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Abstract� The task is to monitor walking patterns and give early warn�
ing of falls using foot switch and mercury trigger sensors� We describe
a dynamic belief network model for fall diagnosis which� given evidence
from sensor observations� outputs beliefs about the current walking sta�
tus and makes predictions regarding future falls� The model represents
possible sensor error and is parametrised to allow customisation to the
individual being monitored�

� Introduction

The task is to monitor the stepping patterns of elderly people� or recovering
patients� Not only are actual falls to be detected causing an alarm to be raised�
but irregular walking patterns� stumbles and near falls are to be monitored� and
early warning of possible falls made in time for giving assistance� The monitoring
is performed using two kinds of sensors� foot�switches which provide information
about a foot step� and a mercury sensor which is triggered by a change in height
such as going from standing upright to lying horizontal� and hence indicates a
fall has occurred� Timing data for the observations is also given�

Previous work in this domain performed fall diagnosis with a simple state
machine ���� however this does not allow representation of either degrees of belief
as to the person�s ambulatory status� or of the uncertainty in the sensor readings�
Dynamic belief networks integrate a mechanism for inference under uncertainty
with a secure Bayesian foundation� and are suitable for domains� such as the fall
diagnosis problem� where the world changes and the focus is reasoning over time�
In this paper we present a dynamic belief network model for the fall diagnosis
problem� an interesting practical application of an AI approach to the real world
problem of medical monitoring�

The organisation of this paper is as follows� The fall diagnosis problem is
described in detail in Sect� 	� Sect� � gives an introduction to dynamic belief
networks� In Sect� 
 we develop a complete belief network model for the fall
diagnosis problem� with results given in Sect� �� Extensions to the basic network
are described in Sect� ��

� The Fall Diagnosis Problem

Davies ��� describes a project with Prof� Ian Brown at Monash University� Dept�
of Electrical Engineering� for monitoring the stepping pattern of elderly people
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Fig� �� Davies� State Machine for the fall diagnosis problem 	�


and patients� Step data is obtained using foot�switches and sent via a mobile
data network to a remote monitoring station� which attempts to detect falls and
near falls by using a state transition diagram� shown in Fig� 
� This model was
developed by Davies in conjunction with expert medical practitioners�

The sensor observations are as follows� L� data from the left foot switch�
R� data from the right foot switch� M� data from a mercury switch indicates a
change in height� Each sensor observation is accompanied by a time� which is
the time duration of the sensor observation� This timing information is crucial
in performing fall diagnosis� y is the threshold time below which a foot switch
reading is considered a stumble� x is the threshold time below which the mercury
trigger is taken to indicate a fall �a slow change in height would be consistent
with intended sitting or lying down�� �

The states of the state machine are as follows� start is a state of igno�
rance� entered when a slow mercury trigger is recorded� or when the machine is
restarted after a fall alarm� left�foot� right are walking states� indicating which
foot is currently forward in the process of walking� Normal stepping patterns�
indicated by an observation time interval of � y� should see the state machine
alternate between these two states� possible�fall�danger is an intermediate
waiting state� entered after any abnormally fast step which may have been a

� Davies used the threshold times of x � �s� y � 
��s�



stumble� as the next input will determine if the patient is really stumbling or if
the reading was a lone occurrence� The stabilising state will be reached after
possible�fall�danger if a slow�controlled step is observed� The imminent�

fall state will be reached after possible�fall�danger if another quick step is
observed� The system currently increments a counter storing the number of near
falls detected in the day� The fall state will be reached from imminent�fall

with any triggering of the mercury switch� in which case the system sounds a
local alarm and places an emergency call to the base station� This fall state is
also reached from states other than imminent�fall� however in these cases the
time data for the mercury switch must be � x seconds�

