
Correcting the Document Layout: A Machine Learning Approach

Donato Malerba Floriana Esposito Oronzo Altamura
Michelangelo Ceci Margherita Berardi

Dipartimento di Informatica – Università degli Studi di Bari
via Orabona 4 - 70126 Bari

{malerba, esposito, altamura, ceci, berardi}@di.uniba.it

Abstract

In this paper, a machine learning approach to support the
user during the correction of the layout analysis is
proposed. Layout analysis is the process of extracting a
hierarchical structure describing the layout of a page. In
our approach, the layout analysis is performed in two
steps: firstly, the global analysis determines possible
areas containing paragraphs, sections, columns, figures
and tables, and secondly, the local analysis groups
together blocks that possibly fall within the same area.
The result of the local analysis process strongly depends
on the quality of the results of the first step. We
investigate the possibility of supporting the user during
the correction of the results of the global analysis. This is
done by allowing the user to correct the results of the
global analysis and then by learning rules for layout
correction from the sequence of user actions.
Experimental results on a set of multi-page documents
are reported and commented.

1. Background and motivation

Strategies for the extraction of layout analysis have been
traditionally classified as top-down or bottom-up [10]. In
top-down methods, the document image is repeatedly
decomposed into smaller and smaller components, while
in bottom-up methods, basic layout components are
extracted from bitmaps and then grouped together into
larger blocks on the basis of their characteristics. In
WISDOM++, a document image analysis system that can
transform paper documents into XML format [1], the
applied page decomposition method is hybrid, since it
combines a top-down approach to segment the document
image, and a bottom-up layout analysis method to
assemble basic blocks into frames.

Some attempts to learn the layout structure from a set
of training examples have also been reported in the
literature [2,3,4,7,11]. They are based on ad-hoc learning
algorithms, which learn particular data structures, such as
geometric trees and tree grammars. Results are promising,
although it has been proven that good layout structures

could also be obtained by exploiting generic knowledge
on typographic conventions [5]. This is the case of
WISDOM++, which analyzes the layout in two steps:

1. A global analysis, in order to determine possible
areas containing paragraphs, sections, columns, figures
and tables. This step is based on an iterative process, in
which the vertical and horizontal histograms of text
blocks are alternately analyzed, in order to detect columns
and sections/paragraphs, respectively.

2. A local analysis to group together blocks that
possibly fall within the same area. Generic knowledge on
west-style typesetting conventions is exploited to group
blocks together, such as “the first line of a paragraph can
be indented” and “in a justified text, the last line of a
paragraph can be shorter than the previous one”.

Experimental results proved the effectiveness of this
knowledge-based approach on images of the first page of
papers published in conference proceedings and journals
[1]. However, performance degenerates when the system
is tested on intermediate pages of multi-page articles,
where the structure is much more variable, due to the
presence of formulae, images, and drawings that can
stretch over more than one column, or are quite close.
The majority of errors made by the layout analysis
module were in the global analysis step, while the local
analysis step performed satisfactorily when the result of
the global analysis was correct.

In this paper, we investigate the possibility of
supporting the user during the correction of the results of
the global analysis. This is done by allowing the user to
correct the results of the global analysis and then by
learning rules for layout correction from his/her sequence
of actions. This approach is different from those that learn
the layout structure from scratch, since we try to correct
the result of a global analysis returned by a bottom-up
algorithm. Furthermore, we intend to capture knowledge
on correcting actions performed by the user of the
document image processing system. Other document
processing systems allow users to correct the result of the
layout analysis; nevertheless WISDOM++ is the only one
that tries to learn correcting actions from user interaction
with the system.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003)
0-7695-1960-1/03 $17.00 © 2003 IEEE

In the following section, we describe the layout
correction operations. The automated generation of
training examples is explained in Section 3. Section 4
introduces the learning strategy, while Section 5 presents
some experimental results.

2. Correcting the layout

Global analysis aims at determining the general layout
structure of a page and operates on a tree-based
representation of nested columns and sections. The levels
of columns and sections are alternated (Figure 1), which
means that a column contains sections, while a section
contains columns. At the end of the global analysis, the
user can only see the sections and columns that have been
considered atomic, that is, not subject to further
decomposition (Figure 2). The user can correct this result
by means of three different operations:
• Horizontal splitting: a column/section is cut

horizontally.
• Vertical splitting: a column/section is cut vertically.
• Grouping: two sections/columns are merged together.

