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1 Introduction

Few works are available in the literature to define similarity criteria between
First-Order Logic (FOL) formulae, where the presence of relations causes vari-
ous portions of one description to be possibly mapped in different ways onto an-
other description, which poses serious computational problems. Hence, the need
for a set of general criteria that are able to support the comparison between
formulze. This could have many applications: making a subsumption procedure
converge quickly towards the correct associations, developing a flexible matching
procedure, supporting Case-based reasoning and k-Nearest Neighbor techniques,
grouping observations into homogeneous concepts (conceptual clustering), help-
ing theory revision systems to choose the best definition to be refined. In this
paper we tackle the case of two descriptions (e.g., a definition and an observa-
tion) to be generalized, where the similarity criteria could help in focussing on
the subparts of the descriptions that are more similar and hence more likely to
correspond to each other, based only on their syntactic structure. In particu-
lar, we focus on FOL formule in the form of clauses, of interest to ILP, and
specifically to the case of linked Datalog clauses, without loss of generality [2].

2 Similarity Criteria and Formula

Intuitively, a similarity criterion between two items might be based both on
the number of common features [, which should concur positively, and also on
the numbers n and m of features of each description that are not owned by
the other, which should concur negatively. We developed the following novel
similarity formula, where o weights the importance of either item:
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Sf(O[,’I’L,Lm) = am + (1 — a)m

(1)

In a clause, terms represent specific objects, whose properties and features are
generally expressed by unary predicates, and whose relationships are expressed
by n-ary predicates. Accordingly, two levels of similarity can be defined for pairs
of first-order descriptions: the object level and the structure one.



As to object similarity, given two distinct objects (terms) o’ and a”, two
kinds of features can be distinguished: the properties they own (characteristic
features), expressed by unary predicates, and the ways in which they relate to
other objects (relational features), expressed by the position the object holds
among an n-ary predicate arguments, corresponding to different roles played by
the objects. Two corresponding similarity values can be associated to a’ and a’:
a characteristic similarity, where (1) is applied to n,  and m computed on the
characteristic features, and a relational similarity, based on how many times the
two objects play the same or different roles in the n-ary predicates. Here, the
arguments for (1) are given by the sum over all possible roles played by any of
the two objects of the ng, I[gr and mpg values for each role R.

When checking for the structural similarity of two formulse, many objects
can be involved, and hence their mutual relationships represent a constraint on
how each of them in the former formula can be mapped onto another in the
latter. Given an n-ary literal, we define its star as the multiset of predicates
corresponding to the literals linked to it by some common argument. Thus, any
two compatible n-ary literals I’ nd {” can be compared by applying (1) to the
number of common and different predicate items in each of the two stars, and
adding all characteristic and relational similarities for each pair of their argu-
ments in corresponding positions. Each clause can be represented as a Directed
Acyclic Graph (in which literals are the nodes) stratified such that the head
is the only node at level 0, and each successive level introduces nodes not yet
reached by edges by setting an incoming edge to them from each node in the
previous level having among its arguments at least one term in common with it.
Now, all possible paths from the head to leaf nodes (those with no out-coming
edges) can be interpreted as the basic components of the overall structure of
the clause, and the structural similarity between any two paths p’ and p” taken
from the two clauses can be computed by applying (1) to the length [ of their
compatible (as to predicates and arguments bindings) initial sequence and the
values n and m of the remaining sequences in each, plus the star similarity of
all couples of literals in the initial sequence.

Finally, the path pairs can be ordered by decreasing similarity, and a gener-
alization can be computed by starting from the top and going down the ranking,
adding to the partial generalization generated thus far the common literals of
each pair whenever they are compatible. Further generalizations can then be
obtained through backtracking.

3 Experiments

The similarity-driven generalization procedure, using (1) with o = 0.5, was
compared to a previous non-guided procedure, embedded in the learning system
INTHELEX [1], on a dataset of 122 descriptions representing scientific paper
first pages layout, belonging to 4 different classes. This gave rise to 488 posi-
tive/negative examples for the classification task, and to 1488 examples for 12



Table 1. Experimental results

Ratio| Time (sec.)|Cl Gen Exc™ [SpecT[Spec™ [Exc™ [Acc

SF 90.52 579 8| 47(4+19) 0 2 0 0 10.94

Classification I |70.22 137 7| 33(+66) 0 1 1 1 10.97
S80(73.63 206 71 33(+19) 0 0 1 1 10.97

SF(91.09| 22220 (36| 180(+201)| O 8 3 3 10.89

Component Labelling| I |68.85| 33060 |39|137(+2500)| 0 15 11 12 10.93
S80(71.75| 15941  |54| 172(+660) | 0 14 8 2 10.93

concepts for the significant component labelling task. 10-fold cross-validation
was exploited to assess predictive accuracy.

In 47 correct generalizations, the similarity-driven generalization (SF in Table
1) preserved on average 89,71% literals of the shortest clause, with a maximum
of 99,24% (131 literals out of 132, against an example of 333) and just 0,01 vari-
ance. Hence, the produced generalization is likely to be very near to the least
general one, as confirmed by the fact that when the first generalization pro-
duced was not consistent with all past negative examples (which happened in 20
cases in which the starting clause was already extremely general) no more spe-
cific generalization was found within the next 500 attempts (a limit set to avoid
the system to deadlock on some generalizations). Noteworthy, the non-guided
generalization procedure with unbound search (I in Table 1) was never able to
find correct generalizations within the first 500 attempts. However, such specific
generalizations show low predictive accuracy with respect to the INTHELEX
algorithm, probably due to the need of more examples in order to converge to
more predictive definitions or to overfitting, both being a consequence of less
general generalizations. For this reason, a threshold was set on the similarity-
driven generalization (S80 in Table 1), so that it should discard 20% literals of
the shortest original clause. Such a modified version took less than 1/3 runtime
to complete the learning task with respect to the unbound version; the number
of generalizations significantly reduces of 1/5, but at the cost of negative literals
and exceptions as specializations. However, the behavior strictly resembles that
of the old generalization, but with nearly 2/3 runtime savings. The difference of
5 additional generalizations is probably due to the use of similarity yielding gen-
eralizations more tight to the examples: indeed, as in the unbound case, no more
specific generalization is ever found within the first 500 attempts, whereas the
INTHELEX procedure also computed and tried 66 inconsistent generalizations
in 5 additional unsuccessful cases.
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