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Abstract. Regression trees are tree-based models used to solve those prediction
problems in which the response variable is numeric. They differ from the
better-known classification or decision trees only in that they have a numeric
value rather than a class label associated with the leaves. Model trees are an
extension of regression trees in the sense that they associate leaves with
multivariate linear models. In this paper a method for the data-driven
construction of model trees is presented, namely the Stepwise Model Tree
Induction (SMOTI) method. Its main characteristic is the induction of trees with
two types of nodes: regression nodes, which perform only straight-line
regression, and splitting nodes, which partition the sample space. In this way,
the multivariate linear model associated to each leaf is efficiently built stepwise.
SMOTI has been evaluated in an empirical study and compared to other model
tree induction systems.

1 Introduction

Many problems encountered in practice involve the prediction of a continuous
numeric attribute associated with a case. More formally, given a set of observed data
(x, y) ∈  XXXX × Y, where XXXX denotes the feature space spanned by m independent (or
predictor) variables xi (both numerical and categorical), the goal is to predict the
dependent (or response) variable Y which is continuous. This problem has been
approached in many ways, such as standard regression, neural nets, and regression
trees [1]. A regression tree approximates a function y=g(x) by means of a piecewise
constant one. Model trees generalize the concept of regression trees in the sense that
they approximate the function above by a piecewise linear function, that is they
associate leaves with multivariate linear models. The problem of inducing model trees
from a training set has received attention both in statistics [2,9] and in machine
learning. Some of the model tree induction systems developed are: M5 [8], RETIS
[4], M5' [12], RegTree [5], and HTL [10,11]. All these systems perform a top-down
induction of models trees (TDIMT) by building the tree structure through recursive
partitioning of the training set and by associating leaves with models. During the
construction of the tree there are three main problems to be solved: Choosing the best
partition of a region of the feature space, determining the leaves of the tree and
choosing a model for each leaf. Since an exhaustive exploration of all possible
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solutions is not possible in practice, several heuristics have been proposed to solve
such problems.

In this paper we present the current state of the art of research on TDIMT and,
starting from the strengths and weaknesses of some approaches, we propose a new
method, named Stepwise Model Tree Induction (SMOTI), which tries to match the
coherence of the heuristic evaluation function, used to choose the best partition, with
the type of model associated to the leaves. SMOTI constructs model trees stepwise,
by adding, at each step, either a regression node or a splitting node. Regression nodes
perform straight-line regression, while splitting nodes partition the sample space. The
multivariate linear model associated to each leaf is obtained by composing the effect
of regression nodes along the path from the root to the leaf.

The background and motivation of this work is described in the next section, while
in Section 3 the method SMOTI is introduced, and its computational complexity is
analyzed. Finally, in Section 4 some experimental results on eight different data sets
are reported and commented on.

2. Background and Motivation

In tree-structured regression models the partitioning process is guided by a heuristic
evaluation function that chooses the best split of observations into subgroups. In
CART (Classification And Regression Trees), a well-known system for the induction
of regression trees [1], the quality of the constructed tree T is measured by the mean
square error R*(T): The lower the R*(T) the better. A sample estimate of the mean
square error is:
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where N is the number of training examples (xi, yi), T~ is the set of leaves of the tree,
and )(ty  is the sample mean of the response variable, computed on the observations
in the node t. In other words, R(T) is the sum of the resubstitution estimates of risk
R(t) at the leaves of the tree. By denoting with s2(t) the sample variance of the
response variable at a node t, R(T) can be rewritten as:
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where N(t) is the number of observations in the node t and p(t) is the probability that a
training case reaches the leaf t. When the observations in a leaf t are sub-divided into
two groups, we obtain a new tree T', where t is an internal node with two children,
say, tL  and tR. Different splits generate distinct trees T', and the choice of the best split
is made on the grounds of the corresponding R(T'). More precisely, the minimization
of R(T') is equivalent to minimizing p(tL)s2(tL)+ p(tR)s2(tR), the contribution to R(T')
given by the split.

