prunes psnibthe search space which contain only
infrequent patterns. The application of the level-wisehdtrequires a generality ordering, which is
monotonic with respect to pattern support. The generalitgiing considered in this work is based on
the notion of9-subsumption [31].

Definition 5. P, is more general tharP, underd-subsumption P, =4 P) if and only if P, 6-
subsumes$>, that is, a substitutiofi exists, such thaP; 6 C P.

Example 4. Let us consider the following relational patterns

P, = is_a(B,namemaker)
P, = is_a(B,namemaker), be fore(B, C)
P3 = is_a(B,namemaker),be fore(B, C),is_.a(C,work flow)

whose variables are implicitly existentially quantifiedheh P, §-subsumes? (P, =y P) and P,
f-subsume®’s (P, =4 P3) with substitution®, = 6, = ©.

The relationy is a quasi-ordering (or preorder), since it is reflexive aadgitive but not antisym-
metric. Moreover, it is monotonic with respect to suppo#][2

Proposition 1. Let P, and P, be two relational patterns at the same ldyelefined as in Definition 1. If
Py =g Py, thensup(Py, D) > sup(P,, D).

Itis noteworthy that, ifP; and P, are two relational patterns, such tliat=4 P, andP; is not frequent
(sup(P1, D) < minsupll]), then alsoP, is not frequent up(P», D) < minsupll]). Therefore, the
monotonicity of—=, with respect to support allows for pruning the search spattewt loosing frequent
patterns.

In the inter-level search, SPADA refines patterns discavatéevell by descending the generalization
hierarchies by one level. Indeed, by the definition of a fezgypattern, a necessary condition for pattern
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P to be frequent at levél- 1 is that an ancestor patteft exists at level, such that”’ is frequent. The
inter-level search takes advantage of statistics compitiedtell to prune the search space at lelv¢ll1.

In real-world applications, a large number of frequentgrais can be generated, most of which are
useless. To prevent this, in SPADA it is possible to specifjolv atoms should occur in the discovered
patterns (language bias). Pattern constraints can alssdkta specify exactly both the minimum and
the maximum number of occurrences of an atom in a pattern.

4. Parallel, distributed relational pattern discovery

Despite the general pruning mechanisms described abovb@ddmain-specific constraints expressed
in the language bias, the application of SPADA to a very lalg@base is still hindered by both the high
computational cost of the search and the usage of an in-myedeatuctive database. Computational
limits of SPADA in processing large databases are overcontlidtributing and (possibly) parallelizing
the discovery of sets dbcally frequent patterns and then deriving an approximation oet#teet set of
frequent patterns, which would be discovered on the enéitatzase.

4.1. Data sampling

Sampling can speed up the mining process by more than anafradexgnitude, by reducing 1/O costs
and drastically shrinking the number of transactions to dwesitlered [38,40]. Moreover, when data
are kept in main memory, as in SPADA, sampling is the only veagntike their analysis feasible. The
sampling procedure considered in this work is similar ta tisd in bootstrap estimation of a parameter
(e.g., predictive accuracy of a classifier) [15], as wellrasame ensemble data mining methods, such
as bagging [4], which combine multiple models to achieveadngirediction accuracy than any of the
individual models. '

More preciselyn sample extensional databages, j = 1,...,n, are formed by randomly sampling,
with replacement, thév (N = |S|) units of analysis in the original extensional datab&ge Each
D7, includesm units of analysis, hence, reference objects are used to compute the support of a local
pattern. The proportion of units of analysis in edef is p = m/N.

It is noteworthy that the: sample extensional databasB$, are neither mutually exclusive nor
exhaustive, i.e., they do not partition the original datg se, even 10 samples wigh = 0.1 do not
generally cover the entire database. The probability thegtricular unit of analysis is not ityj Dy, is
the following:

(1 - 1/N)mm. @)

Whenn = N/m, i.e.,n = 1/p, the above probability approximates' for large N, wheree is Euler’s
number & 2.7183). Since~! ~ 0.368, this means that the expected number of referencetslije
U, Dy is 62.3% of the those ify.

