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Abstract. This paper represents a further steps in combining Informa-
tion Theory tools with relational learning. We show how mutual infor-
mation can be used to find relevant relational features.

1 Introduction

According to Tishby et al. [1], Information Theory provides a natural quantita-
tive approach to the question of relevant information and an alternative view
for Machine Learning because of the abstract and principled concept of mu-
tual information (MI). For instance, they provided the Information Bottleneck
(IB) method taking in mind that any learning process has to deal with the basic
tradeoff between the complexity of the available data representation and the best
accuracy that this complexity enables. The first approach using the IB method
for Statistical Relational Learning (SRL) [2] has been proposed in [3] and this
paper is a new step forward for information theoretic relational learning. We
use the MI descriptor from Information Theory to propose a SRL method that
learns the model by finding the most relevant features. Given a training dataset
D = {xi, ci}ni=1 of n relational examples, characterized by a set of m relational
features X = {fi}mi=1, and a target discrete random variable c, generating class
labels ci, the aim of this paper is to find a subset of X that optimally character-
izes the variable c minimizing the classifier’s probability error. We want to find
the maximal statistical dependency of the target class c on the data distribution
in the selected subspace (maximal dependency), that usually corresponds to the
maximal relevance of the features to the target class c.

Most of the Inductive Logic Programming (ILP) learning approaches builds
models by searching for good relational features guided by a scoring function,
such as in FOIL. In many SRL systems this feature construction process is com-
bined with a discriminative/generative probabilistic method in order to deal with
noisy data and uncertainty, such as in kFOIL [4], rsLDA [5], and Markov Logic
Networks (MLNs) [6]. The combination may be static or dynamic. In the former
case (static propositionalization), the constructed features are usually consid-
ered as boolean features and used offline as input to a propositional statistical
learner; while in the latter case (dynamic propositionalization), the feature con-
struction and probabilistic model selection are combined into a single process.
We propose the mLynx system that, after a feature construction phase, stochas-
tically searches, guided by the mutual information criterion, the set of the most
relevant features minimizing a Bayesian classifier’s probability error.
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2 Feature construction and classification

This section reports the first components of the mLynx system, extending Lynx [7],
that implements a probabilistic query-based classifier based on mutual informa-
tion. Specifically, we start to report its feature construction capability and the
adopted query-based classification model. The adopted mutual information fea-
ture selection approach will be presented in Section 3.

The first step of mLynx carries out a feature construction process by min-
ing frequent Prolog queries (relational features) adopting an approach similar to
that reported in [8]. The algorithm for frequent relational query mining is based
on the same idea as the generic level-wise search method, performing a breadth-
first search in the lattice of queries ordered by a specialization relation �. The
algorithm starts with the most general Prolog queries. At each step it tries to
specialize all the candidate frequent queries, discarding the non-frequent ones
and storing those whose length is less or equal to a user specified input param-
eter. Furthermore, for each new refined query, semantically equivalent patterns
are detected, by using the θOI-subsumption relation, and discarded. In the spe-
cialization phase the specialization operator, basically, adds atoms to the query.

Now, having a set of relational features, we need a way to use them in order
to correctly classify unseen examples. Given the training set D = {xi, ci}ni=1

of n relational examples, where c denotes the discrete class random variables
taking values from {1, 2, . . . , Q}, the goal is to learn a function h : x → c from
D that predicts the label for each unseen instance. Let Q, with |Q| = d, be
the set of features obtained in the first step of the mLynx system (the queries
mined from D). For each example xk we can build a d-component vector-valued
xk = (x1k, x

2
k, . . . , x

d
k) random variable where each xik ∈ xk is 1 if the query

qi ∈ Q subsumes example xk, and 0 otherwise, for each 1 ≤ i ≤ d.

Using the Bayes’ theorem, if p(cj) describes the prior probability of class cj ,
then the posterior probability p(cj |x) can be computed from p(x|cj) as

p(cj |x) =
p(x|cj)p(cj)∑Q
i=1 p(x|ci)p(ci)

.