This heuristic criterion conceived for a regression tree learning problem has also
been used in some TDIMT systems, such as HTL. In his system M5, Quinlan adopts a
similar criterion, using the sample standard deviation s(t) instead of the sample
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variance s2(t). The evaluation function used by AID [6] is Fisher�s correlation
coefficient, η2:

∑
=

−

−+−
=

N

j
j

RRLL

tyy

tytytNtytytN

1

2

22
2

))((

))()()(())()()((
η

where )( Lty  ( )( Rty )  is the sample mean of the dependent variable computed on the
set of the N(tL) (N(tR)) cases falling in the left (right) child node. Briefly, the
numerator is the deviance between two groups (left and right), while the denominator
is the total deviance. This coefficient ranges between 0 and 1; when η2 is close to 1,
there is no variance within the groups. AID chooses the partition that maximizes η2.
Actually, the maximization of the deviance between two groups and the minimization
of p(tL)s2(tL)+p(tR)s2(tR) lead to the same partitioning.

The problem with these evaluation functions is that they do not take into account
the models associated with the leaves of the tree. In principle, the optimal split should
be chosen on the basis of the fit of each model to the data. In practice, many TDIMT
systems choose the optimal split on the basis of the spread of observations with
respect to the sample mean. However, a model associated to a leaf is generally more
sophisticated than the sample mean. Therefore, the evaluation function is incoherent
with respect to the model tree being built.

To illustrate the problem, let us consider the following dataset with twenty cases
and only one independent variable:

x -1.0 -0.8 -0.7 -0.5 -0.3 -0.1 0.0 0.2 0.3 0.4 0.5 0.6 0.7 1.0 1.1 1.2 1.5 1.7 1.9 2.0
y 0.3 0.1 0.2 0.7 0.8 0.5 1.1 1.5 1.1 1.2 1.6 1.2 1.5 0.8 1.1 0.7 0.9 0.1 0.4 0.2

The scatter plot of the data set is given in Figure 1a; the values of the independent
variable range between -1.0 and 2.0. The best model tree is reported in Figure 1b. It is
obtained by partitioning the training observations into two subgroups: X ≤ 0.4 and X>
0.4. It shows the flexibility and the power of model trees, since a simple linear
regression on the whole data set would give the dashed line in Figure 1a.

x ≤0.4

y=0.963+0.851 y=1.909-0.868x

True False

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

-1,5 -1 -0,5 0 0,5 1 1,5 2 2,5

a) b)

Fig. 1. A split node t with two straight-line regression models in the leaves.
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Nevertheless, neither M5 nor HTL are able to find this model tree. The system
Cubist (http://www.rulequest.com), a commercial version of M5, splits the data at x
= -0.1 and builds the following models:

X ≤ -0.1: Y = 0.78 + 0.175*X
X > -0.1: Y = 1.143 - 0.281*X

The problem illustrated above is caused by the net separation of the splitting stage
from the predictive one. This separation seems to be inherited by regression tree
learners, such as AID and CART, but a careful study of the heuristic criteria used in
these systems shows that the evaluation functions do take into account the models
built in the leaves. Indeed, the models are the sample means which play a role in the
computation of R(T) and η2. However, when we try to use the same heuristic criteria
for model tree induction we are rating the effectiveness of a partition with respect to
different models from the ones chosen in the subsequent predictive stage.

This problem cannot potentially occur in RETIS, whose heuristic criterion is to
minimize p(tL)s2(tL)+ p(tR)s2(tR), where s2(tL) (s2(tR)) is now computed as the mean
square error with respect to the regression plane gL (gR) found for the left (right) child:
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In practice, for each possible partitioning the best regression planes at leaves are
chosen, so that the selection of the optimal partitioning can be based on the result of
the prediction stage. This corresponds to a look-ahead strategy with depth one, as in
traditional top-down induction of decision/regression trees.

The weakness of the RETIS heuristic evaluation function is its high computational
complexity, especially when all independent variables are continuous. For instance, in
the case of N training observations, described by m independent continuous variables,
the selection of the first split takes time O(mNlogN) to sort all values of the m
variables, plus time required to test (N-1)m distinct cut points, at worst. Each test, in
turn, requires the computation of two regression planes on the m independent
variables. The coefficients of each linear regression function are computed according
to the formula (X'X)-1X'y, where y is the N(t)-dimensional vector of values taken by
the response variable in node t, while X is an N(t)(m+1) matrix of observations, plus a
column with only 1s [3]. The complexity of the computation of X'X is N(t)(m+1)2, the
complexity of the inversion of an (m+1)(m+1) matrix is O((m+1)3), and the
complexity of the computation of the product of an (m+1)(m+1) matrix with an N(t)-
dimensional vector is N(t)(m+1). In general, N(t) > m, thus the computation of the
regression function takes time O(N(t)(m+1)2). When N(tL) is small, N(tR) is almost
equal to N. Thus, for at least one of the children N(t) is proportional to N. To sum up,
the choice of the first split takes time O(N(N-1)m(m+1)2), which is cubic in m and
square in N.