Differently from data partitioning, which is affected bylgione parametet (the number of partitions),
the data sampling procedure used in this work is controlietilo parametersp andn. The former
is set on the basis of the actual storage capability of nofl#iseodistributed architecture. The latter
affects the amount of computational resources requireceteiate the globally frequent patterns, as
well as the accuracy of the set of global patterns discoveledeed, by increasing, the probability
(2) decreases, thus it is more likely that sofig includes at leasp% of reference objects i g,
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which support a patter® at levell. If P is globally frequent{up(P, Dg) > minsupll]), it is more
likely that P is a locally frequent pattern for sonie).. At the same time, if? is not frequent inDg
(sup(P, Dg) < minsupll]), then it is unlikely thatP is locally frequent in many of the samplés,
(sup(P, DY) > minsup(l]). By properly choosing the numbérof samplesD7, in which P has to
be locally frequent in order to be considered globally frepi) it is possible to find the right trade-off
between precision and recall.

Theoretically, the sampling procedure used in this workifieint from the sequential random
sampling without replacement used by Zaki et al. [40] to n@iorventional association rules from very
large databases. However, it is practically the same wligamall p < 0.05), since there is a very small
probability that any unit of analysis will be chosen morertlmmce. The advantages of our procedure
are: (i) it is computationally simpler, since it is not nes&y to remove the drawn unit of analysis from
further consideration, (ii) it is potentially more accuwasince the selection of frequent patterns is based
on multiple samples and not a single one, and (iii) the esér&the support of a pattern is based on
several independent observations (samples) rather thanlgrone.

4.2. Distributing computation on Grid

A sample extensional databas#, and the intensional databag® may be shipped along with
SPADA to several computation nodes of a Grid using gLite neidre. gLité is a middleware for Grid
computing which provides a framework for building Grid apptions, utilizing the power of distributed
computation and storage resources across the InterndtribDied computation is done by submitting
parametric jobs, described in JDL (Job Description Langiafrough the command line interface. The
submission of jobs on Grid is performed in several steps ayam

authentication,

preparation of the jobs,

uploading the sample databases (stage-in),
submission of a relative parametric job,
checking/waiting for the results,

getting the results (stage-out).

oghwnE

4.3. Computing approximate global frequent patterns

Once relational patterns have been discovered for eachlsalabase, they are pairwise compared
in order to compute the number of sample databases wherathégcally frequent. The comparison of
two patternsP and@ discovered in two distinct database samples is based eg@aalence tesinder
#-subsumption, which is defined as follows:

P=Q iff (PzoQ)N(Q=¢P). 3

Those patterns which are (locally) frequent in at Idasample databases, with< n, are selected as
globally frequent patterns and are added to aC58P (k).

By varying the parametek from 1 ton it is possible to generate a series of s6t8P(k), such
thatGFP(1) D GFP(2) 2 ... O GFP(n) (see Fig. 2). The following proposition characterizes the
probability distribution of frequent patterns én/ P (k).

Lhttp://glite.web.cern.ch/glite/
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Exact globally frequent

patterns

Fig. 2. The set of globally frequent patterns (GFP(k)) monatally decreases with increasikgvalues. The set of frequent
patterns inD g (exact globally frequent patterns) includes most probétdyset GFP(n) and is most likely included in the set
GFP(1).

Proposition 2. Let P be a relational pattern at levieWith supportsup(P, Dg). Then

Pr(P e GFP(k) =) (’;) (1 —q)" " (4)
i=k

where:
m _
q= va:]'m-minsup[lﬂ v | Sup(P7 DE)U ’ (1 - Sup(P7 DE))m !
is the probability that” is frequent in a sample extensional database

Proof. Let S(P, Dg) be the support set of the relational pattérim Dpg, i.e., the set of units of analysis
in Dy that are covered by. Then
_ H{seS|Dls] € S(P,Dp)}|

sup(P,Dg) = 5] . (5)

Let D{E be a sample extensional databa@%, C Dg, with m units of analysis. The random selections

of the m units of analysis to be added 11613 are independent trials, since units are sampled with
replacement. By checking that each randomly selected @ianalysis belongs to the support setif
we have a sequence of Bernoulli trials, where the probgtafisuccess isup(P, Dg). Therefore, the

following random variable:

X e« D}é includes exactly units of analysis which belong t8( P, Dg)”,

has a binomial distribution:
Pr(X =v) = (T;}) -sup(P,Dg)" - (1 — sup(P,Dg))"™™" (6)

The probability thatP is frequent inD};J can be defined as follows:
Pr(sup(P, DJE) > minsup(l]) = Pr(X > [m - minsupll]]) (7)

