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Abstract. Learning classifiers of spatial data presents several issues, such as the
heterogeneity of spatial objects, the implicit definition of spatial relationships
among objects, the spatial autocorrelation and the abundance of unlabelled data
which potentially convey a large amount of information. The first three issues
are due to the inherent structure of spatial units of analysis, which can be easily
accommodated if a (multi-)relational data mining approach is considered. The
fourth issue demands for the adoption of a transductive setting, which aims to
make predictions for a given set of unlabelled data. Transduction is also moti-
vated by the contiguity of the concept of positive autocorrelation, which typically
affect spatial phenomena, with the smoothness assumption which characterize the
transductive setting. In this work, we investigate a relational approach to spatial
classification in a transductive setting. Computational solutions to the main diffi-
culties met in this approach are presented. In particular, a relational upgrade of the
naı̈ve Bayes classifier is proposed as discriminative model, an iterative algorithm
is designed for the transductive classification of unlabelled data, and a distance
measure between relational descriptions of spatial objects is defined in order to
determine the k-nearest neighbors of each example in the dataset. Computational
solutions have been tested on two real-world spatial datasets. The transformation
of spatial data into a multi-relational representation and experimental results are
reported and commented.

1 Introduction

Several applications, such as fleet management, environmental and ecological model-
ing, remote sensing, are the source of a huge amount of spatial data, which are stored
in spatial databases of Geographic Information Systems (GISs). A GIS is a software
system that provides the infrastructure for editing, storing, analyzing and displaying
spatial objects. Popular GISs (e.g. ArcView, MapInfo and Open GIS) have been de-
signed as a toolbox that allows planners to explore spatial data by zooming, overlaying,
and thematic map coloring. They are provided with functionalities that make the spatial
visualization of individual variables effective, but overlook complex multi-variate de-
pendencies. GIS vendors and researchers now recognize this limitation and have begun
to address it by adding spatial data interpretation capabilities to the systems.

Wessel [48] describes a prototypical GIS extended with a knowledge-base, expressed
in Description Logic, and some reasoning capabilities which can be useful for the inter-
pretation of stored maps. However, this system has a limited range of applicability for a
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variety of reasons. First, providing the GIS with operational definitions of some spatial
concepts (e.g. morphological environments) is not a trivial task. Generally only declar-
ative and abstract definitions, which are difficult to compile into database queries, are
available. Second, the operational definitions of some spatial objects are strongly de-
pendent on the data model adopted for the GIS. Finding relationships between density
of vegetation and climate is easier with a raster data model, while determining the usual
orientation of some morphological elements is simpler in a topological data model [15].
Third, different applications of a GIS will require the recognition of different spatial ob-
jects in a map. Providing the system in advance with all the knowledge required for its
various application domains is strenuous.

The solution to these difficulties can be found in spatial data mining, which inves-
tigates how interesting, but not explicitly available knowledge can be extracted from
spatial data. Several works on spatial data mining have already been reported in the
literature. They concern several tasks, both predictive (e.g., regression [32] and local-
ization [42]) and descriptive (e.g., clustering [19, 40] and discovery of association rules
[24, 1], co-location [44], subgroups [22], emerging patterns [5], and spatial trends [13]).

In this chapter, we focus on the classification task, where the goal is to produce a
model that can predict the class of unlabeled examples, by training on examples whose
label, or class, is supplied. Some examples of applications of classification models to
spatial data are the recognition of complex geo-morphologies for topographic map in-
terpretation [33] and the land use and land cover mapping on the basis of remotely
sensed data [34].

In the literature there are already several works on spatial classification. Ester et al.
[14] have proposed an extension of decision trees based on neighborhood graph to con-
sider both thematic attributes of the classified objects and relations with neighboring
objects. Koperski [23] has investigated a method which deals with both spatial and hi-
erarchical relations between spatial objects, and takes thematic attributes of neighboring
objects into account. Shekhar et al. [43] compares two major approaches for incorpo-
rating spatial dependence into classification/prediction problems, namely the Markov
random fields and the spatial autoregression model.

The formulation of a spatial classification method cannot leave out of consideration
the following issues.

Issue 1: Heterogeneity of spatial objects. Each unit of analysis involves spatial objects
of different types, such as a town and a highway. In spatial databases, objects of different
types are organized in separate layers, each of which has a distinct set of attributes and
possibly a geometry attribute represented in the vector mode. For instance, a town can
be described in terms of economic and demographic factors, as well as a polygon cor-
responding to its administrative boundary, while a highway is described by the average
speed limit, traffic and driving safety conditions, as well as a polyline corresponding to
its path. To deal with object heterogeneity, the design of a spatial classification method
should not be strictly bound to process objects in one specific layer.