This state machine model has a number of limitations� First� there is no
representation of degrees of belief in the current state of the person�s ambulation�
Second there is no distinction between actual states of the world and observations
of that state� for example� the fall state is really a fall�alarm state� That is�
there is no explicit representation of the uncertainty in the sensor observation ����
Possible sensor errors include� false positives� where the sensor wrongly indicates
that an action �left� right� lowering action� has occurred �also called clutter�
noise or false alarms�� false negatives� where an action occurred but the sensor
was not triggered and no observation was made �also called missed detection��
wrong timing data� Also� there is no di�erence between a sequence of alternate
foot steps� and a sequence of same foot steps �hopping��

� Dynamic Belief Networks

Belief networks are directed acyclic graphs� where nodes correspond to random
variables� which we assume to take discrete values �although in general they need
not be discrete�� In this paper the variables pertain to the world state or the
sensor observations� The relationship between any set of state variables can be
speci�ed by a joint probability distribution� The nodes in the network are con�
nected by directed arcs� which may be thought of as causal or in�uence links�
The connections also specify the independence assumptions between nodes� Each
node has associated with it a probability distribution� which� for each combina�
tion of the variables of the parent nodes �called a conditioning case�� gives a
probability of each value of the node variable� The probability distribution for
a node with no predecessors is the prior distribution� Evidence can be speci�ed
about the state of any of the nodes in the network � root nodes� leaf nodes or
intermediate nodes� This evidence is propagated through the network a�ecting
the overall joint distribution �as represented by the conditional probabilities��
There are a number of exact and approximate inference algorithms available for
performing belief updating �

�� in this paper we are not concerned with the
particular algorithm�

Belief networks have been been used in various applications� such as medical
diagnosis and model�based vision which initially were more static� i�e� essentially
the nodes and links do not change over time� Such approaches involve determin�
ing the structure of the network� supplying the prior probabilities for root nodes



and conditional probabilities for other nodes� adding or retracting evidence about
nodes� repeating the inference algorithm for each change in evidence�

More recently researchers have used belief networks in dynamic domains such
as the fall diagnosis problem� where the world changes and the focus is reasoning
over time �
� �� ��� Such dynamic applications include robot navigation and map
learning based on temporal belief networks �
�� monitoring robot vehicles ���� oil
forecasting �	�� �
	�� forecasting sleep apnea �
�� automated vehicle control ���
and tra�c plan recognition �
��� For such applications the network grows over
time� as the state of each domain variable at di�erent times is represented by a
series of nodes� These dynamic networks are Markovian� which constrains the
state space to some extent� however it is also crucial to limit the history being
maintained in the network�

A generic dynamic belief network structure for monitoring application is
shown in Fig� 	 ���� The types of nodes are� World nodes� which describe the
central domain variables �for example� position� heading� velocity� variables�
Event nodes� which represent a change in the state of a world node� Observa�
tion nodes� which represent direct observations of world nodes� or the observable
e�ects of an event� Time is discretised at irregular intervals� usually divided by
the occurrence of discrete events� Each time slice within the network represents
the static environment during that time interval� The structure within time slices
is often regular� These networks are typically highly connected� particularly be�
tween adjacent time slices� The conditional probability distributions �CPDs� are
shown in rectangular boxes� The CPDs of nodes with parents in the previous
time slice are usually a function of the time interval� After addition of sensor
observations as evidence to the DBN �indicated by dark shading�� belief updat�
ing is performed� providing prediction for the values of the world nodes at time
slice T � 
�
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� Basic DBN Model for Fall Diagnosis

Davies� state machine essentially de�nes the fall diagnosis problem as a set of
if�then�else rules� When developing the DBN model� a key di�erence is that we
focus on the causal relationships between domain variables� and make a clear
distinction between observations and actual states of the world� A DBN for the
fall diagnosis problem is given in Fig� �� In the rest of this section� we describe
the various features of this network in such a way as provide an insight into the
network development process�
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Fig� �� Dynamic Belief Network for fall diagnosis problem including interslice arcs� The
smaller nodes with thicker outlines are the sensor observations�

Nodes

When considering how to represent a person�s walking situation� possibilities
include whether the person is stationary on both feet� on a step with either the
left or right foot forward� or has fallen and hence is no longer on their feet� We call
the main world node representing this F� which may take 
 possible values� both�
left� right� o�� The event node Fall� which is a boolean� indicates whether a
fall has taken place between time slices�

Fall warning and detection relies on an assessment of the person�s walking
pattern� The node S maintains the person�s status� and may take the possible
values ok and stumbling�

The action variable� A� may take the possible values left� right� or none�
The last value is necessary for the situation where a time slice is added because
the mercury sensor has triggered �i�e� the person has fallen� but no step was
taken� or a foot switch false positive observation was registered� �

� Note that we can easily extend the model to handle a person jumping� by adding an
additional possible value for A� say jump�



There is an observation node for each of the two sensors� The foot switch
observations are essentially observations on the step actions� and are represented
by the AO node which contains the same values as the action node� The mercury
sensor trigger is represented by the node M� which represents a boolean variable�

The time between sensor observations is given by the node T� Given the
problems with combining continuous and discrete variables �

� p�
��� and the
limitations of the sensor� node T has discrete values representing tenths of sec�
onds� In order to represent the uncertainty in the sensor data� we say it can
take values within an interval around the sensor time reading that generates
the addition of a new time slice to the DBN� If there is some knowledge of the
patients expected walking speed� values in this range can be added also� The
time observation node� TO� has the same state space as T�

There is a new copy of each node added for each time slice� we will indicate
the time slice by the subscript� The possibility of adding more time slices is
shown by the dashed arcs to the right�

Note that there is no need to explicitly include imminent�fall or fall in
the status node� The belief of a fall in the current time slice i is given by the
posterior obtaining after adding evidence and running the inference algorithm�
that is� bel�Falli�T��

�� and a warning about an imminent fall can be based on
the predictions for the next time slice� that is whether bel�Falli��� is greater
than some warning threshold�

Structure and Conditional Probability Distributions

The CPDs for the nodes A� F� Fall and S are given in Table 
� The model for
walking is represented by the arcs from Fi to Ai� and Fi� Ai and Si to Fi���

We assume that normal walking involves alternating left and right steps�
Where the left and right are symmetric� only one combination is included in
the table� We have priors for starting on both feet �r� or already being o� the
ground �s�� Because we have restricted the possible actions to moving either feet
or neither� there is no way for this model to re�ect a person getting to their feet�
we are assuming use of the model will begin with the person upright� and if not�
they stay o� their feet� Looking at the CPD for Fi��� we can see that a left step
can have the walker �nish on one foot or both feet� depending on whether it is
a half or full step� By de�nition� if a person �nishes on a particular foot� it rules
out some actions� for example� if Fi�� � left� the action could not have been
right� These zero conditional probability are omitted from the table�

The CPD for Fi�� for the conditioning cases where Si�� � stumbling is
exactly the same as for ok except the p and q probability parameters will have
lower values� representing the higher expectation of a fall� that is� p�i � pi� q�i �
qi� for all relevant i�

If there are any variations on walking patterns for an individual patient�
for example if one leg was injured� the DBN can be customised by varying the

� Also given by bel�Fi�off�� the redundancy is useful for describing the problem� but
could be removed to improve computational e�ciency�



Table �� CPDs for step action node A� the foot node F� the Fall node and the walking
status node S

P�F��leftkrightj� � ���r�s���
P�F��bothj� � r
P�F��offj� � s

P�A�leftjF�right� � u alternate feet
P�A�rightjF�right� � v hopping
P�A�nonejF�right� � ��u�v stationary
P�A�fleftkrightgjF�both� � w�� start with left or right
P�A�nonejF�both� � ��w stationary
P�A�nonejF�off� � � can�t walk when o� feet