From Eq. (6) it follows that:

m

Pr(X > [m-minsuwpll]) = 3 (’j).sup<p,DE>v.<1_sup<p,DE)>mv ®)

v=[m-minsupll]]
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Thus the probability thaP is frequent in one sample extensional database is:

m

1= > (?) - sup(P, Dp)* - (1 — sup(P, Dg))™™" ©)

v=[m-minsup[l]]

In the case of sample extensional databases, which are drawn indepéydaetprobability that
P is frequent inexactlyk of them again follows a binomial distribution with probatyilq of success.
Therefore, the probability tha? is frequent inat leastk sample extensional databases is:

Pr(P e GFP(k) =) (’;) ¢(1—g) ! (10)

i=k

Proposition 2 implies that frequent patterns/ig; are more likely to be irG F'P(k), for some fixed
k. Indeed, ifP is a frequent pattern iD g, at levell, thensup(P, D) is relatively high (certainly it is
greater thamninsup[l]), therefore botly and Pr(P € GF P(k)) tend to be relatively high. Moreover,
proposition 2 also implies that for larger Pr(P € GF P(k)) is higher, independently of whethéris
frequent inDg or not. This means that the recall of frequent patterns asgs withn, at the expense of
reduced precision (see next section for an empirical coafion).

It is noteworthy tha’r(P ¢ GFP(1)) = (1—q)", therefore, it is very unlikely that frequent patterns
in Dy (i.e., patterns with higly value) are not inGFP(1). Moreover,Pr(P € GFP(n)) = ¢",
therefore it is very unlikely that patterns locally frequém all sample extensional databases are not
frequent inDy (i.e., they have a smajlvalue).

The support of a globally frequent pattefhdiscovered at levdl is approximated by averaging the
support values computed on those samples whRegefrequent. Formally:

S sup(P, DY) - G(P, DY)
Z?:l G(P7 D]E)

approximateGlobal Sup(P) = (12)

whereG (P, D3,) is the indicator function defined as follows:

1 if sup(P, D%) > minsupll]
0 otherwise.

G(P, D)) = {

5. Experimental results

In order to evaluate the proposed distributed frequenepattliscovery algorithm, we performed
experiments on data derived from event logs. In ubiquitoursputing applications event logs are
generated by systems in charge of polling sensors andeegigtvhich events happenin the environment
when executing a given process instance. In this case dregattern discovery is a mature technology to
reconstruct an explanatory model of the underlying phemmmdrom fragments of temporal sequences
of actions performed by various actors. This model can tleended to explain (temporal) relationships
between events, to simulate/predict future behavior offangess as well as to understand and optimize
the process itself. Since events may include activitiesthant properties, actors and their properties,
relationships between activities and actors (who does)wteahporal relationships between activities
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activity [9,174]
l

complete [1,343] schedule [6,673] resume [178] start [809] suspend [166]  unknown [5]
ol o4 .. 02 o5 .. ol5 ol7 .. 03 o6 .. ol4 ol6 .. 043 o044

Fig. 3. ProM three-level hierarchy on activity.

and additional relationships between actors, the natimaice for discovering frequent patterns is to
resort to the relational data mining setting. In additiontilevel analysis is a desirable characteristic,
since activities and actors are often organized in hiefasadf classes. For example, an activity can be a
‘create’ task, a ‘delete’ task or an ‘execute’ task. An actm be a user or an administrator. Multi-level
analysis allows the mapping of these hierarchies into iiffelevels of granularity and the extraction of
fragments of process models (patterns) at various abisindevels.

Experiments are performed by processing both an event Iblichuavailable on ProM web siteand
an event log provided by THINK3 Iric The goal of the experiments on the ProM data is to compare
approximate global patterns, which are discovered in aldiged manner, with the exact global patterns,
which are discovered by SPADA on the whole dataset. Stistllected refer to both precision and
recall of the parallel, distributed algorithm, as well agt® accuracy of the support estimation procedure.
Statistics on time required for database sampling, loctpadiscovery and globally frequent patterns
approximation are also collected. The goal of experimentthe THINK3 data is to prove the actual
scalability of the proposed method and its applicabilityeoy large databases.