Issue 2: The implicit definition of spatial relationships among objects. Spatial objects
have a locational property which implicitly defines several spatial relationships between
objects, such as topological, distance-based and directional. Topological relationships



Transductive Learning for Spatial Data Classification 191

(e.g. ‘intersects’) are invariant under homomorphisms, such as rotation, translation and
scaling. Their semantics is precisely defined by means of the 9-intersection model [11].
Distance relationships between two spatial objects can be easily defined in case of punc-
tual representation of the objects (e.g., Euclidean metric) while are more elaborated for
linear or surfacic representations. Directional relations can be expressed by the angle
formed by two points with respect to the origin of the reference system, or by an ex-
tension of Allen’s interval algebra which is based on projection lines [38]. In a spatial
database, implicit binary spatial relationships correspond to spatial joins between lay-
ers. The relational nature of spatial rules makes the computation of these spatial joins
crucial for the development of effective and efficient data analysis methods.

Issue 3: Spatial autocorrelation. By picturing the spatial variation of some observed
variables in a map, we may observe regions where the distribution of values is smoothly
continuous with some boundaries possibly marked by sharp discontinuities. In this case,
a variable is correlated with itself through space. Formally, spatial autocorrelation (or
spatial dependence, as it is typically called in statistics) is defined as the property of
random variables taking values, at pairs of locations a certain distance apart, that are
more similar (positive autocorrelation) or less similar (negative autocorrelation) than
expected for randomly associated pairs of observations [29]. Informally, spatial posi-
tive (negative) autocorrelation occurs when the values of a given property are highly
uniform (different) among similar spatial objects in the neighborhood (see Fig. 1).
Spatial autocorrelation clearly indicates a violation of the independence assumption
of observations usually made in statistics and data mining. Therefore, knowledge dis-
covery techniques that ignore spatial autocorrelation typically perform poorly in the
presence of spatial data. When properties of some spatial objects are investigated, at-
tributes of spatially related objects must be taken into account as well, since they may
have some kind of influence. This leads to distinguish between the reference (or target)
objects, which are the main subject of analysis and identify the units of analysis, and the

Fig. 1. An example of positive autocorrelation. The classification of the brown area as ‘well
served’ is based on some features measured in that area (e.g., number of communal establish-
ments (schools, hospitals, etc.) and in the nearby areas.
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task-relevant objects, which are spatial objects “in the neighborhood” that can help to
account for the spatial variation.

Issue 4: Using both labelled and unlabelled data. Learning algorithms designed for
spatial classification tasks may require large sets of labeled data. However, the common
situation is that only few labeled training data are available since manual annotation of
the many objects in a map is very demanding. In this situation, it is important to exploit
the large amount of information potentially conveyed by unlabeled data to better esti-
mate the data distribution and to build more accurate classification models.

The first three issues reported above are due to the inherent structure of the units of anal-
ysis, which cannot be easily accommodated into a classical double-entry table, whose
columns correspond to elementary (nominal, ordinal or numeric) single-valued attributes.
In fact, spatial datasets can be naturally modeled as a set of relations R1, . . . ,Rn, such that
each relation Ri has a number of elementary attributes Ai

1, . . .Ai
mi

and possibly a geome-
try attribute Gi (in which case it is a layer). Relationships are either explicitly modeled
by means of foreign key constraints or implicitly represented by spatial joins.

(Multi-)relational data mining (MRDM) offers the most suitable setting for spatial
data mining tasks. Indeed, MRDM tools can be applied directly to data distributed over
several relations to find relational patterns which involve multiple relations [10]. Rela-
tional patterns can be expressed either in SQL or in first-order logic (or predicate calcu-
lus). The latter reprentation formalism explains why many MRDM algorithms originate
from the field of inductive logic programming (ILP) [37, 8, 28].

The earliest proposal of a relational approach to spatial classification has been re-
ported in [33], where authors propose to exploit the expressive power of first-order
logic to represent not only spatial relations, but also background knowledge. Ceci and
Appice [3] have subsequently proposed the combination of two relational methods, one
for the extraction of spatial association rules and the other for the Bayesian classifi-
cation. Both proposals, however, do not deal with the problem of learning from both
labelled and unlabelled data.

To deal with the fourth issue, two learning settings have been proposed in the litera-
ture: the semi-supervised setting and the transductive setting [41]. The former is a type
of inductive learning [35], since the learned function is used to make predictions on any
possible example. The latter asks for less - it is only interested in making predictions
for the given set of unlabeled data.

Transduction [47] seems to be the most suitable setting for spatial classification tasks,
for at least two reasons. First, in spatial domains observations to be classified are already
known in advance: they are spatial objects on maps already available in a GIS. Sec-
ond, transduction is based on a (semi-supervised) smoothness assumption according to
which if two points x1 and x2 in a high-density region are close, then the corresponding
outputs y1 and y2 should also be close [6]. In spatial domains, where closeness of points
corresponds to some spatial distance measure, this assumption is implied by (positive)
spatial autocorrelation.

