

Laboratorio di Acquisizione della Conoscenza e Apprendimento delle Macchine

Tutorial

Daniele Capursi

Luigi Iannone

Dip. Informatica - Università di Bari

Overview

- What is RDF ?
- Resources
- RDF Data Model
- Interchange syntax
- RDF Containers

What is RDF?

- Resource Description Framework (RDF) is a simple framework for the description of Knowledge in the World Wide Web, enabling the encoding, exchange, and reuse of structured information.
- It was specifically designed for the description of "metadata" (data about data) related to resources available through the World Wide Web.
- It is a W3C recommendation.
- It is at the base of what is called "the Semantic Web", as it permits to share knowledge on the Web.
- Latest version drafts released on 22 February 1999

The Web and the Semantic Web...

- The World Wide Web was invented by Tim Berners- Lee in the 1989 allowing CERN scientists to share scientific documents across the World.
- Nowadays the Web is the largest collection of document ever produced by the Humanity.
- Web should allow (says Berners Lee)
 - to share information between men,
 - to accomplish tasks using the Web

What's wrong with the Web...

- The Web is big
- The Web contains information human tailored
 - Machine cannot understand the meaning of a document
 - -Only syntactic techniques can be exploited (keywords as such)

...What's wrong with the Web...

- Polisemy
 - A term can have multiple meanings

Low precision

- Synonymy
 Several terms
 - Having same
 - meaning

Low recall

Netscape: Google Search: MIT computer science chair		2			
File Edit View Go Communicator		Help			
📔 🌒 🔔 🔬 🗳 🖆	i 🙆 🛛 🗿	N			
Back Forward Reload Home Search Netscape Print Securi	t y Shop Stop				
📔 🦋 Bookmarks 🧔 Location: [http://www.google.com/search?q=)	IIT+cor 🗸 🎧 🔭 What	t's Related			
	1 55				
Advanced Search Preferences Sear	<u>ch Tips</u>	_			
MIT computer science chair	Google Search	L I			
GOOgle					
I'm Feeling Lucky					
Searched the web for <u>MIT computer science</u> chair. Results 1 - 10 of about 99	,500 . Search took 0.84 s	econds.			
Category: Science > Math > Logic and Foundations > Conferences					
UniDo Informatik					
technischer Prozesse und Systeme mit Methoden der Computational	Sponsored Links	a b			
Intelligence in der Network ed Committer Science Technical Reports Library (NCSTRL) Fully loaded Across - All colors and					
www.cs.uni-dortmund.de/-11k-Cached-Similar pages www.aerons.com					
Committee on the Status of Women in Computing Research	See your message he	are			
CRA-W co-chair, is a Professor in the Computer Science Department at the by the National					
Science Foundation and EOT Nancy G. Leveson MIT Susan Owicki					
Description: Takes positive action to increase the number of women participating in engineering	n computer science and				
Category: <u>Society > People > Women > Career > Science</u>					
Professor Deborah Estrin, UCLA Computer Science Department and . MS (1982) from MIT and her BS a member of the Computer Networks Divi	sion at received				
the National Science Foundation, Presidential and study-chair for DARPA's					
iecs.cs.uda.euw~estriiv - 22k - <u>Cadieu</u> - <u>Siniiar pages</u>					
IEEE Symposium on Logic in Computer Science to hibliographies at MIT and University of or ac uk_Publicity Chair Martin Grobe					
Department Mathematics, Statistics, and Computer Science University of					
Category: <u>Computers > Computer Science > Conferences</u>					
sun1.mathematik.uni-freiburg.de/lics/ - 4k - <u>Cached</u> - <u>Similar pages</u>					
IEEE Symposium on Logic in Computer Science		v			

100%

🗉 🐝 🕮 🗆 💌 🎺

...What's wrong with the Web

- How to integrate the information from several sources?
- How to perform task integrating several services available on the Web? E.g.:
 - -"I want to book a ticket for "Matrix Reloaded" and a dinner at an Italian Restaurant within five blocks from the cinema".
- So I need computers understanding information reasoning about it (Computers dealing with Knowledge).

The Semantic Web...

- The Semantic Web is a vision for the future of the Web in which information is given explicit meaning, making it easier for machines to automatically process and integrate information available on the Web.
- The Semantic Web turns the Web into a huge Knowledge Base.
- •The Web is a network of information linked each other, to be consumed by Humans.

