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Abstract 
 
In this paper, a machine learning approach to support the 
user during the correction of the layout analysis is 
proposed. Layout analysis is the process of extracting a 
hierarchical structure describing the layout of a page. In  
our approach, the layout analysis is performed in two 
steps: firstly, the global analysis determines possible 
areas containing paragraphs, sections, columns, figures 
and tables, and secondly, the local analysis groups 
together blocks that possibly fall within the same area. 
The result of the local analysis process strongly depends 
on the quality of the results of the first step. We 
investigate the possibility of supporting the user during 
the correction of the results of the global analysis. This is 
done by allowing the user to correct the results of the 
global analysis and then by learning rules for layout 
correction from the sequence of user actions. 
Experimental results on a set of multi-page documents 
are reported and commented. 
 
1. Background and motivation 
 
Strategies for the extraction of layout analysis have been 
traditionally classified as top-down or bottom-up [10]. In 
top-down methods, the document image is repeatedly 
decomposed into smaller and smaller components, while 
in bottom-up methods, basic layout components are 
extracted from bitmaps and then grouped together into 
larger blocks on the basis of their characteristics. In 
WISDOM++, a document image analysis system that can 
transform paper documents into XML format [1], the 
applied page decomposition method is hybrid, since it 
combines a top-down approach to segment the document 
image, and a bottom-up layout analysis method to 
assemble basic blocks into frames. 

Some attempts to learn the layout structure from a set 
of training examples have also been reported in the 
literature [2,3,4,7,11]. They are based on ad-hoc learning 
algorithms, which learn particular data structures, such as 
geometric trees and tree grammars. Results are promising, 
although it has been proven that good layout structures 

could also be obtained by exploiting generic knowledge 
on typographic conventions [5]. This is the case of 
WISDOM++, which analyzes the layout in two steps: 

1. A global analysis, in order to determine possible 
areas containing paragraphs, sections, columns, figures 
and tables. This step is based on an iterative process, in 
which the vertical and horizontal histograms of text 
blocks are alternately analyzed, in order to detect columns 
and sections/paragraphs, respectively.  

2. A local analysis to group together blocks that 
possibly fall within the same area. Generic knowledge on 
west-style typesetting conventions is exploited to group 
blocks together, such as “the first line of a paragraph can 
be indented” and “in a justified text, the last line of a 
paragraph can be shorter than the previous one”. 

Experimental results proved the effectiveness of this 
knowledge-based approach on images of the first page of 
papers published in conference proceedings and journals 
[1]. However, performance degenerates when the system 
is tested on intermediate pages of multi-page articles, 
where the structure is much more variable, due to the 
presence of formulae, images, and drawings that can 
stretch over more than one column, or are quite close. 
The majority of errors made by the layout analysis 
module were in the global analysis step, while the local 
analysis step performed satisfactorily when the result of 
the global analysis was correct. 

In this paper, we investigate the possibility of 
supporting the user during the correction of the results of 
the global analysis. This is done by allowing the user to 
correct the results of the global analysis and then by 
learning rules for layout correction from his/her sequence 
of actions. This approach is different from those that learn 
the layout structure from scratch, since we try to correct 
the result of a global analysis returned by a bottom-up 
algorithm. Furthermore, we intend to capture knowledge 
on correcting actions performed by the user of the 
document image processing system. Other document 
processing systems allow users to correct the result of the 
layout analysis; nevertheless WISDOM++ is the only one 
that tries to learn correcting actions from user interaction 
with the system. 
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In the following section, we describe the layout 
correction operations. The automated generation of 
training examples is explained in Section 3. Section 4 
introduces the learning strategy, while Section 5 presents 
some experimental results. 

2. Correcting the layout  
 
Global analysis aims at determining the general layout 
structure of a page and operates on a tree-based 
representation of nested columns and sections. The levels 
of columns and sections are alternated (Figure 1), which 
means that a column contains sections, while a section 
contains columns. At the end of the global analysis, the 
user can only see the sections and columns that have been 
considered atomic, that is, not subject to further 
decomposition (Figure 2). The user can correct this result 
by means of three different operations: 
• Horizontal splitting: a column/section is cut 

horizontally. 
• Vertical splitting: a column/section is cut vertically. 
• Grouping: two sections/columns are merged together.  

The cut point in the two splitting operations is 
automatically determined by computing either the 
horizontal or the vertical histogram on the basic blocks 
returned by the segmentation algorithm. The horizontal 
(vertical) cut point corresponds to the largest gap between 
two consecutive bins in the horizontal (vertical) 
histogram. Therefore, splitting operations can be 
described by means of a unary function, split(X), where X 
represents the column/section to be split and the range is 
the set {horizontal, vertical, no_split}.   

