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Abstract
Positive-Unlabeled (PU) learning works by considering a set of positive samples, and a
(usually larger) set of unlabeled ones. This challenging setting requires algorithms to clev-
erly exploit dependencies hidden in the unlabeled data in order to build models able to
accurately discriminate between positive and negative samples. We propose to exploit prob-
abilistic generative models to characterize the distribution of the positive samples, and to
label as reliable negative samples those that are in the lowest density regions with respect to
the positive ones. The overall framework is flexible enough to be applied to many domains
by leveraging tools provided by years of research from the probabilistic generative model
community. In addition, we show how to create mixtures of generative models by adopt-
ing a well-known bagging method from the discriminative framework as an effective and
cheap alternative to the classical Expectation Maximization. Results on several benchmark
datasets show the performance and flexibility of the proposed approach.

Keywords Positive-unlabeled learning · Density estimator

1 Introduction

The classical supervised setting of statistical machine learning (Hastie et al. 2009) aims
at inducing models (classifiers) from training sets of labeled data in the form of samples
(xi , yi) i.i.d. drawn from an unknown joint probability distribution p(X, Y ) over random
variables (RVs) X and Y , where Y is the label.For binary classification, i.e., Y ∈ {0, 1},
labels yi are assumed to be modeled by a Bernoulli distribution and are associated to positive
and negative samples xi .

While nowadays gathering and storing all kinds of data is easier and easier, having all
these data perfectly and reliably labeled is unrealistic for several reasons, which makes
classical approaches to learning classifiers inapplicable. First, the exponential rate at which
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data are produced contrasts the time required to produce high quality labels. Moreover, in
many fields there are relatively few labelers effectively trained to produce reliable labels.
Lastly, in many real-world domains it is sometimes unclear what should be considered as a
negative sample, or the generation of negative samples is too expensive or just impossible.
E.g., in process enactment, one would not waist time, money and resources to build a wrong
item just for the purpose of showing how things are not to be done. Thus, the ability to learn
predictive models in these scenarios may allow one to exploit the vast amount of data that
are produced, saving precious time and resources.

In Positive-Unlabeled (PU) learning (De Comité et al. 1999; Liu et al. 2002), a set P
of positive samples, and a set U of unlabeled samples—each of which may be positive
or negative—are available at training time. So, discriminative information for the negative
class must be found in unlabeled data. While a theoretical question may arise about how
can one be sure that samples in U actually include negative ones, not much research in this
direction has been done, and going deeper into this matter is beyond the scope of this paper.
PU learning shares similarities with semi-supervised learning (du Plessis and Sugiyama
2014), one-class classification (Schölkopf et al. 2001), and outlier detection (Chandola et al.
2009). Differently from semi-supervised learning, no negative samples are available at train-
ing time and yet it is required to learn a discriminator between the two classes, in contrast
with one-class classification. Additionally, PU learning is in opposition to outlier detection
which is usually performed in a transductive way to label unlabeled training data only.

The interest for PU learning is supported by its successful application in several domains,
such as document classification (Zhou et al. 2010), graph classification (Zhao et al. 2011),
and fake review detection (Li et al. 2014). PU learning approaches can be roughly grouped
into two-staged—extracting a set of reliable negative samples (RN) from U and then per-
forming supervised learning—and single-staged—taking all samples in U as negative. The
latter is clearly a simplification, because one knows by the very definition of PU-learning
that U may in principle include both positive and negative samples. So, considering all sam-
ples in U as negative is likely to introduce a significant amount of noise. For the former,
it becomes crucial to learn a metric that is able to discriminate among classes. However,
each application domain needs a specific formulation for such a metric. Hence, ad-hoc algo-
rithmic solutions are often required to cope with different data representations (Zhou et al.
2010; Ienco and Pensa 2016). Few approaches have been proposed to deal with categori-
cal data (Calvo et al. 2007; Ienco and Pensa 2016) in PU learning, due to their being quite
challenging because there is no natural distance for them (Ienco et al. 2012).

In this work we present Generative Positive-Unlabeled (GPU) learning, a novel two-
staged approach to PU learning, introduced in Basile et al. (2017), aimed at being general
enough to support very different application domains. In particular, the proposed GPU
approach estimates the marginal distribution pP (X|Y = 1) of the positive samples in P via
a generative model, and then performs inference on such a distribution to select a set of reli-
able negative samples from U . The modeled probability density implicitly defines a metric
space among samples, and we assume negative ones to be concentrated where positive ones
are less likely. Performing inference on the generative model in GPU equals to comput-
ing the probability of a particular configuration of the RVs X, which, in turn, can easily be
exploited as a measure assessing how reliably an unlabeled sample can be considered as a
negative one.

Generative models such as Probabilistic Graphical Models (PGMs) (Koller and Fried-
man 2009), extensively studied in the literature, offer a powerful formalism to deal with
complex probability distributions over continuous, categorical, or even structured data
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(Yang et al. 2014). Dealing with a particular domain translates into choosing a suitable
PGM from a consolidated research field. As regards the subject of this paper, we exploit a
PGM, learned as a density estimator in a certain domain, as a negative sample extractor for
partially labeled data. A positive feature of this approach is that PGMs can natively handle
categorical data. Since dealing with categorical data might be an issue for several existing
PU learning methods, the adoption of PGMs in PGU automatically solves this issue. To
stress this advantage, while GPU can deal with different data representations, here we focus
specifically on categorical data. As already pointed out in Ienco and Pensa (2016), many
PU learning approaches cannot be directly applied for categorical data since they employ
metrics not suited for categorical data where there is no standard definition of distance.
In (Ienco and Pensa 2016), the authors addressed the problem of classifying data described
by categorical attributes proposing a distance-based classification method employing a dis-
tance metric learned directly from data. Here we tackle the same problem proposing a PGM
based approach that can naturally deal with categorical data.

Differently from Basile et al. (2017), where the approach has been firstly presented,
in this paper the GPU approach has been extended in order to deal with the PU learning
problem adopting ensembles of PGMs (Antonucci et al. 2013) that generally try to improve
the modeling capacity of a single PGM. We firstly present a method to aggregate many
PGMs in an ensemble trying to avoid a costly expectation maximization approach. Then we
propose two methods to combine the predictions of each model in the ensemble. The main
idea is to represent the metric space for categorical data as a PGM that is able to encode the
complex patterns arising in the data. We compared GPU, and its ensemble extension EGPU,
on real data to several PU learners that have proven to be effective on categorical data. The
proposed GPU approach can be applied to continuous data just by using a PGM able to deal
with this kind of data such as Gaussian Bayesian networks whose variables are continuous
and where all of the CPDs are linear Gaussian (Koller and Friedman 2009).