Several transductive learning methods have been proposed in the literature for sup-
port vector machines ([2] [16] [20] [7]), for k-NN classifiers ([21]) and even for gen-
eral classifiers ([27]). However, all of these transductive learning algorithms assume
(un)labeled input examples are represented as rows of a classical double-entry table (or
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database relation). As previously said, this tabular representation of data, also known as
propositional or feature-vector representation, turns out to be too restrictive for spatial
classification tasks.

These considerations motivate the investigation of a transductive setting for spatial
classification which is based on a relational approach. To devise an algorithm for trans-
ductive learning from spatial data represented in as a set of relations R1, . . . ,Rn, we face
several problems. First, we have to choose a strategy for the classification of unlabeled
data and make it suitable for relational data. Second, we have to choose a classifier
which can handle relational data representing different spatial objects and their spatial
relationships. Third, we have to define a distance measure between examples described
by several relations in order to define a meaningful neighborhood of an object. Solu-
tions to these problems are described in the following sections. They have been im-
plemented in a new classification algorithm based on an extension of the naı̈ve Bayes
classifier. Information on the potential uncertainty of classification conveyed by naı̈ve
Bayes classifiers is especially useful to prevent drastic changes in the prediction due to
small changes in the attribute values of a test case. It is also useful when missing (or
imprecise) information may prevent a new object from being classified at all.

This paper is organized as follows. The next section presents both the background of
this work and the most relevant related literature. Section 3 introduces a formalization of
the transductive learning problem and describes the proposed solution, which is based on
an iterative k-NN based re-classification of labelled and unlabelled examples in order to
identify “borderline” cases, i.e. examples for which the classification is more uncertain.
Experimental results on two real-world spatial datasets are reported and discussed in
Section 4. Finally, Section 5 concludes and presents ideas for further work.

2 Background and Related Work

For spatial classification, two methods have been reported in the literature which resort
to a relational approach. Malerba et al. [33] proposed to exploit the expressive power of
predicate logic to represent both spatial relations and background knowledge. For this
purpose, the ILP system ATRE [30] has been integrated in the data mining server of a
prototypical GIS, named INGENS, which allows, among other things, to mine classifi-
cation rules for geographical objects stored in an object-oriented database. Training is
based on a set of examples and counterexamples of geographic concepts of interest to
the user (e.g., ravine or steep slopes). The symbolic representation of the training ex-
amples is automatically extracted from maps, although it is still controlled by the user
who can select a suitable level of abstraction and/or aggregation of data by means of a
data mining query language [31].

The main weakness of this approach is that learned rules are quite brittle, since condi-
tions in the body must perfectly match against the object description in order to classify
it. Ceci and Appice [3] have investigated an associative classification framework, where
association rules discovered from training datasets are used by a naı̈ve Bayes classifier
which operates on relational representations of spatial data.

Given an object E to be classified, a classical naı̈ve Bayes classifier assigns E to
the class Ci that maximizes the posterior probability P(Ci|E). By applying the Bayes
theorem, P(Ci|E) is expressed as follows:
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P(Ci|E) =
P(Ci) ·P(E|Ci)

P(E)
. (1)

In fact, the decision on the class that maximizes the posterior probability can be made
only on the basis of the numerator, that is P(Ci) ·P(E|Ci), since P(E) is independent of
the class Ci.

To work on relational representations, Ceci and Appice proposed to consider a set
ℜ of association rules, expressed as first order definite clauses, which are mined on the
training set and can be used to define a suitable decomposition of the likelihood P(E|Ci)
à la naive Bayes in order to simplify the probability estimation problem. In particular, if
ℜ(E)⊆ℜ is the set of first order definite clauses whose body covers E , the probability
P(E|Ci) is defined as follows:

P(E|Ci) = P(
∧

R j∈ℜ(E)

antecedent(R j)|Ci). (2)

The straightforward application of the naı̈ve Bayes independence assumption to all
literals in

∧
R j∈ℜ(E) antecedent(R j) is not correct, since it may lead to underestimating

P(E|Ci) when several similar clauses in ℜ(E) are considered for the class Ci. To prevent
this problem the authors resort to the logical notion of factorization [39]. Details are
reported in [3].

For relational classification in the transductive setting, two methods have been re-
ported in the literature. Krogel and Scheffer ([26]) investigate a transformation (known
as propositionalization) of a relational description of gene interaction data into a clas-
sical double-entry table, and then study transduction with the well-known transductive
support vector machines. Therefore, transduction is not explicitly investigated on re-
lational representations and it is based on propositionalization, which is fraught with
many difficulties in practice ([9, 17]). Taskar et al. ([45]) build, on the framework of
Probabilistic Relational Models, a generative probabilistic model which captures in-
teractions between examples, either labelled or unlabelled. However, given sufficient
data, a discriminative model generally provides significant improvements in classifica-
tion accuracy over generative models ([46]). This motivates our interest in designing
classifiers based on discriminative models.