•The Semantic Web is a network of information semantically linked, to be consumed by computers.

... The Semantic Web

- The Web already offer the infrasctructure to publish information that everyone can reach and to integrate her information with the one provided by others (via the URL and links mechanisms).
- We need a framework that permits to express knowledge in a way that can be machineprocessable.

• HOW????

What we need to share Knowledge on the Web

- We need a language that:
 - -Has a syntax that ensures syntactical interoperability
 - -Has a semantic that is shared between computers
 - -Is able to express ontologies
 - Permits very efficient elaborations, since the knowledge in the Web is very big
- We need an infrastructure that:
 - -Permits to add semantic to the existing documents
 - Permits to refer to things unambiguously on the entire Web
 - Permits to integrate several source of knowledge in the distribute environment which is the Web

A possible solution: RDF

- **RDF principles**:
 - 1. "Everything must be identified by URIs".
 - The "Least Power" principle:
 "When expressing anything, use the least expressive language".
 - 3. "Anything can say anything about anything".

RDF consists of...

- Formal data model
- Interchange syntax
- Schema type systems (in RDF)
- Query language (planned)

Resources

- All things described by RDF expressions are called *resources*.
- Example:
 - -Web pages
 - -Collections of pages
 - -Web sites ∖
 - -Books

not directly accessible via the Web

- People
- Feelings

RDF was born to describe principally resources available via the Web, but not only these!

Not true when

they are used just as URIs!!!

 RDF define a *Resource* anything that can be identified by an URI (Universal Resource Identifier).

Resouces and URIs...

- A URI is a name that refers to a unique object in
- A ORI Can be a URN (Universal Resource Name) or a URL (Universal Resource Locator).
- URLs are URIs that can be used to retrieve the resource they refers to.

...Resouces and URIs...

urn:IT_CPRDLG55D02A669S

urn:...

http://digilander.iol.it/daniele ftp://ftp.microsoft.com mailto:semeraro@di.uniba.it http://www.daniele.com/amici#Lui gi

...Resources and URIs

- Using URLs as URIs, it's easy to ensure uniqueness of the name
- Only the IETF can assign top level domains (e.g. .it, .com, .org, .gov)
- Only national organizations can assign secondary level domains (e.g. libero.it, tin.it, gazzetta.it)
- Only the owner of a domain can assign subdomains and URLs of that domain (e.g. http://www.libero.it, http://www.gazzetta.it/fantacalcio, http://digilander.iol.it/daniele/amici#Roberto)

Least Power

Principle

RDF data model

- Resources have associated
 properties that have associated
 »values
- Resources: identified by URIs
- Properties: identified by URIs
- Values: resources or primitive data types

(string)

RDF Statements: the triples

- The basic unit of information in RDF is the *Statement:*
 - -an assertion that states that a certain resource (the Subject) has a certain value (the Object) for a certain property (the Predicate).
- So a statement is actually a *Triple* (Subject, Predicate, Object).
- A set of statements is called Model.

Finally some examples!!!

- "The author of the RDF tutorial is Daniele Capursi"
- "The first name of Daniele Capursi is 'Daniele"

Subject	Predicate	Object
http://www.di.uniba.it/ ~gci/RDF Tutorial.ppt	http://purl.org/dc/elem ents/1.1/creator	mailto:capursi@sword.it
mailto:capursi@sword.it	http://www.myspace.co m/properties#firstName	Daniele

RDF data model: directed labelled graph...

 One or more RDF Statements can be displayed as a very simple directed labelled graph:

...RDF data model: directed labelled graph...

• The previous examples:

...RDF data model: directed labelled graph

• This permits to display the semantic relationships in a compact way:

Interchange syntax

- A serialization syntax is needed:
 - -To save RDF Statements into a persistent form (e.g. a file)
 - -To transfer them from one application to another
 - To permit their retrieval from the Web
- RDF Model & Syntax specification defines a standard XML encoding of the data model.
- Why XML encoding?
 - -Parsers are easy to implement (are based on XML parsers)
 - -XML deals with interoperability and internationalization issues
- Other syntax encoding exist
 - -NTRIPLE
 - -N3

The example encoded in XML

- <?xml version='1.0'?>
- <rdf:RDF

```
xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'
```

```
xmlns:dc= 'http://purl.org/dc/elements/1.0/'
```

```
xmlns:NS0='http://www.myspace.com/properties#'
```

```
>
```