In order to reduce the computational time, we could adopt a forward stepwise
strategy, according to which a multiple linear regression model is built step-by-step.
The proposed method is illustrated in the next section.
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3. Stepwise Construction of Model Trees

To reduce the computational time a multiple linear regression model is built stepwise,
according to a new forward strategy, named SMOTI, which considers regression
steps and splitting tests at the same level. In this way, the development of a tree
structure is not only determined by a recursive partitioning procedure, but also by
some intermediate prediction functions. This means that that there are two types of
nodes in the tree: regression nodes and splitting nodes. Regression nodes perform
only straight-line regressions, since a multivariate linear regression model can be built
stepwise by regressing Y on one single variable at a time. Regression and splitting
nodes pass down observations to their children in two different ways. For a splitting
node t, only a subgroup of the N(t) observations in t is passed to each child, and no
change is made on the variables. For a regression node t, all the observations are
passed down to its only child, but the values of the independent variables not included
in the model are transformed, to remove the linear effect of those variables already
included. Thus, descendants of a regression node will operate on a modified training
set. Indeed, according to the statistical theory of linear regression, the incremental
construction of a multiple linear regression model is made by removing the linear
effect of introduced variables each time a new independent variable is added to the
model [3]. For instance, let us consider the problem of building a multiple regression
model with two independent variables through a sequence of straight-line regressions:

Y=a+bX1 + cX2

We start regressing Y on X1, so that the model:

Y = a1+b1X1.

is built. This fitted equation does not predict Y exactly. By adding the new variable
X2, the prediction might improve. Instead of starting from scratch and building a
model with both X1 and X2, we can build a linear model for X2 given X1:

X2 = a2+b2X1

then compute the residuals on X2:

X'2 = X2 - (a2+b2X1)

and finally regress Y on X'2 alone:

Y = a3 + b3X'2.

By substituting the equation of X'2 in the last equation we have:

Y = a3 + b3X2 -a2b3-b2b3X1.

It can be proven that this last model coincides with the first model built, that is
a=a3-a2b3, b=-b2b3 and c=b3. This explains why SMOTI removes the linear effect of
variables already included in the model (X1) from variables to be selected for the next
regression step (X2).

In SMOTI the validity of either a regression step on a variable Xi or a splitting test
on the same variable is based on two distinct evaluation measures, π(Xi,Y) and σ(Xi,Y)
respectively. The variable Xi is of a continuous type in the former case, and of any
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type in the latter case. Both π(Xi,Y) and σ(Xi,Y) are mean square errors, therefore they
can be actually compared to choose between three different possibilities:
1. growing the model tree by adding a regression node t;
2. growing the model tree by adding a splitting node t;
3. stop growing the tree at node t.

As pointed out in Section 2, the evaluation measure σ(Xi,Y) should be coherently
defined on the basis of the multivariate linear model to be associated with each leaf.
In the case of SMOTI it is sufficient to consider a straight-line regression associated
to each leaf tR (tL), since regression nodes along the path from the root to tR (tL)
already partially define a multivariate regression model (see Figure 2).

If Xi is continuous and α is a threshold value for Xi then σ(Xi,Y) is defined as:
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where N(t) is the number of cases reaching t,  N(tL) (N(tR)) is the number of cases
passed down to the left (right) child, and R(tL) ( R(tR) ) is the resubstitution error of the
left (right) child, computed as follows:
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is computed by combining the straight-line regression associated to the leaf tL (tR)
with all univariate regression lines associated to regression nodes along the path from
the root to tL (tR).