The cut point in the two splitting operations is
automatically determined by computing either the
horizontal or the vertical histogram on the basic blocks
returned by the segmentation algorithm. The horizontal
(vertical) cut point corresponds to the largest gap between
two consecutive bins in the horizontal (vertical)
histogram. Therefore, splitting operations can be
described by means of a unary function, split(X), where X
represents the column/section to be split and the range is
the set {horizontal, vertical, no_split}.

The grouping operation, which can be described by
means of a binary predicate group(A,B), is applicable to
two sections (columns) A and B and returns a new section
(column) C, whose boundary is determined as follows.
Let (leftX, topX) and (bottomX, rightX) be the coordinates
of the top-left and bottom-right vertices of a
column/section X, respectively. Then:

leftC= min(leftA, leftB), rightC=max(rightA,rightB),
topC=min(topA,topB), bottomC=max(bottomA,bottomB).

Grouping is possible only if the following two conditions
are satisfied:
1. C does not overlap another section (column) in the

document.
2. A and B are nested in the same column (section).

After each splitting/grouping operation, WISDOM++
recomputes the result of the local analysis process, so that
the user can immediately perceive the final effect of the
requested correction and can decide whether to confirm
the correction or not.

3. Representing corrections

From the user interaction, WISDOM++ implicitly
generates some training observations describing when
and how the user intended to correct the result of the
global analysis. These training observations are used to
learn correction rules of the result of the global analysis,
as explained in the next section.

The simplest representation describes, for each
training observation, the page layout at the i-th correction
step and the correcting operation performed by the user
on that layout. Therefore, if the user performs n-1
correcting operations, n observations are generated. The
last one corresponds to the page layout accepted by the
user. In the learning phase, this representation may lead
the system to generate rules which strictly take into
account the exact user correction sequence. However,
several alternative correction sequences, which lead to the
same result, may be also possible. If they are not
considered, the learning strategy will suffer from data
overfitting problems. This issue was already discussed in
a preliminary work [9].

A more sophisticated representation, which takes into
account alternative correction sequences, is based on the

Column
level

Column
level

Section
level

Sectio
n

level

c2

s7 c5 s4
c6

s5

s6

s3

c1

s8

Document

c2 c1

s7 s3 s4

c5 c6

s8 s5 s6

document

Fig. 1. Layout tree. Columns and sections are alternated.
Fig. 2. Results of the global analysis process: one column (left)
includes two sections (right). The result of the local analysis
process (i.e., the frames) is reported in the background.

c1
s1

s2

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003)
0-7695-1960-1/03 $17.00 © 2003 IEEE

commutativity of some correcting operations. When the
sequential order of two ore more operations is irrelevant
for the final result, only one training observation can be
generated, such that all commutative operations are
associated to the page layout. However, in this
representation, it is crucial to use a method for the
discovery of alternative correction sequences.

Before formally describing the method, some useful
notations are introduced. Let Λ(P) be the space of
possible layout trees of a page P. Each operation can be
defined as a function O:Λ(P)→Λ(P), which transforms a
layout tree T1∈Λ(P) into the tree T2=O(T1)∈Λ(P), such
that T2 is derived from T1 by applying a split/grouping
operator to a specific column or section. Each function O
can be partially defined, since not all operations are
admissible (see previous section). The set of admissible
operations for T1∈Λ(P) will be denoted as A(T1).
Def. Independence between operations
Let O1 and O2 be two operations defined on Λ(P) and
T∈Λ(P). O1 and O2 are independent w.r.t the tree T iff
O1∈A(T), O1∈A(O2(T)), O2∈A(T), O2∈A(O1(T)) and
O1(O2(T))=O2(O1(T)).

When a user corrects the global analysis, he/she performs
a sequence of operations S:=(O1,O2…On-1), such that:

nTOOTOT n →→→ −121 ...21 ,

where T1 is the initial layout tree produced by the global
layout analysis, while Tn is the final layout tree that the
user considers to be corrected. The operation Oi can be
commuted with the operation Oj, 1≤j<i≤n, if ∀k, j≤k<i,
Ok and Oi are independent w.r.t. Tk. When two operations
can be commuted, a permutation S' of S exists, such that
when it is applied to T1 it produces Tn. The permutation S'
shares a prefix and a suffix with S. This can be
graphically represented as follows:

n
suffix

OO
iO

O

j
prefix

OO
1 TTTT

S
S 1n1i

1jk

1j
j1

444 3444 21444 3444 21  → →
 →

 →→→
′

−+
+

+
...