The paper is organized as follows. The next section provides a brief overview of the
literature about PU learning. In Section 3 we introduce and discuss our GPU approach and
its extension EGPU, while the experimental setting and the experiment results are presented
in Section 4. Conclusions are drawn in Section 5.

2 Related works

PU learning has attracted a great deal of attention in the research on machine learning and
data mining. An extensively adopted approach to PU learning is based on a two-staged
strategy. First a negative set construction process identifies reliable negative samples from
the unlabeled ones, and then traditional classification methods, such as Naive Bayes (NB)
or Support Vector Machines (SVM), are directly applied to on the positive and identified
negative instances to train predictive models. Alternative methods following this paradigm
differ for how they implement these two steps.

Several proposals adopt distance-based approaches to identify negative samples, as the
farthest unlabeled ones from positive samples. In Yang et al. (2012), after selecting fea-
tures statistically related to positive samples, the unlabeled set is partitioned into four sets
(reliable/likely/weak negative and likely positive) based on the Euclidean distance. Succes-
sively, a multi-level samples learning technique, weighted SVMs, is exploited to build a
classifier. The same approach of first identifying, characterizing and discriminating features
for positive samples is adopted in Pulce (Ienco and Pensa 2016), where a particular distance
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function previously designed by the authors is used to determine reliable negative samples;
then, distance learning is applied twice—on the positive and reliable negative samples—and
the resulting distances are used for k-NN classification.

After theoretically showing that, under suitable conditions, P and U provide sufficient
information for learning, in Liu et al. (2002) PU learning is posed as a constrained opti-
mization problem. In such a setting, the set of reliable negative samples is selected by using
a Naive Bayes (NB) classifier and Expectation Maximization (EM). To the extreme, all
the unlabeled samples are treated as negative samples in the NB classifier initially learned
and successively used to extract the set of reliable negatives from unlabeled data (Liu et al.
2003). The dataset so obtained is finally exploited to learn a classifier using SVM. The same
strategy is exploited in Li and Liu (2005) where a large set of irrelevant samples is generated
and added to unlabeled data with the aim of reducing the noise in the data, represented by
the presence of positive samples in U . The obtained augmented set, as representative of neg-
atives samples, is exploited, along with positive ones, to compute the parameters of the NB
classifier devoted to the reliable identification of negative samples. Finally, an EM-based
algorithm is exploited to learn the predictive model.

The Mapping-Convergence algorithm is used to learn a classifier using the positive sam-
ples and a set of strong negative samples extracted from the unlabeled samples by selecting
items having features that rarely appear in the positive samples (Yu et al. 2002). SVM is
iteratively applied for classifier building. SVM is also the final classifier learning approach
used in (Li and Liu 2003) after an initial step of negative samples extraction carried out with
different combinations of Rocchio, k-means clustering and SVMs.

A different policy is the weighted-based approach on unlabeled data exploited in Elkan
and Noto (2008). The study shows that a classifier trained on positive and unlabeled samples
is able to predict probabilities that differ by only a constant factor from the true conditional
probabilities produced by a model trained on fully labeled positive and negative samples,
provided that the labeled positive samples are chosen completely at random from all positive
samples. This result is used in two different ways: learning fromP versusU with adjustment
of output probabilities finally assigned to unlabeled samples, and learning from P and U
after double weighting of U . The basic learning algorithm for each method is an SVM with
a linear kernel whose outputs are post-processed into calibrated probabilities by fitting a
one-dimensional logistic regression function.

Naive Bayes classifier is extensively adopted for categorical data in the four methods pro-
posed in Calvo et al. (2007), namely: (Average) Positive Naive Bayes ((A)PNB), based on
Naive Bayes, (Average) Positive TAN ((A)PTAN), and two variants of the Tree Augmented
Naive Bayes model (Friedman et al. 1997) able to deal with positive and unlabeled sam-
ples. The difference lies in the way the prior probability for the negative class is estimated.
For PNB and PTAN such a probability is derived directly from the whole set of unlabeled
samples, while for APNB and APTAN the uncertainty is modeled by a Beta distribution.

The above survey shows that many works on PU learning (Liu et al. 2002, 2003; Calvo
et al. 2007; Ienco and Pensa 2016) have adopted the text categorization perspective, which
is quite peculiar. Indeed, features are intrinsically categorical, there is a huge number of
features compared to other settings, the representation of samples is very sparse, and there
is a heavy impact of text pre-processing in setting up the classification problem. Others have
faced biomedical problems (Elkan and Noto 2008; Yang et al. 2012), where it is typical that
databases specify which genes or proteins are related to some specific consequence, but this
does not mean that all the others are unrelated to that consequence and, on the contrary,
there is a strong interest in identifying which ones actually are (Elkan and Noto 2008).
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As previously pointed out, although PU learning shares similarities to outlier detec-
tion (Chandola et al. 2009) and to one-class classification (Schölkopf et al. 2001), it differs
from these settings in both the goal to pursue and the training set exploited, even when prob-
ability density estimation techniques are used as solving strategies (Riahi et al. 2014; Xu
and Shelton 2010; Tax and Duin 2004; Hempstalk et al. 2008). Indeed, both methods aim at
learning a model that can reject the new incoming samples using positive training data only.
They do not require to learn a discriminator between the two classes and, hence, no effort
to learn a model for the negative class is made. Intuitively, this type of approach is inferior
because it ignores useful information that is present in the unlabeled samples.

As to outlier detection, the usual approach to identify negative samples is considering
them as outliers with respect to the positive ones. Many works in this field proceed by
learning a generative statistical model from the training data, in the form of some kind
of Bayesian network, and then determining outliers based on the likelihood that another
individual belongs to that population. Specifically, Riahi et al. (2014) extend unsupervised
statistical outlier detection from the case of non-relational data to the case of relational data.
Babbar and Chawla (2010) use the network as a background knowledge and derive from it
two quantitative rules to uncover outliers and rank the instances based on joint probability
distribution in the Bayesian network. The proposed approach also allows one to explain why
an instance is an outlier. A critical analysis of distance-based techniques is also provided
to show why there is a mismatch between outliers as entities “which are far away from
their neighbors” and “real” outliers as identified using Bayesian Networks. Xu and Shelton
(2010) perform anomaly detection on intrusion detection systems, based on patterns not
conforming to a historic norm, using continuous time Bayesian networks.