If Xi is discrete, SMOTI partitions attribute values into two sets, so that binary trees
are always built. Partitioning is based on the same criterion applied in CART [1, pp.
247], which reduces the search for the best subset of categories from 2k-1 to k-1, where
k is the number of distinct values for Xi. More precisely, if },...,,{ 21 ki iiiX xxxS =  is the

Fig. 2. A split node t with two straight-line regression models in the leaves. The variable is
continuous in the left tree and discrete in the right tree.
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set of distinct values of Xi, iXS  is sorted according to the average over all yi in t. The
best split is in the form: },...,{ 1 hiii xxX ∈ , h= 1, ..., k-1. For all k-1 possible splits, the

evaluation measure σ(Xi,Y) is computed as in the case of continuous variables.
The evaluation of the effectiveness of a regression step Y=a+bXi at node t cannot

be naïvely based on the resubstitution error R(t):
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where the estimator iy�  is computed by combining the straight-line regression
associated to t with all univariate regression lines associated to regression nodes along
the path from the root to t. This would result in values of π(Xi,Y) less than or equal to
values of σ(Xi,Y) for some splitting test involving Xi. Indeed, the splitting test �looks-
ahead� to the best multivariate linear regressions after the split on Xi is performed,
while the regression step does not. A fairer comparison would be growing the tree at a
further level in order to base the computation of π(Xi,Y) on the best multivariate linear
regressions after the regression step on Xi is performed (see Figure 3).

Let t� be the child of the regression node t, and suppose that it performs a splitting
test. The best splitting test in t� can be chosen on the basis of σ(Xj,Y) for all possible
variables Xj, as indicated above. Then π(Xi,Y) can be defined as follows:

π(Xi,Y) = min { R(t), σ(Xj,Y) for all possible variables Xj }.

Having defined both π(Xi,Y) and σ(Xi,Y), the criterion for selecting the best node is
fully characterized as well. A weight w (1-w) is associated to splitting (regression)
nodes, so as to express the user preference for model trees with splitting tests
(regression steps). Therefore, SMOTI actually compares the weighted values wσ(Xi,Y)
and (1-w)π(Xi,Y) while selecting a node. At each step of the model tree induction
process, SMOTI chooses the apparently most promising node according to a greedy
strategy. A continuous variable selected for a regression step is eliminated from
further consideration, so that it can appear only once in a regression node along a path
from the root to a leaf.

Fig. 3. Evaluation of a regression step at node t, based on the best splitting test below.
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In SMOTI three different stopping criteria are implemented. The first one uses the
partial F-test to evaluate the contribution of a new independent variable to the model
[3]. The second stopping criterion adopted by SMOTI requires the number of cases in
each node to be greater than a minimum value. The third criterion stops the induction
process when all continuous variables along the path from the root to the current node
are used in regression steps and there are no discrete variables in the training set.

The computational complexity of the model tree induction algorithm is highly
dependent on the choice of the best splitting test or regression step for a given node.
For regression steps, the worst case complexity is O(NmlogN), where N is the number
of examples in the training set and m is the number of independent variables. For
splitting tests, the worst case complexity is O(N+NlogN), where the component
NlogN is due to the quicksort algorithm. Therefore, the worst case complexity for the
selection of any node is O(Nm2 logN), since there are m independent variables.

It is noteworthy that SMOTI is more efficient than RETIS at building model trees
and defines the best partitioning of the feature space coherently with respect to the
model tree being built.

4. Observations on Experimental Results

SMOTI has been implemented as a module of a knowledge discovery system and has
been empirically evaluated on six datasets are taken from either the UCI Machine
Learning Repository (URL: http://www.ics.uci.edu/~mlearn/MLRepository.html) or the site
of the system HTL (URL: http://www.ncc.up.pt/~ltorgo/Regression/DataSets.html). They
are listed in Table 1 and they all have a continuous variable to be predicted.

Table 1. Datasets used in the empirical evaluation of SMOTI.

Dataset No. cases No. attributes Continuous Discrete
Abalone 2889 8 7 1

Auto 398 8 5 3
Housing 506 14 14 0

Machine CPU 209 6 0 6
Pyrimidines 74 27 27 0

Price 159 16 15 1

Each dataset is analyzed by means of a 10-fold cross-validation, that is, the dataset
is firstly divided into ten blocks of near-equal size and distribution of class values,
and then, for every block, SMOTI is trained on the remaining blocks and tested on the
hold-out block.