5.1. ProM data

ProM database collects 374 executions of processes whithéntne complaints (nameBfschrifter)
in a municipality in The Netherlands. The period under asialis from May 4th 2005 to November 8th
2005. For each process instance, the database collecta@iifies on average. The total number of
activities is 9,174, while the number of distinct actors9s Activities are classified as complete (1,343),
schedule (6,673), resume (178), start (809), suspend ékblinknown (5). Taxonomic knowledge on
activities is encoded in a three level hierarchy (see FigP3pcess instances play the role of reference
objects, while activities and actors play the role of taslevant objects.

For each activity, a textual description is registered mélent log. This description corresponds to
the workflow name. In this experiment, we deal with 14 didtimorkflows. The extensional database
Dg includes 37,070 ground atoms. The intensional databasacludes the definition of the temporal
relationssimultaneousindbeforewhich take into account the temporal autocorrelation af/aiets.

simultaneou@\1, A9 — activity(C, Al), activity(C, A2, Al# A2,
time(A1,T1), imgA2,T9, T1=T2.

befordAl, A2 — activity(C, Al),activity(C, A2, Al# A2,
time(A1,TY), timeg(A2,T2, T1<T2,

2http:/fis.tm.tue.nkcgunther/dev/prom/
3hitp:/iwww.think3.com/en/default.aspx
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not(activity(C, A), A# Al, A~ A2, timdA,T), TI<T, T<T2).

Different minimum support thresholds are defined for easklleso that the higher the level (i.e.
the more abstract the task-relevant objects involved imthdel), the higher the support (i.e. the more
selective the discovery process). We set the following patarsminsup(l] = 0.25, minsup[2] =
0.1 andmax_len_pat = 9. The latter defines the maximum number of atoms in the freinedational
patterns, which are evaluated during the search.

With the thresholds defined above, a set of 2,460 relatiargluient patternsi{P) is discovered by
mining the entire database. Two examples of frequent pettdiscovered at levél= 2 are reported
below.

P1: proces$A), activity(A,B), is_a(B,suspeny befordB,C), C£B,
is_a(C,resumg befor€C,D), D#£B, D£C, is.a(D,scheduly
simultaneouf®,E),E#£B, E£C, E£D, is_a(E,completg

[#ro=61, sup=16.31%].

P1 describes the execution order between three activiigss supported by 61 out of 374 executions
(i.e., reference objects).

P2: procesg$A), activity(A,B), is_a(B,star), actorB,C), C£B, is.a(C,actol),
beforgB,D), D#£B, D#£C, is a(D,scheduly workflow(B,ag08 GBA afnemégr
workflow(D,ar01 Wacht Archigf

[#ro=39, supp=10.42%].

P2 involves both activities and actors and is supported bgx@@utions.

The frequent pattern discovery is then distributednosample databases, which contali$ units
of analysis stored in the original database. Multi-levebfrent patterns are locally discovered at each
computation unit and global patterns are approximated ftfeocal ones, by varying from 1 ton.

To evaluate the quality of the approximation of the set ofjfient patterns itD g, we consider three
statistics, namelyecall, precision andF-score which are defined as follows [39]:

|GFP(k) N FP|
recall FP] (12)
FP(k)NFP
precision = IS |G}glg(rl::)| | (13)
F— score — 2 X precision X recall (14)

precision + recall

All these measures range between 0 and 1: the higher theiesathe better the parallel, distributed
algorithm performs. The recall estimates the probabiltty(P € GFP(k)|P € FP), while the
precision estimates the probabiliy-(P € FP|P € GFP(k)). The F-score is the weighted harmonic
mean of precision and recall, with equal weight for both Hearad precision.

Some experiments are performed to empirically prove thedlrelecreases (conversely, precision
increases) wheh increases. We keep constant the exponentin formula 2, bgget= 1/p. This way
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Fig. 4. Precision (a), recall (b), and F-score (c) obtainéti w = 5, p = 20%,n = 10, p = 10% andn = 20, p = 5%, by
varyingk in [1,20].

we ensure that about 62.3% of process instances are cawsiddéhe analysis. In particular, experiments
are performed with the following parameter settings= 5 andp = 20%,n = 10 andp = 10%,n =
20 andp = 5%.

