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ABSTRACT
The role of body posture in affect recognition, and the im-
portance of emotion in the development and support of intel-
ligent and social behavior have been accepted and researched
within several fields. While posture is considered important,
much research has focused on extracting emotion informa-
tion from dance sequences. Instead, our focus is on creating
an affective posture recognition system that incrementally
learns to recognize and react to people’s affective behaviors.
In this paper, we examine a set of requirements for creating
this system, and our proposed solutions. The first require-
ment is that the system is general and non-situation specific.
Secondly, it should be able to handle explicit and implicit
feedback. Finally, it must be able to incrementally learn the
emotion categories without predefining them. We tested and
compared the performance of our system using 182 stand-
ing postures described as a combination of form features and
motion flow features, across several emotion categories, with
a typical algorithm used for recognition, back-propagation,
and with human observers in an aim to show the general-
izability of the system. This initial testing showed positive
results.
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1. INTRODUCTION
According to Mehrabian and Friar [15], changes in a person’s
affective state (used as a general term for discussing mood,
emotion, and feeling) are reflected by changes in her/his
posture. The role of body posture in affect recognition, and
the importance of emotion in the development and support
of intelligent and social behavior have been accepted and
researched within several fields including psychology, neu-
rology, and biology.

In psychology, while there has been much research on un-
derstanding the importance of affective posture, there has
been little research in the area of computer science to quan-
titatively model affective posture [4] [3]. In fact, as of yet
there are no formal models for classifying affective whole
body postures from low-level general features, as there are
for classifying affective facial expressions (i.e., Facial Action
Coding System (FACS) [6]).

Instead, computer scientists have mainly focused on endow-
ing systems with the ability either to express affective behav-

ior (e.g., Sony’s Aibo [19]), or to use physiological methods
(i.e., galvanic skin response, blood pressure, heart rate, etc.),
e.g., Toyota’s Pod car [17], to recognize affect. Moreover,
within the field of affective computing, giving systems the
ability to convey emotion through posture has progressed
rapidly, while endowing systems with the ability to recog-
nize the affective gestures of its user in varying forms such
as body postures and motions, is quite original. While pos-
ture is considered important, much research has focused on
extracting emotion information from dance sequences [21]
[10]. Other affective research has concentrated on using in-
formation from facial and vocal expressions [18] [14].

Our focus in this paper is to present a discussion on the nec-
essary requirements for creating an affectively aware, inter-
active system, along with our proposed method for satisfying
each requirement. The complete architecture of our incre-
mental affective posture recognition system is composed of
several modules. In this paper we present the recognition
part of the system, seen in Figure 1, which is composed of
3 modules: i) the posture description module; ii) the recog-
nition module; and iii) the feedback module.
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Figure 1: This figure shows our affective posture
recognition system. Motion capture information of
a human is input to the posture description mod-
ule, which computes the 25 features. The computed
vector is then sent to the recognition module which
categorizes the posture. The output is an affective
label which is sent to the feedback module. Feed-
back is used to trigger the adaptation process of the
recognition module.

The remainder of the paper is organized as follows: We iden-
tify context generalization as the first requirement. At a
basic level, to create a general, non situation-specific pos-
ture recognition system, the postures need to be described
according to low-level posture features. Section 3 exam-



ines explicit and implicit feedback, and incremental learning.
Section 4 evaluates the testing of our system’s performance.
The final requirement, discussed in Section 5, is the need
for an incremental lexicon. The system must be able to
self-determine the number of categories to learn, thus elim-
inating a need for predefinition.

2. REQUIREMENT 1: CONTEXT GENER-
ALIZATION

Research by Kapoor et al.[11] attempts to recognize a child’s
level of interest according to 3 categories (high interest, low
interest, and “refreshing” (a short break)) from postures
detected through the implementation of a chair embedded
with pressure sensors while the child uses a computer to
solve a puzzle. Their postures are defined by a set of 8 high-
level (coarse-grained) posture features (i.e., leaning forward,
slumping back, sitting on the edge), dependent on a com-
puter task situation and the set of interest-level categories.
While the work is interesting and recognition rates are pos-
itive, the generalization of their method to other emotions
and contexts may be limited, since new high level postural
descriptors may need to be added. In order to generalize the
recognition procedure, we need a posture description frame-
work that allows for the emergence of high-level postural
features instead of defining it from the beginning.