The system performance is evaluated on the basis of both the average
resubstitution error and the average number of leaves. For pairwise comparison of
methods, the non-parametric Wilcoxon signed rank test is used [7], since the number
of folds (or �independent� trials) is relatively low and does not justify the application
of parametric tests, such as the t-test. In the Wilcoxon signed rank test, the
summations on both positive and negative ranks, namely W+ and W-, are used to
determine the winner. In all experiments reported in this empirical study, the
significance level α is set to 0.05.
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4.1 Effect of Node Weighting

The first experiment aims at investigating the effect of node weighting on the
predictive accuracy and complexity of the tree. A weight greater than 0.5 gives
preferentiality to splitting tests, while a weight lower than 0.5 favors the selection of
regression nodes.  In terms of complexity of model trees, this means that the number
of leaves in the tree-structure is generally higher when the weight is greater than 0.5.
This intuition has been confirmed by experimental results, as can be seen in Figure 4.

It is noteworthy that, for higher values of the weight, regression nodes are often
selected near the leaves of the tree, so that they can give only a local contribution to
the approximation of the underlying function with a model tree. On the contrary, for
lower values of the weight regression node they tend to be selected at the root, so that
they give a global contribution to the approximation of the underlying function. In
other words, the weight represents the trade-off between global regression models that
span the whole feature space and are built using all training cases and local regression
models, which fit fewer data falling in smaller portions of the feature space.

The weighting factor also affects the predictive accuracy of the induced model, as
reported in Table 2. In each of the ten trials per dataset, predictive accuracy is
estimated by the mean square error, computed on the corresponding validation set.
Experimental results show that by increasing the weight, that is favoring the selection
of splitting nodes, it is possible to obtain more accurate model trees. Moreover, we
also observed that for weight values higher than 0.6 the situation does not change with
respect to the case w=0.6, while for weight values lower than 0.5 the accuracy is
lower than that observed with w=0.5. The conclusion is that, in almost all data sets
considered, local regression steps are preferred.

Fig. 4. Summations of positive and negative signed ranks used to compare the number of
leaves in model trees built with w=0.5 and w=0.6. Differences are statistically significant
for the databases Abalone, Housing, and Pyrimidine, meaning that in these cases the size
of the model trees built with w=0.5 is significantly lower than the size of the model trees
built with w=0.6.
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Table 2. Results of the Wilcoxon signed rank test on the accuracy of the induced model. The
best value is in boldface, while the statistically significant values (p≤α/2) are in italics.

0 0.5 vs 0.52 0.5 vs 0.56 0.5 vs 0.6Data set
p W+ W- p W+ W- p W+ W-

Abalone 0.083 45 10 0.004 54 1 0.004 54 1
Auto 0.556 34 21 0.492 35 20 1.000 28 27

Housing 0.492 20 35 0.275 39 16 0.432 36 19
Machine 0.064 46 9 0.064 46 9 0.064 46 9

Price 0.083 45 10 0.232 40 15 0.432 36 19
Pyrimidines 0.002 55 0 0.106 11 44 0.064 46 9

4.2 Comparison with Other Systems

SMOTI has also been compared to two other TDMTI systems, namely a trial version
of Cubist and M5'. Since the trial version of Cubist worked only for data sets of at
most 200 cases and 50 attributes, the comparison with Quinlan�s system was possible
only for four databases, namely Machine CPU, Price, and Pyrimidines. On the
contrary, the comparison with M5' was performed on all collected data sets.

When possible, two statistics were collected for comparison purposes: the average
number of leaves and the average MSE of the trees. Actually, Cubist did not report
the average MSE, but it was derived from other statistics printed in the report file. On
the contrary, it was impossible to derive the average number of leaves from statistics
made available to the user. Experimental results are shown in Table 3.

Table 3. Tree size and predictive accuracy for three different systems: SMOTI, M5' and Cubist.

SMOTI 0.5 SMOTI 0.6 M5' CubistData Sets
Av. No.
Leaves

Av. MSE Av. No.
Leaves

Av. MSE Av. No.
Leaves

Av.
MSE

Av. No.
Leaves

Av. MSE

Abalone 320,2 6,15 373,5 3,44 304,1 2,62
Auto 31,7 7,87 31,9 7,92 24,6 3,19

Housing 28,1 12,1 44,1 8,3 48,4 3,89
Machine 15,6 296,05 17,1 70,11 15,2 59,69 50,07

Price 11,1 3220,51 13,6 2646,17 16,9 2150,74 2512,37
Pyrimidines 1 0,12 6,1 0,08 3,4 0,09 0,09

