Bandit-Based Monte-Carlo Structure Learning
of Probabilistic Logic Programs

Nicola Di Mauro!, Elena Bellodi?, and Fabrizio Riguzzi®

! Dipartimento di Informatica — University of Bari “Aldo Moro”
Via Orabona, 4, 70125 Bari, Italy
2 Dipartimento di Ingegneria — University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
3 Dipartimento di Matematica e Informatica — University of Ferrara
Via Saragat 1, 1-44122, Ferrara, Italy
nicola.dimauro@uniba.it, elena.bellodi@unife.it,
fabrizio.riguzziQunife.it

Abstract. Probabilistic logic programming allows to model domains
with complex and uncertain relationships among entities. While the
problem of learning the parameters of such programs has been consid-
ered by various authors, the problem of learning their structure is yet
to be explored in depth. In this work we present an approximate search
method based on a one-player game approach, called LEMUR. It relies
on the Monte-Carlo tree search UCT algorithm that combines the pre-
cision of tree search with the generality of random sampling. LEMUR
works by modifying the UCT algorithm in a similar fashion to FUSE,
that considers a finite unknown horizon and deals with the problem of
having a huge branching factor. The proposed system has been tested on
the UW-CSE and Hepatitis datasets and has shown better performances
than those of SLIPCASE and LSM.

1 Introduction

Probabilistic Logic Programming (PLP) is gaining popularity due to its ability
to represent domains with many entities connected by complex and uncertain
relationships. One of the most fertile approaches to PLP is the distribution
semantics [1], that is at the basis of several languages such as Probabilistic Logic
Programs, Independent Choice Logic, PRISM, Logic Programs with Annotated
Disjunctions (LPADs) and ProbLog.

Various algorithms for learning the parameters of probabilistic logic programs
under the distribution semantics have been developed, such as PRISM, LFI-
ProbLog and EMBLEM. Less systems have been proposed for learning the struc-
ture of these programs. Among these, SLIPCASE [2] performs a beam search
in the space of possible theories using the log-likelihood (LL) of the examples
as the heuristics. The beam is initialized with a number of simple theories that
are repeatedly revised using theory revision operators: the addition/removal of a
literal from a rule and the addition/removal of a whole rule. Each refinement is

scored by learning the parameters with EMBLEM [3] and using the log-likelihood
of the examples returned by it.

Since SLIPCASE search space is extremely large, in this paper we investigate
the application of a new approximate search method. In particular, we propose
to search in the space of possible theories using a Monte Carlo Tree Search
(MCTS) algorithm [4]. MCTS has been originally and extensively applied to
Computer Go and recently used in Machine Learning as in FUSE (Feature UCT
Selection) [5], that performs feature selection, and BAAL (Bandit-Based Active
Learner) [6], that focuses on active learning with small training sets. In this
paper, similarly to FUSE, we propose the system LEMUR (LFEarning with a
Monte carlo Upgrade of tRee search) relying on UCT, the tree-structured multi-
armed bandit algorithm originally introduced in [7].

We tested LEMUR on a dataset modeling a university domain, UW-CSE, and
a dataset modeling a medical domain regarding hepatitis. We compared it with
SLIPCASE and LSM, a system for structure learning of Markov Logic Networks
[8] and we show that LEMUR achieves higher areas under the Precision Recall
and ROC curves.

2 Probabilistic Logic Programming

We present an introduction to PLP focusing on the distribution semantics. We
use LPADs as the language for their general syntax.

Logic Programs with Annotated Disjunctions [9] consist of a finite set of anno-
tated disjunctive clauses C; of the form h;y : Il;15. .. 5 hin, + in, @ —bi1, ..., bim, -
hi1, ... hin, are logical atoms and b;1, . . ., by, are logical literals, {I1;1, ..., Iy, }
are real numbers in the interval [0,1] such that Y ;7| ITix < 1. bix, ..., bim, is
called the body and is indicated with body(C;). Note that if n; =1 and IT;; =1
the clause corresponds to a non-disjunctive clause. If >"}'" IT;;, < 1 the head
of the annotated disjunctive clause implicitly contains an extra atom null that
does not appear in the body of any clause and whose annotation is 1 ,Zz;l 1.
We denote by ground(T) the grounding of an LPAD T.