Different types of approaches have been developed for one-class classification problems.
Some methods use only positive samples to learn the target concept. They estimate the
probability density function by fitting a statistical distribution, such as a Gaussian, to the
target data, and predicting to be an outlier any instance that exhibits a low probability of
appearing, as in Tax and Duin (2004). Other works are based on the application of a density
estimator, used to form a reference distribution on positive data, for the generation of artifi-
cial data to set up a two-class classification problem, as reported in Hempstalk et al. (2008).
To the extreme, some methods get ideas from PU learning approaches to solve the problem,
as in Li et al. (2011), where the authors proposed a new PU learning algorithm for one-class
classification of remote-sensing data.

3 Generative models for PU learning

In this section we introduce and discuss our GPU approach and its ensemble extension
EGPU.

3.1 Notation

Let RVs be denoted by upper-case letters, e.g., X, and their values as the corresponding
lower-case letters, e.g., x ∼ X. We denote sets of RVs as X, and their combined values as x.
For a set of RVs X we denote with X\i the set X deprived of Xi , and with X|Y the restriction
of X to Y ⊆ X (the same applies to assignments x). W.l.o.g., here we deal with discrete
RVs over finite domains. When we refer to a joint probability distribution p(X) over RVs
X, we are either considering the joint probability density function for continuous RVs, or
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the probability mass function for discrete RVs, or a hybrid combination of both in hybrid
domains (Koller and Friedman 2009; Yang et al. 2014).

To denote a finite domain of a discrete RV Xj we introduce the following notation

Val(Xj ) = {xk
j }Kj

k=1. If D is a set of samples over RVs X, we indicate with pD(X) the real
(unknown) probability distribution that generated the data, while if M indicates a gener-
ative model, pM(X) refers to the probability distribution estimated by such a model on
finite sample sets. Disambiguation is provided by context. Generally one wants the estimate
pM(X) to be as close as possible to pD(X). A common way to measure this closeness is via
the log-likelihood function (Koller and Friedman 2009), or one of its variants, defined as:

�D(M) =
∑

xi∈D
log pM(xi ).

3.2 PU learning problem

In the classical PU learning setting, a training set D = P ∪ U i.i.d. from p(X, Y ) is given,
comprising mP = |P | positive samples and mU = |U | unlabeled samples. Samples in P
are provided with a known positive class label, i.e.,

P = {(xi , 1)}mP
i=1 ∼ pP (X|Y = 1).

On the contrary, class information—labels—is not provided for samples in U , i.e.,

U = {xi}mU
i=1 ∼ pU (X),

where pU (X) is the marginal probability distribution w.r.t. pU (X, Y ).
Let D0 (resp. D1) denote the subset of all negative (resp. positive) samples in D. The

aim of PU learning is to build a discriminator model f : X → Y from D in order to make
accurate predictions about the labels of unseen test data samples. Following Elkan and Noto
(2008), we assume that samples in P are selected completely at random from all positive
samples in D, i.e.,

pP (X|Y = 1) = pD(X|Y = 1).

3.3 Generative models for PU learning

Our proposed approach, Generative PU learning (GPU), falls in the category of two-staged
methods for PU learning. First it extracts a set of reliable negative samplesN from U , then
N is employed to perform supervised learning. In the following we detail our contribution
to the first step, discussing possible approaches for the second one.

As usual in statistical machine learning, we assume pD to be modeled as a mixture of
probability distributions for the positive and negative class, i.e.,

pD =
∑

y∈{0,1}
p(Y = y)p(X|Y = y) = wD0pD0(X) + wD1pD1(X),

where wD0 (resp. wD1 ) denotes the marginal probabilities of the label w.r.t. the negative
(resp. positive) class and pD0(X) (resp. pD1(X)) denotes the conditional probability of a
sample w.r.t. the negative (resp. positive) class.

As it is common practice in PU learning (Elkan and Noto 2008), we assume that the pos-
itive samples in P are highly representative for all positive samples in D1, which in turn
implies that pP is close to pD1 . As an additional assumption, we consider the distribution
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generating D0 and D1 to be fairly distinguishable (Balasubramanian 2005). That is, we
assume that high density regions of pD0 correspond to low density regions of pD1 and vice
versa. While this assumption might seem too strict for real data, in practice, it is commonly
adopted when performing unsupervised clustering (e.g., Gaussian densities must be sepa-
rable in EM and K-means). As future research, we plan to investigate how to adapt GPU
learning to more complex learning settings.

As already discussed in Ienco et al. (2012), distance metrics for categorical data are very
difficult to assess, since it is impossible to quantify the difference between two values of
a multivariate variable. The assumption adopted by Ienco et al. (2012) is that the distance
between two values of a categorical attribute can be determined by the way in which the
values of the other attributes are distributed in the data. In particular, the metric is data
oriented and not fixed apriori. Here, the idea is to represent the metric space for categorical
data as a PGM that is able to encode the complex patterns arising in the data.

The assumption that we make is that the distributions pP and pN generating, respec-
tively, the positive and the negative samples are different. In particular, we assume that they
may belong to the same family but having different modes. Having learned the density pP
from the positive samples, we can label as negative the samples x in U having a low joint
probability pP (x). This method should work well when there is no inconsistency between
the positive and negative samples, i.e., any sample is never true labeled as both positive and
negative.

The high level idea behind our approach is the following. By correctly modeling the prob-
ability distribution of positive samples over RVs X, one can model discriminative patterns
among samples in the form of probabilistic dependencies among their RVs. If this is done
accurately, then a metric space is implicitly defined, associating low probability regions to
negative samples and high probability ones to positive samples. Similar ideas have also been
successfully investigated in applications for anomalous or outlier training samples (Xu and
Shelton 2010; Riahi et al. 2014).