For spatial classification, there is no work, at best of our knowledge, concerning a
transductive setting. Only recently, some work on semi-supervised learning for spatial
classification has been reported [43]. Therefore, we intend this contribution to be a
further step toward the investigation of methods which originate from the intersection
of these three promising research areas, namely transduction, relational data mining and
spatial data mining.

3 Problem Formalization and Proposed Solution

The transductive spatial classification problem can be formalized as follows:
Given

• a spatial database (SDB),
• a set S of reference spatial objects
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• a set TS ⊆ S of reference spatial objects tagged with a class label Y ∈ {C1, . . . ,CL}
(training reference objects),
• a set W S = S−T S of unlabelled reference spatial objects (working reference ob-

jects),
• some sets Rk, 1≤ k ≤ m of task-relevant spatial objects

Find: the most accurate prediction of Y for each reference spatial object in WS.
Informally, the learner receives full information (including labels) on the reference

spatial object in T S and partial information (without labels) on the reference spatial ob-
ject in WS and is required to predict the class values only of the examples in WS. The
original formulation of the problem of function estimation in a transductive
(distribution-free) setting requires T S to be sampled from S without replacement. This
means that, unlike the standard inductive setting, the examples in the training (and
working) set are supposed to be mutually dependent. Vapnik also introduced a second
(distributional) transduction setting, in which the learner receives training and working
sets, which are assumed to be drawn i.i.d. from some unknown distribution. As shown
in [47](Theorem 8.1), error bounds for learning algorithms in the distribution-free set-
ting also apply to the more popular distributional transductive setting. Therefore, also
considering the spatial autocorrelation issue, in this work we focus our attention on the
first setting.

In order to take advantage of results obtained in the area of MRDM, we boil down
the spatial database SDB to a relational database D with schema Σ . This requires the
materialization of spatial queries which compute complex and massive spatial joins (or
operators) between reference objects and task relevant objects. For example, spatial
joins operations are used to compute the “interact” (non disjoint) relationship between
spatial objects (either reference or task-relevant) and the result is stored in database rela-
tions. Hence, the schema Σ includes additional relations with respect to those originally
present in SDB in order to model these spatial relationships.

Reference objects, task-relevant objects and (spatial) interactions among them are
tuples stored in separate relations of D. In particular, D includes a target relation T
whose tuples represent the reference objects in S. Each set Ri is stored in a distinct rela-
tion of D. The interaction between different objects is materialized in new relations of
Σ (e.g., the relation “Towns CrossedBy Roads” describes the instances of the crossing
relation between towns and roads). Foreign key constraints (FK) state how tuples in
one relation relate to tuples in another and define the inherent spatial structure of data.
For example, the relation “Towns CrossedBy Roads” has two foreign keys: one for the
relation “Towns” and one for the relation “Roads”. Foreign keys can be used to retrieve
all task-relevant objects of D which are (spatially) related to a reference object and are
relevant to discriminate between the values of Y (target attribute). Indeed, an example
in S is represented as one tuple t ∈ T and all tuples related to t in D according to FK.

3.1 The Transductive Learning Algorithm

The core of the transductive learning method is described in Algorithm 1. In keeping
with the main idea expressed in [20], the algorithm iteratively refine the classification
by changing the class of “borderline” training and working examples, i.e., of those
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examples whose classification is more uncertain. It starts with a given classification
and, at each iteration, alternates a step during which examples are reclassified and a
step during which the class of borderline examples is changed.

Algorithm 1. Top level transductive algorithm description
1: transductiveClassifier(initialClassification, TS, WS)
2: classification1← initialClassification;
3: changedExamples← φ ;
4: i← 0;
5: repeat
6: prevClassification← classification1;
7: prevChangedExamples← changedExamples;
8: classification2← reclassifyExamplesKNN(classification1, TS, WS);
9: (classification1, changedExamples)← changeClass(classification2);

10: until ( (++i ≥MAX ITERS) OR
(computeOverlap(prevChangedExamples, changedExamples) ≥MAXOVERLAP))

11: return prevClassification

The initial classification of E ∈WS∪TS is obtained according to the classification
function preclass defined as follows:

preclass(E) =
{

class(E) if E ∈ TS
BayesianClassi f ication(E) if E ∈WS,

where BayesianClassi f ication(E) is the initial probabilistic classifier built from the
training set T S according to formula 2.