...

...... .

In an extreme situation, the prefix is only T1, while the
suffix is only Tn. Therefore, the set of all permutations S'
of S, obtained by commuting independent operations,
define a state graph where there is only one node with
null indegree, namely T1, and only one node with no null
outdegree, that is, Tn. Nodes in the state graph are
labelled with layout trees, while directed edges are
labelled with admissible operations. Every path from the
root to the leaf represents a sequence of operation that,
applied to the starting layout tree, generates the same
layout tree. An internal node Tj (1≤j≤n-1) has a number
of children m, depending on the number of independent
operations { }

mlll OOO ,...,,
21

 of S w.r.t. Tj, such that

ilO 1≤i≤m has not been applied in the path from the root

T1 to Tj.

For instance, if the user performs 3 operations to
obtain the correct layout tree T4

TOTOTOT 4321
321 →→→

and if O2 and O3 can be commuted, then the state graph
reported below can be built:

4O
5

O

O
3

O

2
O

1 T
T
TTT

23

32
1

→→

→→→ .

The graph shows the sequences of operations allowed to
obtain the layout tree T4.

Wisdom++ stores the sequence of operations
performed by the user O1,O2…On-1and the layout trees T1
and Tn. On the basis of this information it builds the state
graph in order to generate a set of training observations.

The definition of a suitable representation language for
the global layout structure is a key issue. In this work we
restrict this representation to the lowest column and
section levels in the tree structure extracted by the global
analysis and we deliberately ignore other levels and their
composition hierarchy. Nevertheless, describing this
portion of the layout structure is not straightforward,
since the columns and sections are spatially related and
the feature-vector representation, typically adopted in
statistical approaches, cannot render these relations.
Therefore, we resort to the application of a first-order
logic language, where unary function symbols, called
attributes, are used to describe properties of a single
layout component (e.g., height), while binary predicate
and function symbols, called relations, are used to
express spatial relationships among layout components
(e.g., part-of).

The following is an example of a training observation
automatically generated by WISDOM++ :
split(c1)=horizontal, group(s1,s2)=false,
split(s1)=no_split, split(s2)=no_split ←
width_s(s1)=552, width_s(s2)=552,
width_c(c1)=552, height_s(s1)=8,
height_s(s2)=723, height_c(c1)=852,
x_pos_centre_s(s1)=296, x_pos_centre_s(s2)=296,
x_pos_centre_c(c1)=296, y_pos_centre_s(s1)=22,
y_pos_centre_s(s2)=409, y_pos_centre_c(c1)=426,
s_on_top_s(s1,s2)=true, part_of(c1,s1)=true,
part_of(c1,s2)=true,no_blocks_s(s1)=2,
no_blocks_s(s2)=108, no_blocks_c(c1)=110,
per_text_s(s1)=100, per_text_s(s2)=83,
per_text_c(c1)=84.

This is a multiple-head ground clause, which has a
conjunction of literals in the head. It describes the
correction applicable to the page layout in Figure 1,
where two sections and one column were originally
found. The horizontal splitting of the column
(split(c1)=horizontal) is the first correction performed by
the user (Figure 3). No other operations performed by the
user can be applied as the first step, therefore, the
multiple-head clause also shows that the two sections s1
and s2 should be neither split (literals split(s1)=no_split
and split(s2)=no_split) nor grouped (literal

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003)
0-7695-1960-1/03 $17.00 © 2003 IEEE

group(s1,s2)=false). Many other literals, such as
group(c1,s2)=false, group(s1,c1)=false and

group(c1,c1)=false, have not been generated, since they
do not represent admissible operations.

The body represents the layout tree as attributes and
relations. The prefixes (suffixes) c_ and s_ (_c and _s) of
function symbols specify whether the arguments involved
are columns or sections. The column to be split is 552
pixels wide and 852 pixels high, has a center located at
the point (296,426), and includes 110 basic blocks and
the two sections s1 and s2, which are one on top of the
other. The percentage of the area covered by the text
blocks, enclosed by the column, is 84%.