A recent psychological study by Coulson [4] attempts to
ground emotions into low-level static posture features. He
uses computer generated avatars expressing 6 emotions (an-
gry, fear, happy, sad, surprise, and disgust to examine the
parameters necessary for attributing a specific emotional
state to body posture. His proposed body description com-
prises 6 joint rotations (head bend, chest bend, abdomen
twist, shoulder forward/backward, shoulder swing, and el-
bow bend). While the overall results were positive, it is in-
teresting to note that the low recognition of some emotions
such as fear indicate that features for describing motion, i.e.,
direction, velocity, and amplitude, also may be necessary.

2.1 Solution: A posture description module
As a solution for this requirement, we have extended our
previous work [2] by combining a set of form features (a
static instance of a posture) with a set of motion flow fea-
tures (indicating direction of motion) to create a posture
description module for our system.

In [2], we proposed a set of kinematic features for describ-
ing human posture suggested by Laban’s [20] “sphere of
movement” used to convey emotion. We focused mainly
on global and upper body features as determined by our
preliminary results indicating that the upper body is used
most for displaying emotion. These features were computed
in the frontal view by projecting 3D motion captured data
on the 3 orthogonal planes to measure direction and volume
of the body according to the lateral, frontal, and vertical
extensions of the body, and body orientation. Refer to the
top portion of Table 1 for a listing of these features.

The motion flow posture description features, listed in the
lower portion of Table 1, were computed by measuring mo-
tion differences between 2 frames of motion capture data
within a predetermined interval to show direction of mo-

Table 1: The table lists the set of form posture fea-
tures and the set of motion flow features.

Form features

OrientationXY : B.Head - F.Head axis

OrientationY Z : B.Head - F.Head axis

Distancez : R.Hand - R.Shoulder

Distancez : L.Hand - L.Shoulder

Distancey: R.Hand - R.Shoulder

Distancey:L.Hand - L.Shoulder

Distancex:R.Hand - L.Shoulder

Distancex:L.Hand - R.Shoulder

Distancex:R.Hand - R.Elbow

Distancex:L.Hand - L.Elbow

Distancex: R.Elbow - L.Shoulder

Distancex: L.Elbow - R.Shoulder

Distancez : R.Hand - R.Elbow

Distancez :L.Hand - L.Elbow

Distancey: R.Hand - R.Elbow

Distancey:L.Hand - L.Elbow

Motion features

MotionAmplitudey: Right hand

MotionAmplitudez : Right hand

MotionAmplitudey: Left hand

MotionAmplitudez : Left hand

MotionAmplitudey : Right shoulder

MotionAmplitudez : Right shoulder

MotionAmplitudey : Left shoulder

MotionAmplitudez : Left shoulder

MotionAmplitudey: Head

tion. For example, the vertical motion of the right hand
was computed by the ratio of the distance of the maximum
vertical extension of the right hand along the z-axis. The
forward and backward motions of the head and shoulders
separately were computed by the ratio of the distance of the
maximum frontal extension of these body parts along the
y-axis.

The output of this module is a pair of vectors that are sent
to the recognition module (described in the following sec-
tion) for determining the affective state of the person being
monitored.

3. REQUIREMENT 2: FEEDBACK HAN-
DLING

A system that can learn over time, or incrementally can be
considered more human-like in its interaction, as humans
also adapt to each other over time, through continued so-
cial interaction. Furthermore, a system that is incremental
eliminates the need for, and difficulty of, creating a training
set that covers the complete range of possible motions and
the complete set of possible emotions that could occur. This
requirement can be satisfied by using feedback to adapt the
recognition model to each new user.

Explicit feedback may come directly from a student or a
teacher, explicitly stating the student’s emotion.



As we cannot expect the user to continuously give feedback
to the system, the system should also be able to handle im-
plicit feedback. By implicit feedback we mean an affective
label or a set of affective labels indicating the most probable
affective state of the user. This feedback could be inferred
on the basis of contextual information such as the state of a
game or of an e-learning session. Explicit feedback is gener-
ally more reliable, while implicit feedback may carry more
uncertainty. Thus, this uncertainty should be taken into
account in the adaptation process.