An atomic choice is a triple (Cj;,0;,k) where C; € T, 6; is a substitution
that grounds C; and k € {1,...,n;} identifies the head atom. C;8; corresponds
to a multivalued random variable X;; and an atomic choice (C;,6,;,k) to an
assignment X;; = k. A set of atomic choices k is consistent if only one head
is selected from a ground clause. A composite choice k is a consistent set of
atomic choices. The probability P(k) of a composite choice k is the product of
the probabilities of the individual atomic choices, i.e. P(k) = H(Ci,ej,k)en . A
selection o is a composite choice that, for each clause C;6; in ground(T'), contains
an atomic choice (C;, 0, k). A selection o identifies a normal logic program w,
defined as w, = {(hix < body(C;))0;|(C;,0;,k) € o}, which is called a world of
T'. Since selections are composite choices, we can assign a probability to worlds:
P(wo) = P(0) =l c, 0, kyeo ik- We denote by St the set of all selections and
by Wr the set of all worlds of a program T. A composite choice k identifies a

set of worlds wy, = {wy|o € St,0 D k}. We define the set of worlds identified by
a set of composite choices K as wi = U, .c x We-

We consider only sound LPADs where each possible world has a total well-
founded model, so w, = @ means a query @ is true in the well-founded model of
the program w,. Let P(W) be the distribution over the worlds. The probability
of a query @ given a world w is P(Q|w) = 1 if w |E @ and 0 otherwise. The
probability of @ is then:

P = > PQuw= Y PQuwPw= > Pw (1)

weWr weWr weEWrwE=Q

Example 1. The following LPAD T models the fact that if somebody has the flu
and the climate is cold, there is the possibility that an epidemic or a pandemic
arises:

Cy = epidemic : 0.6; pandemic : 0.3 : — flu(X), cold.

Cy = cold : 0.7.

C3 = flu(david).

Cy = flu(robert).
T has 18 instances, the query Q) = epidemic is true in 5 of them and its prob-
ability is P(epidemic) = 0.6-0.6-0.7+0.6-0.3-0.7+0.6-0.1-0.7+0.3-0.6 -
0.740.1-0.6-0.7 = 0.588.

Since it is unfeasible to enumerate all the worlds where @ is entailed, inference
algorithms find in practice a covering set of explanations for @, i.e. a set of
composite choices K such that @ is entailed in a world w, iff w, € wg. In
order to compute P(Q) by a summation as in (1), the explanations have first to
be made mutually exclusive with respect to each other. To this purpose Binary
Decision Diagrams (BDDs) are used.

EMBLEM [3] performs parameter learning using an Expectation Maximiza-
tion (EM) algorithm. It takes as input a set of interpretations, i.e., sets of ground
facts describing a portion of the domain. The user has to indicate which pred-
icates of the domain are target: the corresponding ground atoms will form the
examples. For each of these, a BDD encoding its explanations is built. EMBLEM
then maximizes the LL for the positive and negative target examples with an
EM cycle, until it has reached a local maximum. The E-step computes the ex-
pectations of the latent variables directly over BDDs. The M-step updates the
parameters for all clauses.

3 LEMUR

MCTS [4] aims at finding optimal decisions in a domain by taking random
samples in the decision space and building a search tree in an incremental and
asymmetric manner. In each iteration, first a tree policy is used in order to find
the most urgent node of the tree to expand, trying to balance exploitation and
exploration. Then a simulation phase is conducted from the selected node, by
adding a new child node (obtained with a move from the selected node) and

using a default policy that suggests the sequence of actions (“simulation”) to
be chosen from this new node. Finally, the simulation result is backpropagated
upwards to update the statistics of the nodes.