The grouping operation, which can be described by 
means of a binary predicate group(A,B), is applicable to 
two sections (columns) A and B and returns a new section 
(column) C, whose boundary is determined as follows. 
Let (leftX, topX) and (bottomX, rightX) be the coordinates 
of the top-left and bottom-right vertices of a 
column/section X, respectively. Then: 

leftC= min(leftA, leftB),  rightC=max(rightA,rightB), 
topC=min(topA,topB),  bottomC=max(bottomA,bottomB). 

Grouping is possible only if the following two conditions 
are satisfied: 
1. C does not overlap another section (column) in the 

document. 
2. A and B are nested in the same column (section). 

After each splitting/grouping operation, WISDOM++ 
recomputes the result of the local analysis process, so that 
the user can immediately perceive the final effect of the 
requested correction and can decide whether to confirm 
the correction or not. 

3. Representing corrections  
 
From the user interaction, WISDOM++ implicitly 
generates some training observations describing when 
and how the user intended to correct the result of the 
global analysis. These training observations are used to 
learn correction rules of the result of the global analysis, 
as explained in the next section. 

The simplest representation describes, for each 
training observation, the page layout at the i-th correction 
step and the correcting operation performed by the user 
on that layout. Therefore, if the user performs n-1 
correcting operations, n observations are generated. The 
last one corresponds to the page layout accepted by the 
user. In the learning phase, this representation may lead 
the system to generate rules which strictly take into 
account the exact user correction sequence. However, 
several alternative correction sequences, which lead to the 
same result, may be also possible. If they are not 
considered, the learning strategy will suffer from data 
overfitting problems. This issue was already discussed in 
a preliminary work [9].  

A more sophisticated representation, which takes into 
account alternative correction sequences, is based on the 
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Fig. 1. Layout tree. Columns and sections are alternated. 
Fig. 2. Results of the global analysis process: one column (left) 
includes two sections (right). The result of the local analysis 
process (i.e., the frames) is reported in the background.
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commutativity of some correcting operations. When the 
sequential order of two ore more operations is irrelevant 
for the final result, only one training observation can be 
generated, such that all commutative operations are 
associated to the page layout. However, in this 
representation, it is crucial to use a method for the 
discovery of alternative correction sequences.   

Before formally describing the method, some useful 
notations are introduced. Let Λ(P) be the space of 
possible layout trees of a page P. Each operation can be 
defined as a function O:Λ(P)→Λ(P), which transforms a 
layout tree T1∈Λ(P) into the tree T2=O(T1)∈Λ(P), such 
that T2 is derived from T1 by applying a split/grouping 
operator to a specific column or section. Each function O 
can be partially defined, since not all operations are 
admissible (see previous section). The set of admissible 
operations for T1∈Λ(P) will be denoted as A(T1). 
Def. Independence between operations  
Let O1 and O2 be two operations defined on Λ(P) and 
T∈Λ(P). O1 and O2 are independent w.r.t the tree T iff 
O1∈A(T), O1∈A(O2(T)), O2∈A(T),  O2∈A(O1(T)) and 
O1(O2(T))=O2(O1(T)).  

When a user corrects the global analysis, he/she performs 
a sequence of operations S:=(O1,O2…On-1), such that: 

nTOOTOT n →→→ −121 ...21 , 

where T1 is the initial layout tree produced by the global 
layout analysis, while Tn is the final layout tree that the 
user considers to be corrected. The operation Oi can be 
commuted with the operation Oj, 1≤j<i≤n, if ∀k, j≤k<i, 
Ok and Oi are independent w.r.t. Tk. When two operations 
can be commuted, a permutation S' of S exists, such that 
when it is applied to T1 it produces Tn. The permutation S' 
shares a prefix and a suffix with S. This can be 
graphically represented as follows:  
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In an extreme situation, the prefix is only T1, while the 
suffix is only Tn. Therefore, the set of all permutations S' 
of S, obtained by commuting independent operations, 
define a state graph where there is only one node with 
null indegree, namely T1, and only one node with no null 
outdegree, that is, Tn. Nodes in the state graph are 
labelled with layout trees, while directed edges are 
labelled with admissible operations. Every path from the 
root to the leaf represents a sequence of operation that, 
applied to the starting layout tree, generates the same 
layout tree. An internal node Tj (1≤j≤n-1) has a number 
of children m, depending on the number of independent 
operations { }

mlll OOO ,...,,
21

 of S w.r.t. Tj, such that 

ilO 1≤i≤m has not been applied in the path from the root 

T1 to Tj. 