The examples are then reclassified by means of a version of the k-NN algorithm
[36], tailored for transductive inference in MRDM. The idea is to classify each example
E ∈ {TS∪WS} on the basis of a k-sized neighborhood Nk(E)= {E1, . . . ,Ek}, consisting
of the k examples of T S∪WS closest to E with respect to a dissimilarity measure d.
More precisely, each example E is associated with an L-dimensional class probability
vector y′ = (y1(E), . . . ,yL(E)), where yi(E) estimates P(class(E) = Ci). Estimation is
based of the following formula:

P(class(E) = Ci) =
|{E j ∈ Nk(E)|CE j = Ci}|

k
, (3)

where CE j is the class value associated to E j at the previous step (at the first step,
CE j is the class label returned by preclass(E j)). The following properties hold for this
estimate:

i) P(class(E) = Ci)≥ 0 for each i = 1, . . . ,L;
ii) ∑

i=1,...,L
P(class(E) = Ci) = 1;

iii) P(class(E) = Ci) is estimated according to the transductive inference principle, as
both training and working examples are taken into account in its computation.
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The changeClass procedure is in charge of changing the classification of the bor-
derline examples. Unlike what was originally proposed in [20], where examples on the
border are identified by means of support vectors, we consider the examples for which
the entropy of the decision made by the classifier is maximum. The entropy of an ex-
ample E is computed from the probabilities associated with each class Ci:

Entropy(E) =− ∑
i=1,...,L

P(class(E) = Ci)× log(P(class(E) = Ci)). (4)

Examples are ordered according to the entropy function and the class label of at most
the first k examples, having Entropy(E) > MINENT ROPY , is changed. In particular,
each selected example E is assigned the most likely class Ci for E among those remain-
ing after the the old class of E has been excluded. The threshold k, which is the same
used for k-NN, is necessary in order to avoid changing the class of too many examples,
in the extreme case, the class of all examples in a cluster.

Two distinct stopping criteria are used. The first criterion stops the execution of the
algorithm when the maximum number of iterations (MAX IT ERS) is reached. This
guarantees the termination of the algorithm. In any case, our experiments showed that
this criterion is rarely attained when the parameter MAX ITERS is as small as 10. The
second criterion stops execution when a cycle processes the same examples as the previ-
ous one. For this purpose, the overlap between two sets of examples is determined. The
computeOverlap function returns the ratio between the cardinality of the intersection
between the sets of examples and that of their union.

3.2 Generating the First Order Definite Clauses

Differently from the original work in [3], the set ℜ of first order definite clauses used
in formula 2 do not correspond to association rules. They are directly constructed by
means of a depth-bounded breadth-first search in the space of definite clauses built by
navigating foreign key paths. A foreign key path is an ordered sequence of relations
ϑ = {Ti1 ,Ti2 , . . .Tis}, such that Ti j ∈ Σ ( j = 1 . . .s) and each relation Ti j has a foreign
key to the relation Ti j−1 ( j = 2, . . . ,s) or Ti j−1 has a foreign key to relation Ti j . To for-
mally define the set of first order definite clauses ℜ in terms of foreign key paths, some
definitions are introduced.

Definition 1 (Structural predicate). A binary predicate p is a structural predicate
associated to the pair of relations 〈Ti,Tj〉 ∈ S if a foreign key in Ti exists which references
a relation Tj ∈ S, or vice-versa. The first argument of p represents the primary key of Tj

and the second argument represents the primary key of Ti, or vice-versa.

Definition 2 (Property predicate). A binary predicate p is a property predicate asso-
ciated to a relation Ti ∈ S and an attribute Att of Ti if the first argument of p represents
the primary key of Ti and the second argument represents a value observed for Att in
Ti. The attribute Att is neither the primary key of Ti nor a foreign key in Ti.

Hence, we can formally define a first order definite clause associated to a foreign key
path.
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Definition 3 (First order definite clause associated to a foreign key path). A first
order definite clause associated to the foreign key path ϑ = {Ti1 , . . . ,Tis−1} is a clause
in the form:

p0(A1,y)← p1(A1,A2), p2(A2,A3), . . . , ps−1(As−1,As), ps(As,c).

or

p0(A1,y)← p1(A1,A2), p2(A2,A3), . . . , ps−1(As−1,As).

where:

1. p0 is a property predicate associated to both the target relation T and the target
attribute Y .

2. p1 is a structural predicate associated to the target relation T and relation Ti1 of
ϑ .

3. pk, k = 2, . . . ,s− 1, is a structural predicate associated to the pair of relations
〈Tik−1 ,Tik 〉 of ϑ .

4. ps is an optional property predicate associated to both relation Tis−1 and an at-
tribute Att of Tis−1 .

The set ℜ is constructed by searching the first order definite clauses R j associated with
a foreign key path ϑ , such that the antecedent of Ri covers at least one training exam-
ple. The length of the foreign key path ϑ is upper bounded by a user-defined constant
MAX LENGTH PATH.

The property predicate ps is associated to either a discrete attribute or a continuous
attribute Att of the relation Tis−1 . In the former case, ps checks a condition in the form
“Att = v”, where v is a value in the range of Att, while in the latter case, ps checks a
condition in the form “Att ∈ [v1,v2]”, where [v1,v2] denotes an interval.