As pointed out before, SMOTI generates more accurate model trees when splitting
tests are favored by setting the weight to 0.6. However, even in the best case, SMOTI
does not perform as well as M5' and Cubist with almost all data sets. Some
differences between SMOTI 0.6 and M5' are statistically significant and are reported
in italics. These results, which are unfavorable to SMOTI, seem to confirm the
presence of a common factor to many of the data sets used in the experiments on
regression and model trees: no general behavior was noted for the underlying function
to be approximated, and it can be better represented as a composition of many definite
local behaviors.
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4.3 Experiments on Laboratory-Sized Data Sets

In order to better understand the behavior of SMOTI, the system has been tested on
laboratory-sized data sets randomly generated for seven different model trees. These
model trees were automatically built for learning problems with nine independent
variables (five continuous and four discrete), where continuous variables take values
in the unit interval [0,1], while discrete variables take values in the set
{A,B,C,D,E,F,G}. The model tree building procedure is recursively defined on the
maximum depth of the tree to be generated. The choice of adding a regression or a
splitting node is random and depends on a parameter θ∈ [0,100]: the probability of
selecting a splitting node is θ%; conversely, the probability of selecting a regression
node is (100-θ)%. Therefore, the returned model trees have a variable number of
regression/splitting nodes and leaves, while the depth of the tree is kept under control.
In the experiments reported in this paper θ is fixed to 0.5 while the depth is set to 5.

Ten data points were randomly generated for each leaf, so that the size of the data
set associated to a model tree depends on the number of leaves in the tree itself. Data
points are generated according to the different multivariate linear models associated to
the leaves. The error added to each model is distributed normally, with zero mean and
variance σ2, which is kept constant for all leaves. The value of σ2 set for the
experimentation is 0.001, which means that for almost 90% of generated data points
the effect of the error is ±0.095, according to Chebyshev�s inequality. The effect of
the error is not marginal, given that both independent variables and their coefficients
range in the unit interval.

Table 4. Results for the model tree built with parameters θ=0.5, depth=5, and σ2=0.001.
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3
1

7
11

8
12 0.17

0.3

0.5 10 5 9 10 0.53
0.55

5
6

2
1

5
9

6
10 0.32

0.27

0.5 9 6 11 12 0.56
0.55

5
5

4
1

7
9

8
10 0.68

0.24

0.5 0 0 0 1 0.16
0.55

5
0

4
0

0
0

1
1 0.16

0.29

0.5 12 5 16 17 0.15
0.55

5
8

3
2

5
17

6
18 0.16

0.25
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Each dataset was analyzed by means of a 10-fold cross-validation. In order to study
the effect of the weight, two different values were considered: w=0.5 and w=0.55.
Experimental results are reported in Table 4. The properties of the original model
trees  (T. depth, T. number of regression nodes, T. number of splitting nodes, T.
number of leaves) are compared to the corresponding properties of the induced tree
(denoted by the initial I). The last two columns list the average mean square error
reported by SMOTI and M5´. Results show that SMOTI over-partition the feature
space, since the number of splitting nodes in the induced trees is always greater than
the number of splitting nodes in the theoretical model tree. This is true even in the
case of w=0.5. No similar regularity can be detected for regression nodes.
Interestingly, in many cases SMOTI performs better than M5´ with respect to average
MSE, even for the standard parameter setting like w=0.5. These results reverse
negative results obtained with UCI data sets and confirm that SMOTI works quite
well when both global and local behaviors are mixed up in the underlying models.

5. Conclusions

In the paper, a novel method, called stepwise model tree induction (SMOTI), has been
presented. The main advantage of SMOTI is that it efficiently generates model trees
with multiple regression models in the leaves. Model trees generated by SMOTI
include two types of nodes: regression nodes and splitting nodes. A weight associated
to the type of node allows the user to express a preference for either local regression
or global regression.

Experimental results proved empirically the effect of the weight. A comparison
with two other TDMTI systems has been reported for six datasets typically used to
test regression tree induction algorithms. A justification of the unfavorable results for
SMOTI may be the absence of a global behavior in the underlying model. An
empirical comparison with M5´ on laboratory-sized data sets proved that SMOTI can
induce more accurate model trees when both global and local behaviors are mixed up
in the underlying model. In the future, we plan to investigate the effect of pruning
model trees. To date, no study on the simplification techniques for model trees has
been presented in the literature. There are several possible approaches, some based on
the direct control of tree size, and others based on the extension of the set of tests
considered. Both a theoretical and an empirical evaluation of these approaches in
terms of accuracy and interpretability would be helpful in practical applications.
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