For instance, if the user performs 3 operations to 
obtain the correct layout tree T4  

TOTOTOT 4321
321 →→→  

and if O2 and O3 can be commuted, then the state graph 
reported below can be built:  
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The graph shows the sequences of operations allowed to 
obtain the layout tree T4. 

Wisdom++ stores the sequence of operations 
performed by the user O1,O2…On-1and the layout trees T1 
and Tn. On the basis of this information it builds the state 
graph in order to generate a set of training observations. 

The definition of a suitable representation language for 
the global layout structure is a key issue. In this work we 
restrict this representation to the lowest column and 
section levels in the tree structure extracted by the global 
analysis and we deliberately ignore other levels and their 
composition hierarchy. Nevertheless, describing this 
portion of the layout structure is not straightforward, 
since the columns and sections are spatially related and 
the feature-vector representation, typically adopted in 
statistical approaches, cannot render these relations. 
Therefore, we resort to the application of a first-order 
logic language, where unary function symbols, called 
attributes, are used to describe properties of a single 
layout component (e.g., height), while binary predicate 
and function symbols, called relations, are used to 
express spatial relationships among layout components 
(e.g., part-of).  

The following is an example of a training observation 
automatically generated by WISDOM++ : 
split(c1)=horizontal, group(s1,s2)=false, 
split(s1)=no_split, split(s2)=no_split ← 
width_s(s1)=552, width_s(s2)=552, 
width_c(c1)=552, height_s(s1)=8, 
height_s(s2)=723, height_c(c1)=852, 
x_pos_centre_s(s1)=296, x_pos_centre_s(s2)=296, 
x_pos_centre_c(c1)=296, y_pos_centre_s(s1)=22, 
y_pos_centre_s(s2)=409, y_pos_centre_c(c1)=426, 
s_on_top_s(s1,s2)=true, part_of(c1,s1)=true, 
part_of(c1,s2)=true,no_blocks_s(s1)=2, 
no_blocks_s(s2)=108, no_blocks_c(c1)=110, 
per_text_s(s1)=100, per_text_s(s2)=83, 
per_text_c(c1)=84. 

This is a multiple-head ground clause, which has a 
conjunction of literals in the head. It describes the  
correction applicable to the page layout in Figure 1, 
where two sections and one column were originally 
found. The horizontal splitting of the column 
(split(c1)=horizontal) is the first correction performed by 
the user (Figure 3). No other operations performed by the 
user can be applied as the first step, therefore, the 
multiple-head clause also shows that the two sections s1 
and s2 should be neither split (literals split(s1)=no_split 
and split(s2)=no_split) nor grouped (literal 
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group(s1,s2)=false). Many other literals, such as 
group(c1,s2)=false, group(s1,c1)=false and 

group(c1,c1)=false, have not been generated, since they 
do not represent admissible operations.  

The body represents the layout tree as attributes and 
relations. The prefixes (suffixes) c_ and s_ (_c and _s) of 
function symbols specify whether the arguments involved 
are columns or sections. The column to be split is 552 
pixels wide and 852 pixels high, has a center located at 
the point (296,426), and includes 110 basic blocks and 
the two sections s1 and s2, which are one on top of the 
other. The percentage of the area covered by the text 
blocks, enclosed by the column, is 84%.  
 
3. The learning strategy 
 
The inductive learning problem to be solved concerns the 
concepts split(X)=horizontal, split(X)=vertical and 
group(X,Y)=true, since we are interested in finding rules 
which predict both when to split a column/section 
horizontally/vertically and when to group two 
columns/sections. No rule is generated for the case 
split(X)=no_split and group(X,Y)=false. 

Rules for the automated correction of the layout 
analysis can be automatically learned by means of a first-
order learning system. The learning system ATRE has 
been used [8]. It solves the following learning problem: 
Given 
• a set of concepts C1, C2, …, Cr to be learned, 
• a set of observations O described in a language LO, 
• a background knowledge BK expressed in a language 

LBK, 
• a language of hypotheses LH, 
• a generalization model Γ over the space of hypotheses,  
• a user’s preference criterion PC, 
Find 

a (possibly recursive) logical theory T for the concepts 
C1, C2, …, Cr, such that T is complete and consistent with 
respect to O and satisfies the preference criterion PC. 

The completeness property holds when the theory T 
explains all observations in O of the r concepts Ci, while 
the consistency property holds when the theory T explains 
no counter-example in O of any concept Ci. The 
satisfaction of these properties guarantees the correctness 
of the induced theory with respect to O. 