The values of recall, precision and F-score obtained byingthe parametet are reported in Fig. 4.
As expected, whett = 1 recall is high (100%), although precision is low (betwe®3sdand 60%).
Conversely, recall decreases for increadingalues. The F-score increases withup to a maximum
and then decreases. The maximum is obtained vivert;, which represent the best trade-off between
precision and recall. Forexample, whea= 10 andp = 10% the distributed version of SPADA discovers
2,732 patterns witlk = 5. A closer analysis of these patterns reveals that theyr@¥&7% of the
patterns that are frequent on the entire database, at tlemsxjpf some false positives (about 10.24%).

An additional set of experiments is performed by doubling number of database samples, i.e., by
settingn = 1/p. The F-score for various values éfis reported in in Fig. 5. Also in this set of
experiments, the maximum of the F-score is observed folegaddi approximately equal t§.

The last observation raises the question of the real adyarghincreasing the number of database
samples, once is fixed. To answer this question, the difference betweerafiproximated support,
computed according to formula 11, and the exact supportpated onD g, is analyzed. The difference
is computed for each exact pattern discovered by the disédbversion of SPADA whep = 10% and
n is set to eithet /p or 1/2p. Box plots (see Fig. 6) are drawn by varyihg {1,n/2,n}. We observe
that:

— whenk approximates:, although the recall decreases, the estimated supporobélly frequent
patterns becomes closer to the exact support value;

— by doubling the number of samples, the support of globakyfient patterns is more accurate,
independently of the chosén



A. Appice et al. / A parallel, distributed algorithm for rélanal frequent pattern discovery 83

120.00
100.00
80.00
60.00
40.00
20.00

‘**‘t*iﬂ*‘h
L

I-Score %

D-DO L IR N N N N N I I N NN NN NN B R N RN RN BN DN N NN N N N B R N NN B NN N N R RN BN B R R |

1 3 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
k

wh

——o=10 p=20% -—@—n=20p=10% —k—n=40p=5%

Fig. 5. F-score obtained with = 10,p = 20%,n = 20,p = 10% andn = 40,p = 5%, by varyingk in [1,40].
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Fig. 6. Box plots of the differences between the approxinsatgport of each pattern and the exact support, computedeon th
entire database. In both cages- 10%. In (a)n = 1/p while in (b)n = 1/2p.

Therefore, the real advantage of choosing larger valuesisfthe increased accuracy of the estimated
support, i.e., the increased maximum value of the F-scdne.dlsadvantage is the higher computational
cost.

Running SPADA on the entire ProM database takes 1,350 sdedistiss on time required by the
distributed version of SPADA to generate database sampleléscover locally frequent patterns and to
select those in GFP(K) are reported in Tables 1, 2 and 3 rigplgc Time of locally frequent pattern
discovery is averaged over the database samples, whileofip&ttern selection is averaged over the
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Table 1 Table 2 Table 3
Time (in secs) of database Average time (in secs) of locally Time (in secs) of pattern
sampling frequent pattern discovery selection for GFP(K)

p p p

n 5% 10% 20% n 5% 10% 20% n 5% 10% 20%
5 — — 8 5 — — 1053 5 — — 4
10 - 11 14 10 — 1286 1047 10 - 6 7
20 20 26 — 20 1480 1189 — 20 11 40 —
40 56 — — 40 1493 — — 40 17 - -

values.

We observe that time required for database sampling andrpaselection is negligible with re-
spect to the average time required by the locally frequettepadiscovery processes. Therefore, if
f(N, I, minsupll]) is the time required by SPADA when it searches for frequetiepas of level in the
entire databasP g of NV units of analysis, the amount of work done by the parallstyitiuted relational
pattern algorithm is approximately - f(p - N,l, minsupl[l]). Table2 shows that for ProM database,
f(p- N,l,minsupll]) is of the same order of magnitude 6N, [, minsup|l]). Therefore, for small
databases, like ProM, which fitin main memory, the genematf@n approximate set of globally frequent
patterns is not even beneficial from a computational viempot he parallel, distributed algorithm is
suitable when the database does not fit in main memory (sdesaetion) or, more in general, when
f(N, I, minsup[l]) > f(p- N,l,minsup[l]).*

Table 2 also shows the behavior ffp - N, [, minsupll]). Indeed, the average time decreases from
1,493 to 1,053 whep increases from 5% to 20%. Moreover, it starts increasindpiigner values op
(itis 1,350 wherp = 100%). This is justified by the following observation. For smaditdsets (smafh
values), the cost of evaluating a single pattern is low, batrtumber of false frequent patterns is high
(see the difference in precision 6fF' P(1) for various values of in Figure 4a) and the pattern space is
not pruned enough. On the contrary, for large datasetse(Jax@glues), the cost of evaluating a single
pattern is higher, but there are few false frequent patt@ndshe search space is properly pruned.