3. The learning strategy

The inductive learning problem to be solved concerns the
concepts split(X)=horizontal, split(X)=vertical and
group(X,Y)=true, since we are interested in finding rules
which predict both when to split a column/section
horizontally/vertically and when to group two
columns/sections. No rule is generated for the case
split(X)=no_split and group(X,Y)=false.

Rules for the automated correction of the layout
analysis can be automatically learned by means of a first-
order learning system. The learning system ATRE has
been used [8]. It solves the following learning problem:
Given
• a set of concepts C1, C2, …, Cr to be learned,
• a set of observations O described in a language LO,
• a background knowledge BK expressed in a language

LBK,
• a language of hypotheses LH,
• a generalization model Γ over the space of hypotheses,
• a user’s preference criterion PC,
Find

a (possibly recursive) logical theory T for the concepts
C1, C2, …, Cr, such that T is complete and consistent with
respect to O and satisfies the preference criterion PC.

The completeness property holds when the theory T
explains all observations in O of the r concepts Ci, while
the consistency property holds when the theory T explains
no counter-example in O of any concept Ci. The
satisfaction of these properties guarantees the correctness
of the induced theory with respect to O.

In ATRE, observations are represented by means of
ground multiple-head clauses, called objects. All literals
in the head of the clause are called examples of the
concepts C1, C2, …, Cr. They can be considered either
positive or negative according to the learning goal. In this
application domain, the set of concepts to be learned are
split(X)=horizontal, split(X)=vertical, group(X,Y)=true,
since we are interested in finding rules which predict
when to split horizontally/vertically or when to group two
columns/sections. Therefore, no rule is generated for the
case split(X)=no_split and group(X,Y)=false. Moreover,
no background knowledge is available.

The generalization model provides the basis for
organizing the search space, since it establishes when a
hypothesis explains a positive/negative example and
when a hypothesis is more general/specific than another.
The generalization model adopted by ATRE, called
generalized implication, is explained in [6].

The preference criterion PC is a set of conditions used
to discard/favour some solutions. In this work, short
rules, which explain a high number of positive examples
and a low number of negative examples, are preferred.

4. Experimental results

To investigate the applicability of the proposed solution
we considered twenty-four papers, published as either
regular or short, in the IEEE Transactions on Pattern
Analysis and Machine Intelligence, in the January and
February 1996 issues. Each paper is a multi-page
document; therefore, we processed 216 document images
in all. For 148 document images the user performed some
corrections. The average number of corrections is 2.47
(i.e. 366/148) per corrected page. In fact, some
intermediate pages of multi-page documents are the most
critical and may require several operations to correct the
column/section structure. The number of objects for
ATRE corresponds to the total number of nodes in the
state graph of all pages, namely 216 leaves (one for each
corrected page layout) and 514 internal nodes. The total
number of examples is 36,549, which corresponds to the
total number of literals in the multiple-head clauses.
Given the set of concepts to be learned, only 736 out of
36,549 examples are positive and which correspond to

Fig. 3. Horizontal split of the column (left) and vertical split
of column c2 (right). The result of the layout analysis
process is in the background.

c2
c1

c3
c2
c1

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003)
0-7695-1960-1/03 $17.00 © 2003 IEEE

either correcting actions actually performed by the user
(vertical/horizontal splitting or grouping) or correcting
actions generated automatically by the system, thanks to
its independence.

The performance of the learning task is evaluated by
means of a 6-fold cross-validation, that is, the set of
twenty-four documents is first divided into six blocks (or
folds) of four documents, and then, for every block,
ATRE is trained on the remaining blocks and tested on
the hold-out block. For each learning problem, the
number of omission/commission errors is recorded.
Omission errors occur when correct actions on page
layout are missed, while commission errors occur when
wrong actions are “recommended” by a rule.

Experimental results are reported in Table 1 for each
trial, and the average number of omission and
commission errors is also computed. Two conclusions
can be drawn from Table 1. Firstly, there is a high level
of variability among the trials. For instance, the
percentage of omission errors of the rule for grouping in
the second trial is relatively low (about 10.8%), while the
same percentage for the third trial is quite high (about
73.5%). A possible explanation might be the different
correction procedures adopted by the four users who
worked on the correction of the document layouts.
Secondly, the percentage of commission errors is very
low with respect to the percentage of omission errors.
This means that learned rules are generally specific,
because of the low percentage of positive examples
(about 2%) with respect to the total number of training
examples.