3.3 The Relational Dissimilarity Measure

The re-classification of training and working examples is based on a dissimilarity mea-
sure d. The classical k-NN method assumes that examples correspond to points in the
m-dimensional space R

m and the nearest neighbors of the example to classify are de-
fined in terms of the standard Euclidean distance. However, in the proposed relational
algorithm, examples cannot be associated to points of R

m. This motivates the need for
a different notion of a distance (dissimilarity) measure that applies to relational data.

The dissimilarity measure between each pair of examples E1 and E2 is computed by
first converting the first order definite clauses in ℜ into a set of boolean features and then
using these features as input of some propositional dissimilarity measure. Actually, the
conversion into boolean features concerns only those first order definite clauses R j ∈ℜ
whose property predicate ps is defined on a continuous attribute Att. In particular, the
range of values of Att is discretized1 into Nb disjoint intervals (or bins), where Nb is a
user-defined parameter, and the predicate ps is defined on the basis of the returned sets
of bins.

1 In this work, we use an equal-width discretization strategy.
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Special care is needed for this conversion. Indeed, if we let ps simply modeling the
condition Tis−1 .Att ∈ [v1,v2], where [v1,v2] is a bin, we incur in a harmful information
loss on the order relation of continuous values. To overcome this problem, we follow
the idea formulated in [12] and transform the rule R j into R′j, such that:

1. p′i = pi, for each i = 0, . . .s−1, while
2. the property predicate p′s expresses the condition Tis−1 .Att ≤ v2.

The advantage of R′j with respect to R j is that R′j models as closer two examples E1 and
E2, whose Att values belong to two consecutive bins, rather than two examples, whose
Att values belong to distant bins.

Once the new set ℜ′ = {R′j} is constructed, boolean features are derived from ℜ′, in
order to represent examples by means of a single relation V . This is a form of propo-
sitionalization [25] which allows us to use dissimilarity measures defined for clas-
sical propositional representations. The schema of V includes |ℜ′| attributes, that is
one for each first order definite clause R′j. Each row of V corresponds to an example
E ∈ {TS∪W S}. If the antecedent of the first order clause R′j covers E , then the j-th
value of the row in V corresponding to E is set to true, false otherwise.

The similarity between the pair of examples E1 and E2 can be computed by means of
the Kendall, Sokal-Michener similarity measure [12], computed on their feature vector
representation V (E1) and V (E2) stored in V , that is:

s(E1,E2) =
cardinality(V(E1) XNOR V (E2))

|ℜ′| , (5)

where cardinality(•) returns the number of true values occurring in the input boolean
vector. The similarity coefficient computed in Equation (5) takes values in the unit inter-
val. In particular, s(E1,E2) = 1, if the two vectors match perfectly, while s(E1,E2) = 0,
if the two vectors are orthogonal. The dissimilarity between the pair of examples is then
computed as follows:

d(E1,E2) = 1− s(E1,E2). (6)

4 Experimental Results

In this section, we evaluate the proposed approach on two real-world spatial datasets
concerning Greater Manchester (UK) and Munich (Germany). A description of the two
datasets is reported below.

Dataset 1: Greater Manchester. Data have been collected within the context of the Eu-
ropean project SPIN!2 They concern Greater Manchester, one of the five counties of
North West England. Greater Manchester is divided into 10 metropolitan districts, each
of which is in turn decomposed into census sections (wards), for a total of 214 wards.
Census data are available at ward level and provide socio-economic statistics (e.g. mor-
tality rate) as well as some measures of the deprivation of each ward according to

2 Web site of the project: http://www.ais. fraunhofer.de/KD/SPIN/project.html
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Fig. 2. Schema of the relational database storing data on deprived areas of Greater Manchester

information provided by Census combined into single index scores. We consider the
Jarman Underprivileged Area Score (designed to estimate the need for primary care),
the indices developed by Townsend and Carstairs (used to perform health-related anal-
yses), and the Department of the Environment’s (DoE) index (used in targeting urban
regeneration funds). The higher the indices values the more deprived the ward. Layers
available concern the boundaries of the 1998 census wards as well as the urban areas
(115 lines), the green areas (9 lines), the road network (1,687 lines), the rail network
(805 lines) and the water network (716 lines). The original spatial database boils down
to a relational database where spatial objects of each layer are stored as single tuples
of a database relation together with information on the object type. For instance, type
information of an urban area can be either “large urban area” or “small urban area”.
Topological relationships between wards and objects in all these layers are materialized
as database relations. The number of instances of the “non disjoint” spatial relation-
ship is 5,313. The schema of the relational database is reported in Fig. 2. In this work,
the reference spatial objects are the wards, that is, WARDS is the target relation, the
task-relevant objects are all spatial objects in the six layers described above, and the the
goal of the classification task is to predict a dichotomized value of the Jarman index
(low=[0.001, 0.01] or high=]0.01,0,18]), which defines the class label Y . Information
used for prediction purposes is given by other deprivation indices (Townsend index,
Carstairs index and DoE index), the mortality rate and spatial objects that geometri-
cally intersects with wards. An assumption of positive spatial autocorrelation seems
sensible for this dataset, since deprived wards tend to spatially cluster.
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Fig. 3. Schema of the relational database storing rental data on Munich