Given a set of discriminant functions {gi(x)}Qi=1, a classifier is said to assign
the vector x to class cj if gj(x) > gi(x) for all j 6= i. Taking gi(x) = P (ci|x),
the maximum discriminant function corresponds to the maximum a posteriori
(MAP) probability. For minimum error rate classification, the following discrim-
inant function will be used: gi(x) = ln p(x|ci) + ln p(ci). Given x = (x1, . . . , xd),
we define pij = Prob(xi = 1|cj) with the components of x being statistically
independent for all xi ∈ x. The estimator p̂ij of the factor pij corresponds to
the frequency counts on the training examples: p̂ij = ηi,j(D,Q) = |{xk, ck ∈
D|ck = j ∧ qi ∈ Q subsumes xk}|/ηj(D), where ηj(D) = |{xk, ck ∈ D|ck = j|.
The estimator p̂(cj) of p(cj) is ηj(D)/|D|. By assuming conditional independence
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p(x|cj) =
∏d

i=1(pij)
xi(1− pij)1−xi , yielding the discriminant function

gj(x) = ln p(x|cj) + ln p(cj) =

d∑
i=1

xi ln
pij

1− pij
+

d∑
i=1

ln(1− pij) + ln p(cj).

The minimum probability error is achieved by deciding ck if gk(x) ≥ gj(x) for
all j and k.

3 Mutual Information Feature Selection

A formalization of the uncertainty of a random variable is the Shannon’s entropy.
Let x be a discrete random variable and p(x) its probabilistic density function,
then the entropy of x, a measure of uncertainty, is defined as usual by H(x) =
E(I(x)) =

∑
i p(xi)I(x) = −

∑
i p(xi) log p(xi), assuming p(xi) log p(xi) = 0 in

case of p(xi) = 0. For two random variables x and y, their joint entropy is defined
as H(x, y) = −

∑
i,j p(xi, yj) log p(xi, yj), and the conditional entropy is defined

as H(x|y) = −
∑

i,j p(xi, yj) log p(xi|yj). From the last definition, the chain rule
for conditional entropy is H(x, y) = H(x) +H(y|x).

The mutual information I(x; y) measures how much (on average) the real-
ization of the random variable y tells about the realization of x:

I(x; y) = H(x)−H(x|y) =
∑
i,j

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)
. (1)

Given a set X of M features, mutual information feature selection corre-
sponds to find a set S = {fi}mi=1 ⊂ X whose elements jointly have the largest
dependency on the class c, corresponding to optimize the maximum dependency
condition:

max
S⊂X

I(S; c). (2)

Directly computing (2) has some difficulties [9], and different approaches to ap-
proximate it have been proposed. The approach we used in this paper is the
minimal redundancy and maximal relevance criterion (mRMR) [9]. An approxi-
mation of (2) can be obtained by optimizing the maximal relevance criterion:

max
S⊂X

1

|S|
∑
fi∈S

I(fi; c). (3)

In maximizing the relevance, the selected features fi are required to have the
largest mutual information I(fi; c) with the class c (i.e., the largest dependency
on the class). Combinations of individually good features do not necessarily lead
to good classification performance. Selecting features according to (3) could lead
to a set containing high redundant features. Hence, in order to have mutually
exclusive features the criterion of minimal redundancy should be optimized:

min
S⊂X

1

|S|2
∑

fi,fj∈S

I(fi; fj). (4)
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The mRMR combines these two last criteria by simultaneously optimizing (3)
and (4). A possible technique may be to incrementally search near-optimal fea-
tures as follows. Assume S is the subset of m features already selected. The
incremental algorithm selects the next feature fj ∈ X \ S to be added to S by
optimizing the following condition:

max
fj∈X\S

I(fj ; c)−
1

|S|
∑
fi∈S

I(fj ; fi)

 . (5)

Starting from an empty set and using (5) to incrementally select the features
to add, a first problem is how to determine the optimal number of features m.
Furthermore, even fixing in advance the number m of features to be selected,
another problem is that this incremental approach does not assure to find the
global optimal solution, and repeated executions could lead the search to be
trapped in the same local optimum solution.

One way to decrease the probability of being stuck in a local maximum and
avoiding to test all the 2M −1 possible subset solutions, is to consider the use of
a stochastic local search (SLS) procedure. In this paper we propose a new SLS
procedure, similar to the Randomized Iterative Improvement method, able to
solve the above problems, as reported in Algorithm 1. GivenX the set of available
features, the algorithm starts by randomly selecting a feature fs ∈ X, and setting
S = {fs}. Then, it iteratively adds a new feature fi ∈ X \ S to S according to
(5) until the new information for the class variable c contributed by the feature
fj given S is greater than a threshold α. This helps the search to be immunized
against noisy data, to overcome over-fitting problems, and to solve the problem
of how to choose the number m of features to be selected. Furthermore, to
implement diversification in the algorithm, the iterative construction phase can
choose to make a random walk (by adding a random feature) with a walking
probability wp.