Algorithm 1 illustrates the general schema of our proposed GPU approach. In order to
estimate pP we fit a generative model, G, over the RVsX of the positive training set (line 3).
The estimator can be obtained with any generative model, such as Bayes Networks (BNs)
and Markov Networks (MNs), able to compute the joint probability pG(x) for a given state
x of the RVs X. We discuss the choice of such an estimator in Section 3.4. After fitting the
estimator to the positive samples, we can use it to compute the joint probability for each state
of the RVs appearing in the set of unlabeled samples in U—we derive an empirical estima-
tion of the less dense (i.e., less likely) regions by computing the point-wise log-likelihood
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of G over the samples in U . Being G a generative model, this probability indicates the like-
lihood that a sample is generated by the model. The assumption is that samples having a
low probability may be labeled as negative ones. Based on this information we build a set of
reliable negative samples, denoted by N (line 5), to be exploited in the second stage of PU
learning. Such a schema is general enough to be adapted to different data domains by lever-
aging different density estimators. Moreover, by specifying algorithmic variants to buildN
and the final discriminator f , one can improve its robustness and accuracy. We discuss such
extensions in the following sections.

3.4 Bayesian Networks andmixtures of trees

A question arises on which generative model to employ. The main challenge in learning gen-
erative models is balancing the representation expressiveness of the learned models against
the cost of learning and performing inference on them.

Probabilistic Graphical Models (PGMs), like Bayesian Networks (BNs) and Markov
Networks (MNs), are able to model highly complex probability distributions and have been
successfully employed as density estimators. However, exact inference with them is gen-
erally intractable (Cooper and Herskovits 1990). Since our GPU learning schema only
requires the computation of complete evidence queries, employing BNs in GPU would lead
to tractable inference to buildN .

Nevertheless, learning a complex model could still pose a challenge on very large
datasets. Guaranteeing exact and tractable inference, a series of tractable probabilistic
models (TPMs) have been recently proposed: either by restricting the expressiveness of
PGMs by bounding their treewidth, or by exploiting local structures in a distribution. The
limited expressive capabilities of TPMs, like mixtures of Bayesian trees (MTs) (Meila
and Jordan 2000) and Cutset Networks (Di Mauro et al. 2017), or their ability to com-
pile a high treewidth network into a deep probabilistic architecture, like Sum-Product
Networks (Vergari et al. 2015), allow for more efficient learning schemes.

In this work we evaluate GPU by exploiting both BNs and MTs to investigate how the
model expressiveness affects the estimation of pP and therefore ultimately the accuracy of
the learned discriminator (see Section 4). In the following we briefly review both models.

BNs are a PGM encoding a probability distribution by means of a directed acyclic graph
and a set of weights, where nodes correspond to RVs and edges to dependencies among RVs.
Given a set of n RVs X, for each variable Xi ∈ X, Pai denotes the set of parents of node Xi

in the DAG. The structure of the BN G, induces a factorization of the joint distribution into
local factors, that is:

pG(X) =
n∏

i=1

p(Xi |Pai ).

Learning a BN corresponds to learning both the structure and the conditional probability
distribution corresponding to each local factor from the data. Classical structure learning
algorithms search in the space of BNs guided by a scoring function. On the other hand,
parameter learning is obtained by maximum likelihood estimation.

Concerning mixtures of generative models, a very competitive density estimation algo-
rithm is MT (Meila and Jordan 2000). MT learns a mixture model M whose distribution
factorizes according to

pM(X) =
k∑

i=1

λipTi
(X),
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where the distributions pTi
, learned using the Chow-Liu algorithm (Chow and Liu 1968),

are the mixture components and λi ≥ 0, with
∑k

i=1 λi = 1 are their coefficients. The
Chow-Liu algorithm learns BNs with lower treewidth—nodes have at most one parent in the
network—thus leading to efficient learning and inference time. In Meila and Jordan (2000)
the best components and weights are found as (local) likelihood maxima by using EM, with
k fixed in advance.

3.5 Reliable negative sample elicitation

After learning a generative model G, the density estimation information provided by G can
be exploited in several ways. The most straightforward one would be to impose a threshold
hyperparameter θ such that each sample in U whose loglikelihood log pG falls under θ can
be added to N . However, determining the best value for θ would require to perform addi-
tional hyperparameter optimization. To alleviate this issue we propose to implicitly compute
it by building N to comprise the mP samples in U with the lowest log-likelihood score
according to G. In such a way we ensure that the resulting labeled set P ∪ N is balanced
w.r.t. the positive and negative class. The risk of including positive samples into P ∪N can
be mitigated by adopting a robust classifier in the following supervised step, whose gener-
alization ability on test data may also additionally benefit from the regularization capability
of mis-specifying some sample labels. Lastly, we note how density information in the form
of the finite set log-likelihoods can be directly incorporated into the construction of the
classifier over P ∪ N .

While we employ the likelihoods to select the most reliable negative samples from U ,
they could also be used to select the most reliable positive samples instead. Adopting such
a strategy, GPU can be turned into an iterative schema in which at each iteration P is aug-
mented with the samples belonging to the most dense regions. After a stopping criterion is
met,N can be built by collecting all the samples in U not added to P .

3.6 Mixtures of generative models

To mitigate issues like the scarce accuracy of a single model and their tendency to overfit,
PGMs could be employed as the components of a mixture of the form:

p(X) =
k∑

i=1

λipi (X),

being λi ≥ 0 : ∑k
i=1 λi = 1 the mixture coefficients, and pi (X) elementary PGM densities.

The first approach to learn such a mixture could be to employ EM to alternatively learn
both the weights and the mixture components. However, with this approach, the learning
time complexity grows at least of a factor of kt being t the number of iterations of EM. All
the classic issues about convergence and instability of EM make this approach unpractical.

A more efficient method to learn the mixtures, could be to adopt bagging (Hastie et al.
2009) as a cheap and yet more effective way to only increase time complexity by a factor
k. For bagged PGMs, mixture coefficients could be set equally probable and the mixture
components can be learned independently on different bootstrapped data samples.

In particular, we draw k bootstrapped samples Pi from the dataset P , sampling |P |
samples with replacements, and on each of those we fit a generative model, thus leading to
k models Gi . The resulting bagged models could correspond to a weighted sum of all the
learned models Gi .
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Differently from the explained elicitation process for a single model, now we have
to choose how the models in the ensemble have to be combined. The first choice—
averaging—is to consider the same elicitation process adopted for a single model with the
likelihoods computed by the bagged model G as

pG(X) =
k∑

i=1

λipGi
(X),

with uniform mixture coefficients, i.e., λi = 1/k.
As an alternative we can consider a voting (or a ranking) approach—as a combina-

tion approach, instead of considering the likelihood we can consider the votes each sample
obtains from the models.