Dataset 2: Munich. This dataset3 has been collected in 1998 by Infratest Sozialforschung
to develop the 1999 Munich rental guide. It concerns the monthly rent (expressed in
German Marks) per square meter for flats in Munich. In particular, the data describe
2,180 geo-referenced flats located in the 446 subquarters of Munich obtained by first
dividing the Munich metropolitan area up into three areal zones and then by decompos-
ing each of these zones into 64 districts. The vectorized boundaries of districts as well
as the map of public train stops (56 subway (U-Bahn) stops, 15 rapid train (S-Bahn)
stops and 1 railway station) within Munich are available for this study. Trains stops are
distinguished into three types, namely U-Bahn, S-Bahn or railway station, while flats
are described by means of their “monthly rent per square meter”, “floor space in square
meters” and “year of construction”. The schema of the relational database derived from
the original spatial database is reported in Fig. 3. In this work, the reference spatial ob-
jects are the flats, that is, APARTMENTS is the target relation, the task relevant objects
are bothe the districts and the train stops, and the the goal of the classification task is to
predict a dichotomized value of the ‘monthly rent per square meter” (low = [2.0,14.0]
or high=]14.0,35.0]), which defines the class label Y . An assumption of positive spa-
tial autocorrelation is sensible for this dataset as well. The spatial arrangement of data
is defined by both the “close to” relation between Munich metropolitan districts, the
“inside” relation between flats and districts, and the “inside” relation between public
train stops and districts. All these topological relations are materialized into as many
database relations.

The experiments aimed at validating the actual advantage of the transductive algo-
rithm over the basic inductive algorithm when few labeled examples are available. The

3 Available at http://www.di.uniba.it/∼ceci/mic Files/munich db.tar.gz
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basic inductive algorithm is that used for the initial classification of unlabelled examples
(see line 2 of Algorithm 1). The empirical comparison is based on the misclassification
error of the two algorithms. To estimate the misclassification error rate, a K-fold cross
validation is performed. For each trial, both algorithms are trained on a single fold
and tested on the hold-out K− 1 folds, which form the working set. The comparative
statistics is computed by averaging the misclassification error over the K-folds. The
construction of the K folds is a two-stepped process. First, the target relation is parti-
tioned into K blocks B1, . . . ,BK of nearly-equal size. Then, for each block Bi, the subset
of tuples in other non-target relations which are related, according to the foreign key
constraints, to the tuples in Bi are extracted.

It is noteworthy that, unlike the standard cross-validation approach, here only one
fold is used for the training set. In this way we can simulate datasets with a small
percentage of labelled cases (the training set) and a large percentage of unlabelled data
(the working set), which is the usual situation for a transductive setting. Therefore, high
misclassification error rates with respect to those published in previous works [3, 4]
should not be surprising, due to the small amount of labelled examples that we consider.

Since the performance of the transductive algorithm may vary significantly depend-
ing on the size (k) of the neighborhood, experiments for different k are performed in
order to set the optimal value. In theory, we should experiment with each value of k
ranging in the interval [1,N], where N is the number of reference objects in TS∪WS.
However, as observed in [49], it is not necessary to consider all possible values of k
during cross-validation to obtain the best performance. This can be well approximated
by means of cross-validation on no more than ten values of k. A similar consideration
has also been reported in [18], where it is shown that the search for the optimal k can
be substantially reduced from [1,N] to [1,

√
N], without degrading accuracy of learning

algorithm too much. Hence, we have decided to consider in our experiments only those
values of k such that k ∈ {η i|i = 1, . . . ,q}, where η =

√
N/q is the step value and q is

the number of steps.
The classifiers mined in this study are obtained by setting MAX ITERS=10,

MAX LENGTH PATH=3, MINENTROPY=0.65 and MAXOVERLAP=0.5. The step
value η differs for each dataset.

The error rates of the transductive algorithm and its inductive counterpart on the
two datasets are reported in Tables 1 and 2. The results are obtained according to
both a 10-fold cross validation (CV) of the data and a 20-fold CV of the same data.
For experiments on Greater Manchester data, we set k ∈ {4,7,9,11,14}, while for ex-
periments on Munich data we set k ∈ {9,18,27,36,45}. The percentage of error loss
refers to the difference of the error rate of the transductive algorithm with respect
to the inductive algorithm. A positive (negative) value is in favor of the transductive
(inductive) algorithm.