In ATRE, observations are represented by means of 
ground multiple-head clauses, called objects. All literals 
in the head of the clause are called examples of the 
concepts C1, C2, …, Cr. They can be considered either 
positive or negative according to the learning goal. In this 
application domain, the set of concepts to be learned are 
split(X)=horizontal, split(X)=vertical, group(X,Y)=true, 
since we are interested in finding rules which predict 
when to split horizontally/vertically or when to group two 
columns/sections. Therefore, no rule is generated for the 
case split(X)=no_split and group(X,Y)=false. Moreover, 
no background knowledge is available.  

The generalization model provides the basis for 
organizing the search space, since it establishes when a 
hypothesis explains a positive/negative example and 
when a hypothesis is more general/specific than another. 
The generalization model adopted by ATRE, called 
generalized implication, is explained in [6].  

The preference criterion PC is a set of conditions used 
to discard/favour some solutions. In this work, short 
rules, which explain a high number of positive examples 
and a low number of negative examples, are preferred. 
 
4. Experimental results 
 
To investigate the applicability of the proposed solution 
we considered twenty-four papers, published as either 
regular or short, in the IEEE Transactions on Pattern 
Analysis and Machine Intelligence, in the January and 
February 1996 issues. Each paper is a multi-page 
document; therefore, we processed 216 document images 
in all. For 148 document images the user performed some 
corrections. The average number of corrections is 2.47 
(i.e. 366/148) per corrected page. In fact, some 
intermediate pages of multi-page documents are the most 
critical and may require several operations to correct the 
column/section structure. The number of objects for 
ATRE corresponds to the total number of nodes in the 
state graph of all pages, namely 216 leaves (one for each 
corrected page layout) and 514 internal nodes. The total 
number of examples is 36,549, which corresponds to the 
total number of literals in the multiple-head clauses. 
Given the set of concepts to be learned, only 736 out of 
36,549 examples are positive and which correspond to 

Fig. 3. Horizontal split of the column (left) and vertical split
of column c2 (right). The result of the layout analysis 
process is in the background.  
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either correcting actions actually performed by the user 
(vertical/horizontal splitting or grouping) or correcting 
actions generated automatically by the system, thanks to 
its independence.  

The performance of the learning task is evaluated by 
means of a 6-fold cross-validation, that is, the set of 
twenty-four documents is first divided into six blocks (or 
folds) of four documents, and then, for every block, 
ATRE is trained on the remaining blocks and tested on 
the hold-out block. For each learning problem, the 
number of omission/commission errors is recorded. 
Omission errors occur when correct actions on page 
layout are missed, while commission errors occur when 
wrong actions are “recommended” by a rule. 

Experimental results are reported in Table 1 for each 
trial, and the average number of omission and 
commission errors is also computed. Two conclusions 
can be drawn from Table 1. Firstly, there is a high level 
of variability among the trials. For instance, the 
percentage of omission errors of the rule for grouping in 
the second trial is relatively low (about 10.8%), while the 
same percentage for the third trial is quite high (about 
73.5%). A possible explanation might be the different 
correction procedures adopted by the four users who 
worked on the correction of the document layouts. 
Secondly, the percentage of commission errors is very 
low with respect to the percentage of omission errors. 
This means that learned rules are generally specific, 
because of the low percentage of positive examples 
(about 2%) with respect to the total number of training 
examples. 

Table 1. Experimental results. 

Vertical split Horizontal split Grouping Rule 
/ 

Trial omiss. Comm. omiss. comm. omiss. comm. 

1 8/15 1/3794 10/17 11/3292 4/9 8/3800 
2 11/15 23/3976 4/7 7/3984 4/37 21/3954 
3 22/30 6/4621 12/17 4/4634 25/34 9/4617 
4 33/59 32/11394 6/17 66/11436 94/142 89/11311
5 17/30 24/5186 96/117 33/5099 14/31 23/5185 
6 28/51 9/7878 26/31 2/7898 18/77 77/7852 

Average% 61.25 0.27 64.63 0.31 43.92 0.52 
St.dev.% 9.42 0.21 18.21 0.25 24.05 0.31 

5 Conclusions 

This work presents an application of machine learning 
techniques to the problem of correcting the result of the 
global layout analysis process in WISDOM++. The 
proposed approach is an alternative to inducing the 
complete layout structure from a set of training examples. 
Training examples are automatically generated from the 
sequence of correcting operations performed by the user. 

The independence of the operations has also been 
considered to improve the representation of the 
corrections. Experimental results prove the difficulty of 
the learning task, which is characterized by a relatively 
low percentage of positive training examples for 
sometimes-complex correction tasks. This can be 
attributed both to the low average number of corrections 
performed by the user on each page and to the limited set 
of document images used in the experiments. A more 
extensive experimentation is planned for the next future. 
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