In particular, each model Gi is used to compute the likelihood pGi
(x) for each sample

x ∈ U . Then, sorting the samples in U according to their likelihoods we obtain, for each
model Gi , a ranking

πi : {1, . . . , mU } → {1, . . . , mU },
i.e., a permutation of {1, . . . , mU } denoted as a bijection mapping samples to ranks. Finally,
the ranking of a sample xj ∈ U has been computed as the average ranking:

π(xj ) =
∑k

i=1 πi(j)

k
.

Now, the elicitation process is performed considering averaged rankings instead of the
averaged likelihoods.

3.7 Supervised classification step

In principle, every supervised classifier can be employed in GPU after the set N is
constructed. In the empirical evaluation we provide in Section 4 we adopt the regular imple-
mentation of Support Vector Machines (SVMs) included in scikit-learn1. While the SVM
works well in presence of noise like in the case of a single model, it overfits the training
samples in the case of ensemble due to the improved model capacity. In this case we opted
for a more basic learning approach like Logistic Regression (or MaxEnt) classifier with L1
regularization with primal formulation using the LIBLINEAR (Fan et al. 2008) library solver
as implemented in scikit-learn.

Nevertheless, we now discuss other interesting variants for GPU learning. First, if one
buildsN to be unbalanced w.r.t. P , it would be possible to adopt the more robust variant of
biased SVMs (Hoi et al. 2004). Alternatively, if one focuses on iteratively augmenting the set
P only with GPU, then 1-class SVMs (Schölkopf et al. 2001) could be employed to derive
a max-margin hypersphere for the positive class. Additionally, the likelihoods associated
to samples in U could be interpreted as sample confidence weights. Approaches like that
of Zhou et al. (2012) could be adopted to learn a weighted classifier over P ∪U without the
need to build N either. Lastly, our probabilistic generative approach for the first stage can
be plugged in an unsupervised clustering approach for the second stage, as done with the
EM algorithm in Liu et al. (2002). A principled end-to-end probabilistic formulation would
allow estimating both pD0 and pD1 iteratively and jointly.

1http://scikit-learn.org/

http://scikit-learn.org/
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As regards the computational complexity of our approach it greatly depends on that
of the adopted PGM used to learn the density distribution. Learning the structure and the
parameters of a PGM strongly relies on the inference procedure. It is well known that exact
inference in PGMs is NP-hard if no assumption is considered about the structure of the
underlying graphical model (Cooper and Herskovits 1990), and still NP-hard even in the
approximate case (Roth 1996). However, inference can be tractable in models in which the
underlying graph has low treewidth or in recently proposed tractable probabilistic models
like Sum-Product Networks (Vergari et al. 2015) and Cutset Networks (Di Mauro et al.
2017). Hence, the scalability of our proposed approach can be improved by integrating
tractable models as density estimators.

4 Experiments

In this section we empirically evaluate the proposed GPU approach, and its ensemble exten-
sion EGPU, applying them to categorical data. We are interested in this kind of data because
they are challenging for classical metric based approaches. Since there is no general con-
sensus on how to build a metric to evaluate categorical data, ad-hoc solutions have been
adopted on a domain-wise perspective (Ienco et al. 2012), and only recently PU learning
schemes have been devised for it (Ienco and Pensa 2016). On the other hand, PGMs have
been extensively investigated for categorical data and estimating a probability distribution
over discrete RVs is a consolidated practice for extracting new representations in a domain-
agnostic unsupervised way (Hinton and Salakhutdinov 2006; Bengio et al. 2012; Vergari
et al. 2019). As stated in the previous sections, adapting GPU to other domains reduces to
selecting an appropriate generative toolbox from the probabilistic model literature. Specifi-
cally, we aim at answering the following research questions:Q1) how does GPU and EGPU
compare to state-of-the-art PU learning approaches?Q2) how does the quantity of available
positive samples affect GPU and learning? Q3) how much does the choice of a generative
model in estimating pP affect GPU’s performance?

4.1 Experimental setting

We compared the proposedGPU and EGPU approaches to other state-of-the-art PU learning
methods for categorical data. We took 10 datasets publicly available on the UCI machine
learning repository2, derived 3 experimental settings for each, and ran 10-fold cross valida-
tions exactly as in Ienco and Pensa (2016)3. The three settings were generated by putting
in P 30%, 40%, and 50% labeled samples of the positive class respectively, and in U the
remaining positive samples plus all the negative ones. When the dataset does not describe
a binary classification problem, the two heavily populated classes were considered. In our
experiments, all numerical attributes were discretized into 10 equal-width bins. Detailed
dataset statistics are reported in Table 1.

We evaluate GPU by employing either BNs (GPUBN) or MTs (GPUMT) as generative
models (see Section 3.4). BNs are learnt using the R package bnlearn4 (release 4.1.1).
To learn their structure we employed the simple score-based hill-climbing algorithm. In

2http://archive.ics.uci.edu/ml/
3The datasets and settings used in Ienco and Pensa (2016) were kindly provided by Dino Ienco.
4http://www.bnlearn.com/.

http://archive.ics.uci.edu/ml/
http://www.bnlearn.com/


Journal of Intelligent Information Systems

Table 1 Dataset statistics. #pos and #unl denote the number of positive and unlabeled samples respectively

dataset #attributes % pos #test

30 40 50

#pos #unl #pos #unl #pos #unl

audiology 69 15 79 20 74 26 68 11

breast-cancer 9 54 203 72 185 91 166 29

chess 36 451 2425 601 2275 751 2125 320

dermatology 34 30 136 40 126 50 116 19

hepatitis 19 9 130 12 127 15 124 16

lymph 18 17 111 22 106 28 100 14

nursery 8 1166 6562 1555 6173 1944 5784 859

pima 8 135 556 180 511 225 466 77

soybean 35 25 140 33 132 42 123 18

vote 16 72 319 96 295 120 271 44

#test denotes the number of positive and negative examples in the testing set

order to avoid overfitting of the network to the positive samples, the following K2 scoring
function (Cooper and Herskovits 1992) was adopted5:

scoreK2(G : P) = logp(G) +
n∑

i=1

qi∑

j=1

(
log

(
(ri − 1)!