In both datasets, results confirm a lower error rate for the transductive setting with
respect to the inductive one. The improvement depends on the k value and this result
is more evident in the case of 10-fold CV. In 20-fold CV, there is an error propagation
through algorithm iterations due to the presence of few training examples. A deeper
analysis of results of 10-fold CV reveals that the error curve is U-shaped: it first de-
creases (the minimum is obtained when k=11 for dataset 1 and k= 36 for dataset 2), and
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Table 1. Dataset 1: Transductive vs. inductive algorithm

Experiment
Transductive

Inductive
k=4 k=7 k=9 k=11 k=14

Avg 10-CV Error
(%)

23.38 21.10 19.79 18.04 19.08 22.71

error loss (%) -2.97 7.06 12.84 20.56 15.99

Avg 20-CV Error
(%)

33.87 34.41 33.82 33.20 33.28 34.31

error loss (%) 0.00 -1.60 0.15 1.96 1.75

Table 2. Dataset 2: Transductive vs. inductive algorithm

Experiment
Transductive

Inductive
k=9 k=18 k=27 k=36 k=45

Avg 10-CV Error
(%)

28.99 28.61 28.36 28.30 28.15 31.23

error loss (%) 7.17 8.41 9.19 9.40 9.86

Avg 20-CV Error
(%)

37.25 36.30 36.73 36.67 36.78 37.79

error loss (%) 1.44 3.94 2.81 2.98 2.68

then slightly increases when k approximates
√|N|. This poses the problem of automat-

ically determining the best k value.
Finally, we observe that the error rate is also affected by the number of bins for the

discretization of continuous values. In these experiments the number of bins (Nb) for
discretization is set to 10 for dataset 1, and 40 for dataset 2. Some results, which we
omit here due to space limitations, empirically prove that the higher the error loss the
lower the number of bins.

5 Conclusions

In this work we have investigated the main issues met when facing a spatial classifica-
tion learning problem. The search for a solution to these issues has motivated the pro-
posal of a relational approach to spatial classification in a transductive setting. Indeed,
our proposal is to transform the original spatial database into a relational database with
multiple relations, which represent both the reference objects (i.e., the main subject of
analysis), and the related task-relevant objects and their spatial relationships. The target
relation associated to the reference objects includes the class attribute, whose value is
null for unlabelled objects. A distinct database relation is associated to each type of
spatial object and to each type of spatial relationship (topological, distance-based or
directional) explicitly computed on the original spatial database.

An initial probabilistic classifier is induced from these relational data by processing
only training (i.e., labeled) examples. The inductive learning algorithm is a relational
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upgrade of the naı̈ve Bayes classifier and provides a discriminative model on the basis
of which unlabelled reference objects (i.e., examples in the working set) can be pre-
liminarily classified. This initial classification of the examples in the working set is
then iteratively refined by a transductive learning algorithm. Each iteration consists in
a k-NN classification of unlabeled examples and a subsequent reclassification of some
“borderline” examples, i.e. examples for which the classification is more uncertain. Un-
certainty is measured as the entropy of the class probabilities.

Neighbors are determined by computing a distance measure on a propositionalized
representation of unlabelled examples. Propositional features are obtained by trans-
forming a set of first order definite clauses into boolean features. Definite clauses are
directly constructed by means of a depth-bounded breadth-first search in the space of
definite clauses built by navigating foreign key paths.

The transductive classifier has been compared to its inductive counterpart on two
spatial datasets. Experimental results are in favor of the transductive algorithm. The
improvement in accuracy seems more significant than that observed by Joachims [21]
who compared SVMs in both the inductive and transductive setting.

We believe that our investigation indicates that learning in a transductive setting is
an important direction for further research in spatial classification, since there is a clear
contiguity of the concept of positive autocorrelation, which typically affect spatial phe-
nomena, with the smoothness assumption which characterize the transductive setting.
In principle, we expect that a strong spatial autocorrelation should counterbalance the
lack of labelled data, if a relational classifier which takes spatial autocorrelation into
account is learned in a transductive setting. As future work, we intend to extend the
empirical investigation in order to corroborate our intuition.
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S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 390–397.
Springer, Heidelberg (2007)

6. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-supervised learning. MIT Press, Cam-
bridge (2006)

7. Chen, Y., Wang, G., Dong, S.: Learning with progressive transductive support vector ma-
chines. Pattern Recognition Letters 24, 1845–1855 (2003)

8. De Raedt, L.: Interactive theory revision. Academic Press, London (1992)
9. De Raedt, L.: Attribute-value learning versus inductive logic programming: the missing links.

In: Page, D.L. (ed.) ILP 1998. LNCS, vol. 1446, pp. 1–8. Springer, Heidelberg (1998)
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