The incremental process should be considered also at the
level of the categories to be learned. Refer to Section 5 for
a discussion on implementing an incremental lexicon.

3.1 Solution: An adaptive posture recognition
module

We see the mapping of posture description features into emo-
tional labels as a categorization problem. We use a CALM
[16] network, that can self-organize input into categories. A
CALM network consists of several CALM modules, thus in-
corporating brain-like structural and functional constraints
such as modularity and organization with excitatory and in-
hibitory connections. Figure 2(a) represents a single CALM
module. Each module is a complex structure made up of
different nodes, and is based on a competition mechanism.
Competition is triggered by 2 external nodes that measure
the novelty of the input pattern, and accordingly, generate
more or less noise to maintain competition until one of the
nodes wins. While the topology of a CALM architecture
is fixed, connections between the modules (shown in Figure
2(b)), are learned. Novel input samples presented trigger
the adaptation of the network by exploiting the unsuper-
vised learning mechanism. The reader is directed to [16] for
a complete discussion of a typical CALM network.
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Figure 2: (a) shows the architecture of a basic
CALM module. (b) shows the interconnectivity be-
tween R-nodes of connected modules.

We extended our CALM network topology proposed in [2]
to handle two types of input. Shown in Figure 3, our topol-
ogy consists of three layers. We use one input layer divided
into 2 modules. The first module consists of the original
16 form features, and the second module is comprised of
the 9 motion flow features. The division of information was
determined based on a neurological study by Giese and Pog-
gio [9] which provides evidence to show that two separate
neural pathways in the brain are used for the recognition

of biological motion, one for form information and one for
motion information. Furthermore, integration of the feature
information occurs between the modules at the intermedi-
ate layer through a horizontal connection. This is also a
reflection of neurological studies stating that in the brain,
information is integrated not at the input level, but at a
higher level.
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Figure 3: The topology of our system consists of 3
layers. One input layer with 2 modules, one inter-
mediate layer with 5 modules, and one output layer
with 1 module. The number of nodes is shown in
brackets.

While originally CALM uses unsupervised learning, we use
a novel version of CALM that integrates both unsupervised
and supervised learning mechanisms [1]. The downward ar-
rows in Figure 3 represent incoming feedback that was sent
to the recognition module from the user/teacher and that
flows from the output module, down to the intermediate
layer. This feedback is used for triggering a supervised adap-
tation.

Our system utilizes 2 forms of feedback, explicit and im-
plicit. The learning within the module is based on a com-
petitive mechanism and only one R-node finally wins. To
implement explicit feedback, when a wrong affective label
is output, pulse information is sent back to the recognition
module to reactivate competition. Explicit feedback (cor-
rect answer is known) triggers the competition module to
favor the correct R-node. As we use a low amount of feed-
back, the output selection is not forced, but instead biases
the self-organizing process.

To handle implicit feedback (correct answer is not known,
but instead is a ranking of possible answers with an asso-
ciated probability), we modified the feedback mechanism in
order to weight the (biasing) pulse information that is sent
to the R-node, thus reactivating competition. The weights
reflect the probability of correctness of each emotion label.
The probability of each emotion (R-node) could be derived
from the context, e.g., state of the game, etc. While implicit
and explicit feedback have been implemented, the implicit
feedback mechanism has not yet been tested. Therefore, in
this paper, we report on testing only with explicit feedback.

4. PERFORMANCE TESTING
We tested the performance of our affective posture recog-
nition system on standing postures and four emotion cate-
gories: angry, fear, happy, and sad. 182 affective postures
were collected using a motion capture system. Each subject,
wearing the same motion capture suit, was asked to perform



postures expressing each of the 4 emotions. No constraints
were placed on the subjects, thus allowing them to express
the emotion postures in their own, individual way. For a
more detailed description of the data collection techniques,
please refer to [12][5].