(Nij + ri − 1)!
)

+
ri∑

k=1

log(Nijk!)
)

,

where p(G) represents the prior probability of the network G over the n RVs Xi , ri is the
number of states of variable Xi , qi is the number of possible configurations of the parent
set Pai , Nijk is the number of instances in the data where variable Xi takes value xik and
the set of variables Pai takes value wij , Nij is the number of instances in the data where the
variables in Pai take their j -th configuration wij . Concerning parameter estimation, we set
the imaginary sample size to 1. MTs are learnt using the Libra (Lowd and Rooshenas 2015)
toolkit6 (version 1.1.2). We imposed the number of components to be 10.

As the classifier for the supervised second stage, we adopt SVMs7 with an RBF
kernel as implemented in scikit-learn8. The penalty parameter C and the kernel coef-
ficient γ have been optimized with a cross validation on the following grid C ∈
{0.001, 0.01, 0.1, 1, 10, 100, 1000} and γ ∈ {0.001, 0.01, 0.1, 1, 10, 100, 1000}.

For the ensemble learning case, we evaluate EGPU by employing BNs as generative mod-
els, and a Logistic Regression, as implemented in scikit-learn, as classifier for the supervised
task.

We compared GPU with Positive Naive Bayes (PNB), Average Positive Naive Bayes
(APNB), Positive TAN (PTAN), Average Positive TAN (APTAN) (Calvo et al. 2007) and

5The same set of experiments has been conducted using the likelihood as scoring function, leading to
overfitted models with an overall result worst than that obtained using the K2 score.
6http://libra.cs.uoregon.edu/.
7For this stage only, categorical data is one-hot encoded.
8http://scikit-learn.org/.

http://libra.cs.uoregon.edu/
http://scikit-learn.org/
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Pulce (Ienco and Pensa 2016) with k = 7 for the k-NN classifier. See Section 2 for a
description of these methods.

Performance on the test set was evaluated using the F1-score, defined as F = 2PR/(P +
R) = 2tp/(2tp + fp + f n), where P and R are, respectively, the precision and the recall
obtained by the algorithm, and tp, fp and f n are, respectively, the true positive, false
positive and false negative samples. Since the number of positive samples is much larger
than that of negative ones, as in Ienco and Pensa (2016) we directed the computation of
P , R, and F1-score to the negative samples, differently from their classical setting, i.e., as
F = 2tn/(2tn + fp + f n). In particular, since no information for the negative class is
provided, correctly predicting negative samples should be somehow harder than focusing
on the positive counterparts.

Source code, in Python and R, of the proposed approach and scripts to reproduce the
results are available at https://github.com/nicoladimauro/GPU.

4.2 Results and discussion

Overall results for the GPU approach are reported in Tables 2 and 3. Wemay note that PTAN
and APTAN never won against the other approaches, while the two GPU approaches won
73.3% of the times (53.3% of the times GPUBN alone), and each GPU approach won more
times than any competitor (GPUBN more than doubled the number of wins of each com-
petitor). The worst-performing dataset for GPU approaches, and the only one where they
perform neatly worse than all other competitors, is ‘hepatitis’. This may indicate that for
such a dataset the distributions of the negative and positive class are hard to estimate as very
different densities. Concerning question Q1, therefore, we can say that both GPUBN and
GPUMT are competitive to the current state-of-the-art for categorical data. On datasets on
which GPUBN does not win in all settings, it still performs comparably or better on settings
with largerP sets. Overall, increasing the size ofP improves the models’ accuracy in a con-
sistent way. At the same time, on datasets where both GPU approaches are competitive, they
improve over other methods even with only 30% positive samples available (Q2). Lastly,
we observe that while GPUBN generally outperforms GPUMT, the latter is still comparable
to Pulce (see average ranks, Table 2) and overall more accurate than all other methods. To
answer question Q3, we can state that the greater expressiveness of BNs, allowing better
modeling of the probability distribution of the positive class, is fairly relevant for achieving
better performances. Nevertheless, note that for both GPUBN and GPUMT we employed out-
of-the-box PGMs and did not invest too much time optimizing the hyperparameters for their
structure and weight learning algorithms. It is left for future work to explore how increas-
ing a model complexity can degrade its performance, that is when too accurate probability
distribution estimates can lead to overfitting.

As already said, in the reliable negative sample elicitation phase, the number of negative
samples to be included in the setN was set to the same number of positive samples available
inP , i.e., |N | = |P |. However, the generated setN may contain some true positive samples
that have been incorrectly predicted as negative ones. In order to quantify the accuracy of
the proposed approach, Table 4 reports, for each dataset, the number of errors occurred in
the negative elicitation step, when GPUBN has been used as a density estimator. As we can
see, the percentage of errors decreases as the percentage of positive samples in P increases.
For datasets like ‘breast-cancer’, the number of errors reaches 50% thus confirming the low
accuracy in terms of F1-score obtained on this dataset. Anyway, also other competitors are
not able to properly separate positive and negative samples on this dataset.

https://github.com/nicoladimauro/GPU
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Table 2 F1-score results over the 30 datasets, comparing GPUBN
SVM and GPUMT