The goal of MCTS is to approximate the true values of the moves that may
be taken in a given node of the tree. In [7] the authors used the UCT formula
in order to implement the tree policy. In particular, the choice of a child node
is treated as a multi-armed bandit problem, i.e. the value of a child node is the
expected reward approximated by Monte Carlo simulations. Bandit problems
are sequential decision problems where the goal is to choose amongst K arms of
a multi-armed bandit slot machine in order to maximize the cumulative reward
by taking the optimal action, based on past rewards. In the famed UCT MCTS
algorithm, a child node j (a machine) is selected to maximize the following UCT
formula:

nj

X, +20C, /222 ifp. >0
”Uj = I ! (2)
FPU; otherwise

where Yj is the average reward from arm j, n is the number of times the current
node has been visited, n; the number of times child j has been visited and C' > 0
is a constant. When n; = 0, first-play urgency (FPU) [10] is used, that assigns
a fixed value to unvisited nodes and the UCT value to visited nodes. By tuning
the fixed value, early exploitations are encouraged.

When applying the UCT for learning the structure of probabilistic logic pro-
grams we consider each logic theory as a bandit problem, where each legal theory
revision? is an arm with unknown reward.

The tree policy is implemented as follows. During each iteration, LEMUR
starts from the root of the tree corresponding to the initial theory. At each
node, LEMUR selects one move, corresponding to a possible theory revision,
according to the UCT formula. LEMUR then descends to the selected child
node and selects a new move until it reaches a leaf. The tree search part ends by
creating a new leaf in the tree. Then LEMUR starts the Monte Carlo simulation
phase to score the theory at this leaf. One random sequence of revisions is applied
starting from the leaf theory until a finite unknown horizon is reached: LEMUR
stops the simulation after k steps, where k is a uniformly sampled random integer
smaller than d and d is an input parameter. Once the horizon is reached, LEMUR
produces a reward value A.

The nodes visited during this random simulation are not saved, while the
nodes visited in the tree policy are saved with their statistics: the visit count
n;, the average reward X; and the score L;. n; and X; are initially set to 0,
while the initial value of the score is obtained by learning the parameters of the
corresponding theory with EMBLEM and by using the log-likelihood (LL) of the
training examples as L;.

In the simulation phase, all the visited nodes are scored by computing their
LL using EMBLEM as in the tree policy, and the reward A corresponds to
the maximum score obtained in this random descent. Now, this reward is then

4 In this paper we consider specializations only as theory revisions.

backpropagated up the sequence of nodes selected for this iteration to update
the node statistics: for each node 7, its visit count is incremented and its average
reward X; is updated according to A. In order to have the values of A and thus
of X; within [0,1], the LL [; of a node j computed by EMBLEM is normalized
as A=1/(1-1).

UCT does not tell how to choose among nodes that are not explored yet.
Typically, UCT visits each unvisited move once before revisiting any. FPU mod-
ifies MCTS by assigning a fixed value to unvisited nodes. Instead of fixing the
FPU value, we used a different approach in LEMUR: for each unvisited node j
(n; = 0), we set its FPU; value to the mean of the values of the visited sibling
nodes.

4 Experimental validation

LEMUR has been tested on two real world datasets: UW-CSE and Hepatitis.
The UW-CSE dataset® [11] contains information about the Computer Science
department of the University of Washington, and is split into five mega-examples,
each containing facts for a particular research area. The goal is to predict the
target predicate advisedby (X,Y), namely the fact that a person X is advised by
another person Y. The Hepatitis dataset® [12] contains information on the labo-
ratory examinations of hepatitis B and C infected patients. The goal is to predict
the type of hepatitis of a patient, so the target predicate is type (patient,type)
where type can be b or c. Positive examples for a type are considered as negative
examples for the other type.