50 learning trials were conducted. The learning process was
stopped when the percentage of error ceased to decrease.
Typically, this occurred at approximately 200 epochs. The
high classification rates were positive at 79% for 4 emotion
categories, versus 71% when employing a single input mod-
ule (our previous implementation) containing the form fea-
tures and motion flow features combined, thus providing
further evidence to support dividing the 2 forms of input
information. Categorization rates further declined to 65%
when only the 16 form features were used for input.

Next, we tested the ability of our system to generalize by
adding noise to the training set to create 15 testing sets.
In looking at the results shown in Figure 4, we can clearly
see that our new system, comprised of two input modules
to separate form features from motion flow features, out-
performs our previous implementation consisting of a single
input module combining both feature types. Recognition
rates at 10% variance (significant noise) were 60%. When
doubling the amount of noise (20% variance), the success
rate remained nearly the same.
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Figure 4: Correct categorization percentages for
comparing back-propagation, our affective posture
recognition system, and our former system with only
one input module, using a training set of 182 affec-
tive postures. The horizontal axis denotes the vari-
ance for the testing set. The vertical axis denotes
the correct percentage of categorization.

For further testing, our categorization system was compared
with a back-propagation algorithm [7], one of the most typi-
cal neural networks used for recognition tasks. To do so, we
repeated the training on the 182 postures 10 times for each
method. On average, there was an 80% classification rate
for back-propagation; almost the same as with our system
(79%). Next, we created 35 testing sets by adding noise to
the training set to examine the generalization capabilities
of back-propagation. However, while the training results of
the 2 methods were quite similar, again referring to Figure

4, we can see that during testing the recognition rate using
the back-propagation algorithm falls to approximately 56%
by adding only 5% variance, whereas the recognition rate for
our system is almost 73%. While these results are clearly
positive, further analysis using a variety of back-propagation
topologies is necessary to definitively conclude these results.
However, it is our belief that in our recognition system, since
the supervised mechanism is used only to bias the learn-
ing, the generalization capability appears to be more signifi-
cant. This is quite important due to the intrinsic variability
present in emotion expression.

4.1 Comparison with human performance
In order to evaluate our system, we compared its perfor-
mance with human discriminative performance by conduct-
ing a series of psychological experiments. The same 182 pos-
tures used in the previous experiments were used to build
a set of avatars from the original motion capture data. For
each posture, a single frame was chosen that the actor eval-
uated to be the most affectively expressive instant. Viewing
a series of single posture webpages, subjects were asked to
evaluate each posture by choosing from a list of 4 emotion
categories, angry, fear, happy, and sad. 143 Japanese uni-
versity students participated.

After determining the most frequent label associated to each
posture by the observers, we see that the recognition rate for
observers is significantly lower (69%) than the recognition
rate of our system (79%) for 4 affective categories. Reasons
for these misclassifications by the human observers could be
due to several factors.

For example, the results of a study by Feldman Barrett et al
[8] state that people tend to differ in their ability to differ-
entiate between the specific emotions they experience. In-
stead, they may be able to indicate only whether or not the
emotion is “good” or “bad”, or they may group together
emotions according to other distinguishing factors such as
arousal or action tendency. In fact, an examinination of our
data shows that all of the misclassifications can be accounted
for when considering 3 typical dimensions used to evaluate
emotion: arousal, valence, and action tendency.

Another factor may be that some features appear to still
be missing. Specifically, we are missing a more complete
description of the hands and fingers due to the inability to
capture positions of such detailed information with our cur-
rent motion capture system. Another factor appears to be
due to posture ambiguity, indicating that more clues, e.g.,
facial expression and voice, may be necessary. Furthermore,
recognition of some affective states may require knowledge
about the relation between the hands and eyes as well as the
inclination of the body.

In evaluating the various trainings we performed, we identi-
fied the postures that were consistently misclassified by our
affective posture recognition system. A total of 25 postures
were identified. For these misclassifications, we compared
the evaluations of the system with the evaluations of the
observers and observed 3 distinct cases. One, the system
agreed with the most frequent label assigned by the observers
(25% of misclassifications). Two, our system agreed with the
observers’ second most frequently chosen label (37% of mis-



classifications). Three, our system disagreed with either the
actor or the observer, meaning that the system completely
failed (37% of misclassifications). The general conclusion
here is that when the system makes a mistake in the recog-
nition of an affective posture, it may act as an observer.