SVM against the competitors
Pulce, PNB, APNB, PTAN, APTAN

dataset % GPUBN GPUMT Pulce PNB APNB PTAN APTAN

audiology 30 0.839 0.902 0.745 0.68 0.7 0.66 0.66

audiology 40 0.879 0.804 0.846 0.75 0.74 0.71 0.66

audiology 50 0.980 0.991 0.899 0.80 0.80 0.78 0.71

breast-cancer 30 0.475 0.450 0.534 0.40 0.39 0.43 0.43

breast-cancer 40 0.483 0.513 0.438 0.42 0.40 0.43 0.45

breast-cancer 50 0.517 0.535 0.443 0.42 0.41 0.44 0.44

chess 30 0.689 0.663 0.696 0.58 0.64 0.59 0.64

chess 40 0.691 0.665 0.688 0.58 0.64 0.60 0.64

chess 50 0.773 0.650 0.655 0.58 0.64 0.60 0.64

dermatology 30 1.000 0.834 0.992 0.57 0.57 0.57 0.56

dermatology 40 1.000 0.836 0.992 0.57 0.58 0.57 0.57

dermatology 50 0.992 0.951 0.992 0.59 0.60 0.57 0.58

hepatitis 30 0.822 0.665 0.843 0.87 0.87 0.85 0.86

hepatitis 40 0.778 0.654 0.873 0.88 0.88 0.85 0.85

hepatitis 50 0.764 0.742 0.855 0.88 0.88 0.86 0.85

lymph 30 0.827 0.782 0.851 0.84 0.85 0.79 0.84

lymph 40 0.825 0.795 0.827 0.84 0.83 0.79 0.81

lymph 50 0.824 0.835 0.814 0.86 0.87 0.81 0.82

nursery 30 0.809 0.761 0.739 0.65 0.65 0.56 0.50

nursery 40 1.000 0.762 0.773 0.69 0.69 0.61 0.56

nursery 50 0.960 0.779 0.807 0.69 0.70 0.74 0.44

pima 30 0.588 0.576 0.532 0.49 0.50 0.50 0.50

pima 40 0.568 0.593 0.547 0.49 0.50 0.50 0.51

pima 50 0.609 0.605 0.528 0.49 0.51 0.50 0.52

soybean 30 0.893 0.766 0.738 0.81 0.86 0.80 0.81

soybean 40 0.883 0.852 0.767 0.86 0.86 0.84 0.83

soybean 50 0.890 0.923 0.823 0.92 0.92 0.88 0.86

vote 30 0.826 0.799 0.679 0.62 0.62 0.56 0.55

vote 40 0.850 0.790 0.800 0.71 0.71 0.58 0.54

vote 50 0.844 0.829 0.829 0.77 0.77 0.61 0.56

# wins 16 6 3 5 6 0 0

Avg. F1-score 0.796 0.743 0.751 0.677 0.686 0.653 0.643

30% 0.777 0.720 0.735 0.651 0.665 0.631 0.635

40% 0.796 0.727 0.755 0.679 0.683 0.648 0.642

50% 0.815 0.784 0.764 0.700 0.710 0.679 0.652

Avg. ranking 2.16 3.23 3.2 4.57 3.95 5.47 5.42

The second column indicates the percentage of positive samples in P
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Table 3 Number of wins/ties among all the methods, the average of the number of wins for each method and
its ranking in parenthesis

GPUBN GPUMT Pulce PNB APNB PTAN APTAN avg.

GPUBN − 24/0 23/1 23/0 23/0 27/0 25/1 24.17 (1)

GPUMT 6/0 −- 13/0 22/0 22/0 25/0 24/0 18.67 (3)

Pulce 6/0 17/0 − 22/0 22/0 25/0 24/0 19.33 (2)

PNB 7/0 8/0 8/0 – 5/12 18/2 18/3 10.67 (5)

APNB 7/0 8/0 8/0 13/12 − 23/3 21/4 13.33 (4)

PTAN 3/0 5/0 5/0 10/2 4/3 − 12/6 6.50 (7)

APTAN 4/0 6/0 6/0 9/3 5/4 12/6 − 7.00 (6)

Another experiment has been done by varying the number of negative samples in N as
a percentage of the number of samples in P , i.e., by setting |N | = α|P |. Table 5 reports
the results adopting GPUBN as a density estimator for α ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, 1.3, 1.4}. It is possible to see that for α = 1.2 the number of wins of the proposed
approach over Pulce increases to 25.

As regards the ensemble approach, Table 6 reports the results when comparing EGPU
with average (EGPU10

avr and EGPU20
avr) with 10 and 20 components, EGPU with ranking

(EGPU10
rnk and EGPU20

rnk) with 10 and 20 components, to the best competitor Pulce. GPULR

indicated a single BN model using logistic regression as classifier. The symbol • denotes an
improvement over the base classifier GPULR.

First of all we can note that the ensemble approaches always win against the base classi-
fier (GPUBN and GPULR)—EGPU20

avr seems to be the best performing. Furthermore there is
an improvement against the best competitor Pulce w.r.t. the results obtained without ensem-
ble (GPUBN). The improvement of the ensemble is evident for each dataset except for the
hepatitis dataset where there are few positive samples in the training set making dif-
ficult to learn a good density estimator. The same effect is evident on the lymph dataset.
On the contrary when the dataset contains a lot of samples the ensemble approach seems to
perform better than the single model.

Table 4 Number of positive samples incorrectly predicted as negative ones in the negative sample elicitation
phase

dataset 30% 40% 50%

audiology 0.17 (2.6/15) 0.11 (2.3/20) 0.11 (2.8/26)

breast-cancer 0.48 (25.7/54) 0.46 (33.3/72) 0.43 (38.8/91)

chess 0.33 (148.6/451) 0.27 (162.4/601) 0.21 (159.7/751)

dermatology 0.00 (0.0/30) 0.00 (0.0/40) 0.00 (0.0/50)

hepatitis 0.19 (1.7/9) 0.00 (0.0/12) 0.11 (1.7/15)

lymph 0.16 (2.8/17) 0.15 (3.4/22) 0.14 (3.8/28)

nursery 0.00 (0.0/1166) 0.00 (0.0/1555) 0.03 (50.4/1944)

pima 0.33 (44.4/135) 0.30 (53.6/180) 0.28 (64.0/225)

soybean 0.14 (3.4/25) 0.15 (4.9/33) 0.10 (4.4/42)

vote 0.30 (22.9/72) 0.22 (21.0/96) 0.23 (27.9/120)

In parenthesis the average number of errors for each fold over the cardinality of both P and N
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Table 5 Detailed F1-score results over the 30 samples obtained by GPUBN by varying the percentage of the
reliable negative samples added toN