LEMUR has been compared to SLIPCASE for learning probabilistic logic
programs and to LSM [8] for learning Markov Logic Networks. On both UW-
CSE and Hepatitis we applied a five-fold cross-validation. We drew a Precision-
Recall curve and a Receiver Operating Characteristics curve and computed the
Area Under the Curve (AUCPR and AUCROC respectively) using the methods
reported in [13]. The UCT in LEMUR has been iterated 1000 times and its
parameters have been set as C' = 0.0001 and d = 5 for UW-CSE, C = 0.0001
and d = 3 for Hepatitis. Furthermore, LEMUR has been restricted to learn
theories with at most 3 rules for UW-CSE and 8 rules for Hepatitis.

Table 1 shows the AUCPR and AUCROC averaged over the folds for all
algorithms and datasets. As can be seen, LEMUR achieves higher areas than
SLIPCASE and LSM.

References

1. Sato, T.: A statistical learning method for logic programs with distribution se-
mantics. In: International Conference on Logic Programming, MIT Press (1995)
715-729

® http://alchemy.cs.washington.edu/data/uw-cse
S http://www.cs.sfu.ca/~oschulte/jbn/dataset.html

System Hepatitis UW-CSE
AUCROC AUCPR | AUCROC AUCPR
LEMUR |0.76 £ 0.06 0.81 4 0.04|0.95 £ 0.02 0.28 + 0.06
SLIPCASE|0.66 £+ 0.06 0.71 + 0.05|0.89 4+ 0.03 0.03 £ 0.01
LSM |0.52 &+ 0.06 0.53 £ 0.04(0.52 + 0.06 0.07 £ 0.02

Table 1. Results of the experiments in terms of average Area Under the PR and
ROC Curves on the Hepatitis and UW-CSE datasets. The standard deviations are also
shown.

10.

11.

12.

13.

. Bellodi, E., Riguzzi, F.: Learning the structure of probabilistic logic programs. In:

Proc. ILP. Volume 7207 of LNCS., Springer (2012) 61-75

Bellodi, E., Riguzzi, F.: Expectation Maximization over binary decision diagrams
for probabilistic logic programs. Intelligent Data Analysis 17 (2013) 343-363
Browne, C., Powley, E.J., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of monte carlo
tree search methods. IEEE Trans. Comput. Intellig. and Al in Games 4 (2012)
1-43

Gaudel, R., Sebag, M.: Feature selection as a one-player game. In: Proc. 27th Int.
Conf. Mach. Learn. (2010) 359-366

Rolet, P., Sebag, M., Teytaud, O.: Boosting active learning to optimality: A
tractable monte-carlo, billiard-based algorithm. In Buntine, W., Grobelnik, M.,
Mladeni, D., Shawe-Taylor, J., eds.: Machine Learning and Knowledge Discovery
in Databases. Volume 5782 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2009) 302-317

Kocsis, L., Szepesvari, C.: Bandit based monte-carlo planning. In: Proceedings of
the 17th European conference on Machine Learning. ECML’06, Berlin, Heidelberg,
Springer-Verlag (2006) 282-293

Kok, S., Domingos, P.: Learning markov logic networks using structural motifs. In
Firnkranz, J., Joachims, T., eds.: ICML, Omnipress (2010) 551-558

Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: International Conference on Logic Programming. Volume 3131 of
LNCS., Springer (2004) 195-209

Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo Go.
In: NIPS: Neural Information Processing Systems Conference On-line trading of
Exploration and Exploitation Workshop. (2006)

Kok, S., Domingos, P.: Learning the structure of markov logic networks. In:
Proceedings of the 22nd international conference on Machine learning. ICML ’05,
New York, NY, USA, ACM (2005) 441-448

Khosravi, H., Schulte, O., Hu, J., Gao, T.: Learning compact markov logic networks
with decision trees. Mach. Learn. 89 (2012) 257-277

Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves.
In: Proceedings of the 23rd international conference on Machine learning. ICML
’06, New York, NY, USA, ACM (2006) 233-240