5. REQUIREMENT 3: AN INCREMENTAL
LEXICON

Ultimately, an affectively aware system should have the abil-
ity to incrementally learn to recognize and react to (interact
with) the affective behaviors of people, detected through
posture, as one of several modalities. Therefore, the system
should be able to be used in an interactive and continu-
ous learning situation where new emotion categories (or nu-
ances) could appear. Each individual has her/his own way
to interpret and express each type of emotion. According
to this reasoning, the emotion lexicon of the system should
not be defined a priori but instead should emerge through
interaction with the environment.

5.1 Solution: Emotion category emergence
Our recognition module allows for the emergence of the lex-
icon. An incremental process of the topology of the output
module of the CALM network occurs when new emotion
concepts are encountered. The R-nodes of the output mod-
ule are named through the use of explicit feedback. Specif-
ically, each time a new label is given through explicit feed-
back by the user, it is used to name one of the R-nodes
(shown in (a) and (b) of Figure 2) that has not yet been
named. Later, the name of that R-node is used to compare
the output of the network with the feedback of the users. If
all the existing R-nodes are already named, a new pair of
R- and V-nodes is created, and eventually named if the new
label is available. Indeed, the number of output nodes is not
decided a priori, but instead new nodes are added when new
emotions are encountered.

6. DISCUSSION
To explore the emergence of the lexicon and how the emo-
tion categories interact, we simulated a real-time situation in
which the system learns while being presented with new pos-
tures to recognize. In this situation, the system begins with-
out knowing any words. Postures are presented in a random
order from a database of postures, and periodically, explicit
feedback is sent to the system to give the correct name to
an emotion. The system uses this feedback to name a node
whenever the emotion label given is new. This feedback also
triggers adaptation. Moreover, postures representing one of
the emotion labels may not appear for a prolonged period
of time. This is different from a normal training session in
which the system is presented with a predefined and well
organized (and balanced) set of postures, etc.

In total, 212 postures were used (the 182 standing postures
discussed in the previous section, plus 30 new sitting pos-
tures, as this is the direction of our research), across 9 af-
fective categories (angry, confused, fear, happy, interest, re-
laxed, sad, startled, and surprised) chosen to represent dif-
ferent types of emotion situations. For this case, we attained
recognition rates of at least 70% correct.

The competitive nature of the self-organizing process of our
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system can be seen by looking at the emergence of the affec-
tive concepts of the above simulation, represented in Figure
5. This figure shows the cumulated ratio, i.e., the cumulated
number of correct classifications over the total number of
presentations per category, during learning. What is impor-
tant here is not the percentage value reached by each curve,
but the trend of each curve. In fact, the percentage of cor-
rect classification for each emotion category depends on the
number of presentations of postures for that emotion. If few
postures for an emotion have been presented, the percentage
for that curve will remain low.

(a)

(b)

Figure 6: Examples of affective avatars expressing
(a) happy and (b) surprise.

More important than the percentage is the trend of the
curve. If the curve continues to climb, it means that over-
all, the postures for that emotion are recognized and hence,
that that category is well learned. If the curve is flat, it
means that no postures for that emotion have been pre-
sented. However, if the curve descends, it means that over-



all, the postures for that emotion are not recognized, i.e., the
concept is not well learned. We can see from Figure 5 that
the first emotion category to emerge is surprised. While new
words are used as feedback and learning for those categories
begins, new curves start to emerge. When a curve emerges,
generally the previously learned category shows a decrease
as confusion occurs between the learned categories and the
new category.

Little by little, all the trends should begin to climb unless
the set of postures within one of the categories are not com-
pletely separable. For example, we can see that the curve for
surprised starts to decrease as soon as the happy category
starts to appear. In fact, surprised and happy share many
postural features (shown in Figure 6(a) and (b)), i.e. arms
up above the shoulders and head straight up [5]. Moreover,
according to Coulson’s study [4], the postures generated for
happy and surprise were visually similar. As a future step,
this trend could be used to automatically identify difficulties
in the discrimination of emotions, and to indicate a need for
refining the description process.
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