5.2. THINK3 data

THINKS eventlog describes 353,490 executions of businessgsses in a company. The period under
analysis is from April 7th 2005 to January 10th 2007 for altofdl,035,119 activities and 103 actors.
Activities are classified as administrator tools (131), kflorv (919,052), namemaker (106,839), delete
(2,767), deleteEnt (2,354), prpDelete (471), prpSmasi@e(53), prpModify (34) and cast (1,430).
Actors are classified as user (103), viewer (3) or administi@). Taxonomic knowledge on activities
and actors is encoded in two distinct hierarchies (see Fig. 7

For each activity a textual description is registered indfient log, while for each actor a working
group is defined. In this experiment, we have thirteen distilescriptions of the activities and thirty-
three distinct groups of actors. The extensional databasicludes 4,374,840 ground facts, while the
intensional parD; includes the definition of the relatidrefore Additional predicates are intensionally
defined to group together similar activities. For examgle,following clauses:

releaséX) < descriptior{X,freigabg.

releaséX) < descriptior{X,freigabeh).

releaséX) < descriptior{X,freigabej).

releaséX) < descriptior{X,freigabem).
define the predicate “release”, which describes the raeigasitivity (“freigabe” in German), indepen-
dently of the release type (H, J or M). Similarly, other clesisn D; provide a definition of new

“When the database does not fit in main memory, we asgi{iNel, minsupll]) = oo.
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activity [1,035,119]
namemaker[106839] deleteEnt[2,354] prpSmartdelete[53] ‘ cast[1430] administrator tools[131]
workflow[919052] delete[2767] prpDelete[471] prpModify[34]
09 o0 0388491 \:031 8 0794996 \: 0339710 0292 \: 0488990 0665536
0l2 ol —0391204 0413 0794997 —0340636 0491 0522414 0713252
actor [108]
| |
administrator [3] user [103] viewer [2]
!—’—\ ”””” !—’7( ”””” !—’7 ”””””
mueller cma  admin ... altendorfer amaeder andrea ... fenzlg wimmer ...

Fig. 7. THINK3 three-level hierarchies on activity and acto

predicates, such apruefung techaend cancelled construction ktgprocess musterbau nullserig
techniche tiffprocess undermodifyand workinprogress which describe different kinds of activities.
Process instances play the role of reference objects, @btigities and actors play the role of task-
relevant objects.

Data are sampled with = 100 andp = 1%, and the discovery of the local patterns is parallelized o
100 nodes. The size of the original database prevents thmalrialgorithm SPADA from processing
units of analysis all at once. We set the following parangeterinsup[l] = 0.25,minsup[2] = 0.1,
minsup[3] = 0.01 andmax_len_path = 14. Actually, with the thresholds defined above, there are no
frequent patterns with more than twelve atoms, and very fdtv more than fourteen atoms.

The exact set of global patterns is approximated from treeafgdatterns which are locally discovered
on each sample, by varyingfrom 1 to 100. The number is reported in Table 4 and, as exgeitte
decreases wheh increases. The average number of local patterns (at anl) igeovered on each
sample is 673.11, while the standard deviation is relatiselall (53.47). As reported in the last column
of Table 4, 369 local patterns (about 54% on average) are amonall samples.

A pattern which expresses a fragment of a process modeledtlev2 is as follows:
P3: procesgA), activity(A,B), is_a(B,workflow, befordB,C), C£B,

is_a(C,workflow, befordC,D), D+#B, D=£C, is a(D,workflow), actor(B,E),

is_a(E,usel, workinprogresgB), releas¢D), constructioriC).

[k=90, #r0=19,789, approximateGlobalStR0.79.

This pattern reports the execution order between threeitéesi (B, C' and D), within a process instance
(4). Both B, C and D are workflow activities, buB is described awork in progressC asreleaseand
D asconstruction The actor ofB is a simple userK). The pattern P3 provides an explanatory model
for at least 19,789 process executions traced in the entinetdog and it is found to be frequent in at
least 90 of the original 100 samplés£ 90). Its approximate support is 20.78% {ninsup[2]).
P3is an ancestor of the following globally frequent pattern
P4: procesg$A), activity(A,B), is_a(B,workflow, beforéB,C), C+£B,

is_a(C,workflow, befordC,D), D+£B, D=£C, is a(D,workflow), actor(B,E),

is_a(E,andred, workinprogreséB), releaséD), constructioriC).