<rdf:Description rdf:about='http://www.di.uniba.it/~gci/RDFTutorial.ppt'>

<dc:creator rdf:resource='mailto:capursi@sword.it'/>

- </rdf:Description>
- <rdf:Description rdf:about='mailto:capursi@sword.it'>
 - <NS0:firstName>Daniele</NS0:firstName>
 - < NS0:age> 25</ NS0:age>
- </rdf:Description>

```
</rdf:RDF>
```


The example encoded in Abbreviated XML

- <?xml version='1.0'?>
- <rdf:RDF

xmlns:rdf='http://www.w3.org/1999/02/22-rdf-syntax-ns#'

xmlns:dc= 'http://purl.org/dc/elements/1.0/'

xmlns:NS0='http://www.myspace.com/properties#'

>

<rdf:Description rdf:about='http://www.di.uniba.it/~gci/RDF Tutorial.ppt'>

<dc:creator rdf:resource='mailto:capursi@sword.it'
NS0:firstName='Daniele' NS0:age='25'/>

```
</rdf:Description>
```

</rdf:RDF>

The example encoded in N-TRIPLE

- <http://www.di.uniba.it/~gci/RDF Tutorial.ppt> <http://purl.org/dc/elements/1.0/creator> <mailto:capursi@sword.it>.
- <mailto:capursi@sword.it> <http://www.myspace.com/properties#firstName> "Daniele" .
- <mailto:capursi@sword.it> <http://www.myspace.com/properties#age> "25".

RDF IS NOT XML!!!

- XML is just one of the possible way to serialize RDF.
- XML is the standard way to encode RDF for putting it into the Semantic Web, not to process it.
- There are more than one way to serialize RDF in XML.
- If a program manipulates RDF as XML, the code must be repeated for every possible XML serialization!
- Manipulating RDF as XML, we break the abstraction of RDF data model.

DDE/MAL 's wat so set to was all for lines and

More RDF features: blank nodes

"The girl with red hair is 23 years old" What is the URI of the girl?

More RDF features: RDF Containers

- Bag
 - unordered list of resources or literals
- Sequence
 - ordered list of resources or literals
- Alternatives
 - alternate values
 - need to choose
 - at least one value
 - first value is default or preferred value

Collection example in RDF

<rdf:Description about= "http://concerto.pira.co.uk">

More RDF features: reification...

- A feature that is rarely used and ha a cumbersome syntax: statements about statements.
- A reificated statement is NOT asserted!

... More RDF features: reification

RDF is good

- Now we see that RDF can give machineunderstandable semantics to resources. Do we?
- Now we know that we need RDF for Semantic Web, while XML is not enough. Do we?

Is RDF good?...

- How does RDF give semantics?
- Why is RDF better than XML?
- XML tags and attributes doesn't have a semantics.
- Everybody can define his own tags or interpret the meaning of a tag in the way he likes.
- XML leaves too much freedom on how to represent information.

...Is RDF good?

- RDF syntax is very poor: it's very likely that different people uses the same concepts (Resources and Properties) to describe the same things, apart from the URIs.
- If some people (or some programs) agree on how to assign URIs to some resources, they perfectly share the meaning of that resources (they know what objects correspond to that URIs),
- If they agree on the meaning of some properties, they cant perfectly understand what they represent.

So, where is semantics?

- RDF has been designed to be used together with shared vocabularies.
- A Vocabulary is a set of Properties that have a precise meaning.
- There are lots of standard vocabularies for many domains.
- If we use only standard vocabularies, we share the semantics of our RDF statements.
- What if we want to define our own vocabularies?

The most famous example: The "Dublin Core Metadata Initiative" Vocabulary

- "Dublin Core" is a standard for the rappresentation of essential metadata of Web documents
- Dublin Core 1.0 properties:
 "http://purl.org/dc/elements/1.0/" + ...

-contributor	–publisher	
-coverage	-relation	
-creator	-rights	
-date	-source	
-description	–subject	
–format	–title	
-identifier	-type	
Hanguage		

How to define a vocabulary: RDF Schema...