After each construction phase, the found solution is evaluated according to
the classifier’s probability error, and the process is restarted hoping to find a
better solution. Given S the selected features, for each example ej we let the

classifier find the MAP hypothesis ĥP (xj) = arg maxi gi(xj) according to the
Bayesian discriminant function reported in Section 2 where xj is the feature
based representation of the example ej obtained using the queries in S. Hence
the optimization problem corresponds to minimize the expectation E[1ĥP (xi) 6=ci

]

where 1ĥP (xi) 6=ci
is the characteristic function of the training example ei return-

ing 1 if ĥP (xi) 6= ci, and 0 otherwise. Finally, the number of classification errors
made by the Bayesian classifier using the queries S is errD(S) = |D|E[1ĥP (xi)6=ci

].

4 Experiments

We tested the proposed mLynx approach on the well known Mutagenesis ILP
dataset, and on the widely used UW-CSE SRL dataset [10]. The Mutagenesis
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Algorithm 1: Randomized sequential forward feature selection

input : X: input features; wp: walking probability; restarts: number of restarts;
α: threshold

output: Ŝ: the optimal subset
S = ∅; i = 0; bestValue = ∞;1

while i < restarts do2

randomly select a feature fs from X;3

S = {fs}; improve = true;4

while improve and |S| 6= |X | do5

if wp < rand(0,1) then6

max
fj∈X\S

mRMR(fj , c, S) = max
fj∈X\S

(
I(fj ; c)− 1

|S|
∑

fi∈S I(fj ; fi)
)

;
7

if mRMR(fj , c, S) > α then8

S = S ∪ {fj};9

else10

improve = false;11

else12

randomly select fj ∈ X \ S;13

S = S ∪ {fj};14

if errD(S) < bestValue then15

Ŝ = S; bestValue = errD(S);16

i = i+ 1;17

return Ŝ18

dataset regards the problem to predict the mutagenicity of a set of compounds.
As in [4] we used atom and bond information only. mLynx has been compared to
kFOIL [4], whose results with a 10-fold cross validation are listed in Table 1. For
mLynx we set α = 10−2, restarts = 100, and wp = 0.05. The accuracy obtained
with mLynx is higher than that obtained with kFOIL with a difference that is
statistically significant with p-value of 0.0455 for the Mutagenesis r.f. dataset.

Dataset mLynx kFOIL

Mutagenesis r.f. 83.94 ± 6.2 77.64 ± 6.5
Mutagenesis r.u. 80.90 ± 15.7 77.50 ± 18.44

Table 1. Average accuracy on the Mutagenesis dataset for mLynx and kFOIL.

The UW-CSE dataset [10] regards the Department of Computer Science and
Engineering at the University of Washington, describing relationships among
professors, students, courses and publications with 3212 true ground atoms over
12 predicates. The task is to predict the relationship advisedBy(X,Y) using in
turn four of the five research areas (ai, graphics, language, theory and systems)
for training and the remaining one for testing as in [10]. For mLynx we set α =
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10−4, restarts = 100, and wp = 0.05. For Alchemy [6] we used the hand-coded
MLN reported in [10] including formulas stating regularities, and the applying
Alchemy to discriminative learn the weights and testing the resulting MLN on the
testing set using the MC-SAT. Table 2 shows the AUC for ROC and Precision-
Recall (PR) for mLynx and Alchemy. The results show that mLynx generally
improves on Alchemy with a difference that is statistically significant with p-
value of 0.095 for ROC and with p-value 0.052 for PR.

mLynx Alchemy

AUC ROC AUC PR AUC ROC AUC PR

ai 0.929 0.295 0.903 0.286
graphics 0.960 0.697 0.967 0.313
language 0.980 0.797 0.823 0.188
systems 0.933 0.252 0.914 0.224
theory 0.922 0.427 0.867 0.184

mean 0.945 0.494 0.895 0.239
Table 2. AUC for ROC and PR on the UW-CSE dataset for mLynx and Alchemy.
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