[k=90, #ro=1,139, approximateGlobalSsi.26
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Table 4
Number of global frequent patterns discovered by varyirig[1,100]
k 1 10 20 30 40 50 60 70 80 90 100
#P 1244 1043 820 747 669 619 574 539 498 468 369

which provides us with a deeper insight into the actor of tlerkain-progress, who is identified as
andrea This pattern, however, covers only 1,139 process exawuitiad its approximate global support
is 1.26% & minsup|3]).

As reported before, for this data set it was not possible pdyajpe original algorithm SPADA to the
entire database, as done for ProM data. Therefore, stat@tiprecision, recall and F-score could not be
collected. The main goal of this experiment is to prove tlaeadaility of the proposed distributed method,
even in the presence of very large databases. However, falcsetting of the two parametegsandn
is likely to lead to good approximations of the global setafterns, as in the previous experiments.

6. Conclusions

Data generated by ubiquitous computing applications ptessveral distinctive characteristics which
complicate the knowledge discovery process [25]. Firgy thare produced asynchronously in a highly
decentralized way. Second, they emerge from a very high eambpartially overlapping, loosely
connected sources. Third, they are produced in large digantiFourth, they are usually described by
many different data types. Fifth, they have a complex intiercsure with several explicit or implicit
relationships. This paper faces the last three issues wheimgnfrequent patterns. In particular,
we advocate a relational approach, in order to face the lestissues (heterogeneity and complex
interactions) and a distributed, parallel approach, ireotd face the scalability issue.

The algorithm proposed for relational frequent patterrcaligry is based on random sampling. In
particular,n samples are extracted from the original data set, suchdcataf them fits in main memory.
Data are shipped to computational nodes of a Grid and raktigatterns, which are locally frequent,
are mined by means of the system SPADA. The sets of localiyfat patterns are then used to generate
the set of globally frequent pattern&,F'P(k), by selecting only those relational patterns which are
locally frequent in at least (k < n) samples. A characterization of the probability distribntof
frequent patterns iG/F' P (k) allows us to draw some conclusions on precision and rec&loP (k),
with respect to the set of frequent patter#§) computed on the whole data set. These conclusions
have been empirically proved by evaluating the proposeatigigm on a data set of logged events (ProM
data), which could be wholly processed in main memory. Stes on the differences between estimated
and actual support of globally frequent patterns show thavk approximates, although the recall
decreases, the estimated support of globally frequergnpatbecomes closer to the exact support value.
Scalability of the proposed method has been proved on a aegg Hata set of logged events (THINK3
data), which could not be directly processed by the origieailal version of SPADA.

The choice ofk is crucial in our proposal. Experimental results on ProVadatowed that the best
trade-off in maximizing both precision and recall is foundemk ~ 3. However, the dependence of
k on bothn and minimum support thresholds has to be more deeply igageti, both theoretically, by
characterizing and maximizing the conditional probaiesit’r(P € GFP(k)|P € FP) andPr(P €
FP|P € GFP(k)), and empirically, by means of additional experiments uradetrolled conditions.
We also observe that SPADA is able to generate frequentrpattd different levels of granularity.
Generally, the higher the level, the lower the support ofaliered patterns. Therefore, we expect that
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our future investigations on the selection of the egtlue will also allow us to define a suitable choice
of this parameter for the various granularity levels.

We also intend to extend our analysis to alternative samlmsed approaches proposed in the
literature for conventional association rule mining [38,4vhich are based on a single sample whose
size is theoretically derived either on the basis of the @bibound or on the basis of (an approximation
of) the binomial distribution.

This work is limited to frequent pattern discovery, while®E is actually able to generate association
rules from frequent patterns. The efficient evaluatioivtestion of the confidence of association rules
generated frond7 /' P (k) requires further investigation.

Finally, we intend to study an alternative approach to thadadaility issues, which is based on the
transformation of relational data into a propositionahfiorFor this purpose, globally frequent patterns
can be used to define the new boolean features of the prapwitiata set, while efficient algorithms
for (propositional) frequent itemset mining can be appt®the whole transformed data set.
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