- RDF allow people to define new vocabularies (called "Schema").
- RDFS (RDF Schema) is a language, based on RDF itself, to describe RDF vocabularies. An instance of RDFS is called "RDF Schema" too!
- A Schema is a set of Classes of resources and Properties with a precise semantics.
- A schema can define new elements from scratch or by "importing" concepts from other schemas and extending them.

....RDF Schema...

RDFS is a lightweight ontology language, since it allows to define Classes and Property of classes:

- RDFS allow to define Classes:
 - -From scratch
 - -As subclasses of existing ones
 - –As equivalent to existing ones (latest RDF version)
- RDFS allow to define Properties:
 - -From scratch
 - -As sub-properties of existing ones
 - –As equivalent to existing ones (latest RDF version)

....RDF Schema...

- RDFS allow to specify properties of properties:
 - –Domain

I.e. the classes it applies to (the classes of the resources that can be the subject of a statement with that property as predicate)

-Range

I.e. the classes of the resources that can be value of that property (the classes of the resources that can be the object of a statement with that property as predicate)

RDF Schema and RDF

- An RDF Schema is written in RDF itself.
- Obviously using properties and classes whose semantics is standard.

==>

- There is an RDF Schema that describes the elements of the RDF Schema language itself!
- So RDFS can be described in RDFS, that is still RDF.

RDFS: what for?

- An RDF Schema can be used to (semantically!) validate an RDF Model, in the same way we can validate a knowledge base against an ontology
- RDFS semantics defines some simple inferences, typical of an ontology language, e.g.:
 - -If r is of class A and class A is subclass of class B, then r is of class B
 - -If A is subclass of B and B is subclass of C then A is subclass of C
 - If the domain of a property p is the class A and p is the subject of a statement in which p is the predicate, then p is of class A

RDFS makes RDF smarter...

- The possibility to reuse and extend existing schemas + such inferences makes RDF agents much smarter:
 - -If an agent encounters a property it doesn't know, but it knows one super- property of such property, he can perform meaningful processing as well

RDFS vocabulary

- Classes:
 - Class
 - Resource
 - Literal
 - rdf:Property
 - ConstraintProperty
- Properties:
 - -type
 - subClassOf
 - subPropertyOf
 - comment
 - label
 - seeAlso
 - isDefinedBy
 - domain
 - range

- RDFS is "property- centric" VS OO is "classcentric":
 - -RDFS defines a property in terms of what classes can have that property and what classes can be objects of that property
 - -Object Oriented defines classes in terms of property they own and of that type are the values of these properties
- Everybody can reference and reuse a Class or a Property defined by others, just using its URI.
 Everybody can reference a Resource defined by others.

RDF Tutorial

Structure of the Semantic Web

RDF Core: A component for effective management of RDF Models

Overview

- RDFCore functionalities
- **RDFCore architecture**
- **RDFCore empirical evaluation**
- Conclusions and future work

RDFCore functionalities

- Support for all typical operations on RDF at two level of granularity:
 - Model (Description)
 - Statement (Triple)
- Multi- user environment
- Support for multiple query languages
 - RDQL
 - SquishQL
 - RQL (in progress)

RDFCore architecture...

... RDFCore architecture

Strategy Pattern

- Compliance with W3C Object Model
- Pluggable modules for:
 - Persistence
 - Query engines

RDF Persistence implementations

- Currently available:
 - File system XML based (relying on PDOM) used as baseline
 - Jena 2 based (more efficient especially in queries)
 - Plain File system (not relying on PDOM)
 - Jena 2 based

Sneak Comparison

	RDF Suite	Jena Semantic Web Toolkit	RDFCore
Statements Granularity API	n	У	У
Model Granularity API	n	У	У
Multi-user complex support	n	n	У
RDQL	n	У	У
RQL	у	n	n
SquishQL	n	n	У
Scales up to (no of Triples)	6000000*	800000*	100000

* = Taken from W3C surveys

Conclusions

We achieved:

- A standard framework that allows all typical operations on RDF (Models and Statements)
- Flexible architecture with the possibility of plugging in new modules seamlessly
- Linear scalability for the basic operations and queries even in this early prototype

Future work

- New persistence layers (e.g.: RSSDB based)
- Support for RQL
- More extensive tests and comparisons with existing systems
- Integration of RDFCore within wider architectures

Further Readings

http://www.w3.org/RDF

Latest version drafts:

http://www.w3.org/TR/2002/WD-rdfsyntax-grammar-20021108/