Table 1. Experimental results.

Vertical split Horizontal split Grouping Rule
/

Trial omiss. Comm. omiss. comm. omiss. comm.

1 8/15 1/3794 10/17 11/3292 4/9 8/3800
2 11/15 23/3976 4/7 7/3984 4/37 21/3954
3 22/30 6/4621 12/17 4/4634 25/34 9/4617
4 33/59 32/11394 6/17 66/11436 94/142 89/11311
5 17/30 24/5186 96/117 33/5099 14/31 23/5185
6 28/51 9/7878 26/31 2/7898 18/77 77/7852

Average% 61.25 0.27 64.63 0.31 43.92 0.52
St.dev.% 9.42 0.21 18.21 0.25 24.05 0.31

5 Conclusions

This work presents an application of machine learning
techniques to the problem of correcting the result of the
global layout analysis process in WISDOM++. The
proposed approach is an alternative to inducing the
complete layout structure from a set of training examples.
Training examples are automatically generated from the
sequence of correcting operations performed by the user.

The independence of the operations has also been
considered to improve the representation of the
corrections. Experimental results prove the difficulty of
the learning task, which is characterized by a relatively
low percentage of positive training examples for
sometimes-complex correction tasks. This can be
attributed both to the low average number of corrections
performed by the user on each page and to the limited set
of document images used in the experiments. A more
extensive experimentation is planned for the next future.

Acknowledgements

This work fulfills the research objectives set by the IST-
1999-20882 project COLLATE (Collaboratory for
Annotation, Indexing and Retrieval of Digitized
Historical Archive Material) funded by the European
Union.

References

1. Altamura O., Esposito F., & Malerba D.: Transforming
paper documents into XML format with WISDOM++, Int.
Journal on Document Analysis and Recognition, 4(1), 2-17,
2001.

2. Akindele O.T., & Belaïd A.: Construction of generic
models of document structures using inference of tree
grammars, Proc. of the 3rd Int. Conf. on Document
Analysis and Recognition, IEEE Computer Society Press,
206-209, 1995.

3. Dengel A.: Initial learning of document structures, Proc. of
the 2nd Int. Conf. on Document Analysis and Recognition,
IEEE Computer Society Press, 86-90, 1993.

4. Dengel A., & Dubiel F.: Clustering and classification of
document structure – A machine learning approach, Proc.
of the 3rd Int. Conf. on Document Analysis and
Recognition, IEEE Computer Society Press, 587-591,1995.

5. Esposito F., Malerba D., & Semeraro G.: A Knowledge-
Based Approach to the Layout Analysis, Proc. of the 3rd
Int. Conf. on Document Analysis and Recognition, IEEE
Computer Society Press, 466- 471, 1995.

6. Esposito F., Malerba D., & Lisi F.A.: Induction of
recursive theories in the normal ILP setting: issues and
solutions, in J. Cussens and A. Frisch (Eds.), Inductive
Logic Programming, Lecture Notes in Artificial
Intelligence, 1866, 93-111, Springer: Berlin, 2000.

7. Kise K.: Incremental acquisition of knowledge about layout
structures from examples of documents. Proc. of the 2nd
Int. Conf. on Document Analysis and Recognition, IEEE
Computer Society Press, pp. 668-671, 1993.

8. Malerba D., Esposito F., & Lisi F.A.: Learning recursive
theories with ATRE, Proc. of the 13th European Conf. on
Artificial Intelligence, John Wiley & Sons, 435-439, 1998.

9. Malerba D., Esposito F., Altamura O.: Learning Rules for
Layout Analysis Correction, Proc. of the Int. Workshop on

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003)
0-7695-1960-1/03 $17.00 © 2003 IEEE

Document Layout Interpretation and its Applications
(DLIA’01), Seattle (WA), 2001.

10. Srihari S.N., & Zack G.W.: Document Image Analysis.
Proc. of the 8th Int. Conf. on Pattern Recognition, 434-436,
1986.

11. Walischewski H.: Automatic knowledge acquisition for
spatial document interpretation. Proc. of the 4th Int. Conf.
on Document Analysis and Recognition, IEEE Computer
Society Press, 243-247, 1997.

Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR 2003)
0-7695-1960-1/03 $17.00 © 2003 IEEE