dataset GPUBN Pulce

Negative percentage

% 70% 80% 90% 100% 110% 120% 130%

audiology 30 0.832 0.812 0.834 0.839 0.627 0.857 0.857 0.745

audiology 40 0.949 0.940 0.958 0.879 0.938 0.940 0.923 0.846

audiology 50 0.991 0.989 0.971 0.980 0.989 0.966 0.957 0.899

breast-cancer 30 0.422 0.426 0.410 0.475 0.485 0.497 0.464 0.534

breast-cancer 40 0.416 0.409 0.470 0.483 0.494 0.492 0.500 0.438

breast-cancer 50 0.486 0.454 0.508 0.517 0.522 0.497 0.481 0.443

chess 30 0.629 0.644 0.668 0.689 0.693 0.693 0.700 0.696

chess 40 0.637 0.671 0.675 0.691 0.703 0.724 0.731 0.688

chess 50 0.645 0.701 0.739 0.773 0.777 0.788 0.786 0.655

dermatology 30 0.992 0.992 0.992 1.000 0.992 0.992 0.992 0.992

dermatology 40 0.992 0.992 0.992 1.000 1.000 1.000 1.000 0.992

dermatology 50 0.992 0.992 0.992 0.992 0.992 1.000 1.000 0.992

hepatitis 30 0.620 0.605 0.513 0.822 0.822 0.862 0.842 0.843

hepatitis 40 0.611 0.678 0.741 0.778 0.825 0.823 0.871 0.873

hepatitis 50 0.684 0.730 0.695 0.764 0.871 0.859 0.898 0.855

lymph 30 0.810 0.791 0.793 0.827 0.782 0.800 0.829 0.851

lymph 40 0.772 0.781 0.842 0.825 0.823 0.838 0.819 0.827

lymph 50 0.792 0.814 0.841 0.824 0.833 0.816 0.823 0.814

nursery 30 0.810 0.816 0.819 0.809 0.810 0.817 0.818 0.739

nursery 40 1.000 1.000 1.000 1.000 1.000 0.832 0.832 0.773

nursery 50 1.000 1.000 1.000 0.960 1.000 1.000 1.000 0.807

pima 30 0.515 0.535 0.545 0.588 0.543 0.562 0.565 0.532

pima 40 0.509 0.531 0.574 0.568 0.600 0.590 0.607 0.547

pima 50 0.532 0.552 0.603 0.609 0.620 0.613 0.623 0.528

soybean 30 0.834 0.816 0.902 0.893 0.914 0.902 0.915 0.738

soybean 40 0.846 0.893 0.902 0.883 0.915 0.924 0.925 0.767

soybean 50 0.886 0.864 0.854 0.890 0.922 0.916 0.935 0.823

vote 30 0.841 0.838 0.832 0.826 0.798 0.795 0.801 0.679

vote 40 0.850 0.861 0.864 0.850 0.848 0.831 0.814 0.800

vote 50 0.918 0.888 0.854 0.844 0.845 0.846 0.791 0.829

# wins 14 16 20 22 21 25 23

Avg. F1-score 0.760 0.767 0.779 0.796 0.799 0.802 0.803 0.751

Last column reports Pulce results for comparison
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Table 6 F1-score results over the 30 datasets, comparing EGPU and GPU against the competitor Pulce

dataset % EGPU10
avr EGPU20

avr EGPU10
rnk EGPU20

rnk GPULR GPUBN Pulce

audiology 30 0.855 0.889• 0.853 0.875 0.879 0.839 0.745

audiology 40 0.835 0.906 0.921 0.921 0.940 0.879 0.846

audiology 50 0.980• 0.989• 0.980• 0.972• 0.960 0.980 0.899

breast-cancer 30 0.513• 0.490• 0.500• 0.494• 0.462 0.475 0.534

breast-cancer 40 0.506• 0.523• 0.536• 0.513• 0.444 0.483 0.438

breast-cancer 50 0.538• 0.557• 0.526• 0.535• 0.518 0.517 0.443

chess 30 0.640 0.636 0.646 0.646 0.651 0.689 0.696

chess 40 0.666 0.670• 0.667 0.664 0.668 0.691 0.688

chess 50 0.647• 0.651• 0.653• 0.639• 0.637 0.773 0.655

dermatology 30 0.992• 0.992• 0.992• 0.992• 0.992 1.000 0.992

dermatology 40 0.992• 0.992• 0.992• 0.992• 0.964 1.000 0.992

dermatology 50 0.992• 0.992• 0.992• 0.992• 0.992 0.992 0.992

hepatitis 30 0.712• 0.671• 0.652• 0.610• 0.598 0.822 0.843

hepatitis 40 0.722• 0.714• 0.693• 0.732• 0.674 0.778 0.873

hepatitis 50 0.755• 0.730• 0.686 0.752• 0.725 0.764 0.855

lymph 30 0.777• 0.779• 0.761• 0.763• 0.753 0.827 0.851

lymph 40 0.812• 0.783 0.812• 0.791 0.806 0.825 0.827

lymph 50 0.830• 0.815• 0.821• 0.791 0.802 0.824 0.814

nursery 30 0.839• 0.831• 0.841• 0.800• 0.771 0.809 0.739

nursery 40 1.000• 1.000• 1.000• 1.000• 1.000 1.000 0.773

nursery 50 1.000• 1.000• 1.000• 1.000• 1.000 0.960 0.807

pima 30 0.567• 0.576• 0.578• 0.583• 0.565 0.588 0.532

pima 40 0.591• 0.583• 0.591• 0.597• 0.571 0.568 0.547

pima 50 0.601 0.613• 0.610 0.595 0.613 0.609 0.528

soybean 30 0.881• 0.882• 0.875 0.867 0.876 0.893 0.738

soybean 40 0.900 0.889 0.894 0.901 0.931 0.883 0.767

soybean 50 0.909 0.904 0.895 0.893 0.912 0.890 0.823

vote 30 0.865 0.872 0.888• 0.889• 0.882 0.826 0.679

vote 40 0.902• 0.917• 0.911• 0.916• 0.887 0.850 0.800

vote 50 0.913• 0.906• 0.914• 0.902• 0.866 0.844 0.829

# wins/ties ag. Pulce 17/3 18/3 18/3 16/3

# wins/ties ag. GPUBN 13/3 15/3 14/3 12/2

# • 18 19 17 16

The second column indicates the percentage of positive samples in P

5 Conclusions

In Positive-Unlabeled (PU) learning only positive samples are labeled at training time. PU
learning requires algorithms to cleverly exploit dependencies hidden in the data in order to
build models able to discriminate between positive and negative samples. In this paper, we
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proposed to exploit probabilistic generative models for PU learning by characterizing the
density distribution for the positive class. The overall GPU framework is flexible enough
to be applied on many domains by leveraging tools provided by PGMs. We showed how to
create mixtures of generative models by adopting a well-known bagging method from the
discriminative framework as an effective and cheap alternative to the classical Expectation
Maximization. Dealing with continuous or hybrid domains represent a future study. Results
on several benchmark datasets empirically confirmed the validity of our new proposed
approach.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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