P�Fi���leftjFi�right�Ai�left�Si���ok� � p� succ� alternate step
P�Fi���bothjFi�right�Ai�left�Si���ok� � q� half�step
P�Fi���offjFi�right�Ai�left�Si���ok� � ��p��q� fall prob
P�Fi���leftjFi�left�Ai�left�Si���ok� � p� succ� hop
P�Fi���bothjFi�left�Ai�left�Si���ok� � q� half�hop
P�Fi���offjFi�left�Ai�left�Si���ok� � ��p��q� fall prob
P�Fi���leftjFi�both�Ai�left�Si���ok� � p� succ� �rst step
P�Fi���bothjFi�both�Ai�left�Si���ok� � q� unsucc� �rst step
P�Fi���offjFi�both�Ai�left�Si���ok� � ��p��q� fall prob
P�Fi���leftjFi�left�Ai�none�Si���ok� � p�
P�Fi���offjFi�left�Ai�none�Si���ok� � ��p� fall when on left foot
P�Fi���rightjFi�right�Ai�none�Si���ok� � p�
P�Fi���offjFi�right�Ai�none�Si���ok� � ��p� fall when on right foot
P�Fi���bothjFi�both�Ai�none�Si���ok� � p�
P�Fi���offjFi�both�Ai�none�Si���ok� � ��p� fall when on both feet
P�Fi���offjFi�off�Ai�left�Si���any� � � no �get up� action

P�Fall�T j Fi���off�Fi�fleftkrightkbothg� � � from upright to ground
P�Fall�F j Fi���any�Fi�off� � � can�t fall if on ground

P�Si���okjTi�t� � � if t � y
P�Si���stumblingjTi�t� � � if t � y

probability parameters� s� r� pi� qi� u� v and w� and removing the assumption
that left and right are completely symmetric� For example� we can relax the
assumption that the person is equally likely to start on the left foot as the right�
Note that having di�erent p parameters indicates di�erent expectations of a fall
when the person is walking compared to hopping� Also� a person can end up o�
their feet even if the status node S is indicating ok�

The fall event node Fall has Fi and Fi�� as predecessors� a fall only occurs
when the subject was on his or her feet to start with �Fi �� off�� and �nishes o�



their feet �Fi�� � off�� �

The value of walking status node S is determined solely by the time between
sensor readings �see next section for an extension which takes into account status
history�� In this DBN model� the T node has no predecessors� One possible model
is to have uniform priors� or the prior can also be modi�ed� based on sensor
observations over time� to re�ect an individual�s ordinary walking speed�

When constructing the conditional probability distributions for the various
observation nodes� the con�dence in the observation is given by some value based
on a model of the sensor�s performance and is empirically obtainable� pos is the
sensitivity of the positive sensor data� neg is the speci�city of the negative sensor
data �or� 
�neg is the probability of ghost data�� We make the default assumption
that missing or wrong data are equally likely � this need not be the case and
can be replaced by any alternative plausible values�

Each observation node has a single predecessor� the mercury trigger obser�
vation node M has predecessor F� the foot�step action observation node AO has
predecessor A� the time observation node TO has predecessor T� The conditional
probability distributions for M� AO and TO are shown in Table 	� Note that the
CPD for the case where the sensor is defective is uniform over the other time val�
ues� this could easily be changed to cluster around the true time interval� If the
timing sensor fails and no data is obtained� fall diagnosis becomes impossible�
so we do not handle the case of missing time data�

Note that when the monitoring begins� we do not need to have a known start
state� we need only have a prior over the possible starting positions� Because
the standard left foot� right foot� walking model� is represented by the condi�
tional probability distribution between Fi and Fi��� if the �rst data received is a
left Si� then after belief updating� the belief vector will include bel�Fi�off� �

�� bel�Fi�left� � ����� bel�Fi�left� � ���� and bel�Fi�left� � �����
The DBN presented is one possible model for the fall diagnosis problem� many
other variations are possible� For example� the DBN does not handle the case
where both foot switches provide data at the same time� See �
�� for a compari�
son of the use of action nodes in this model with other monitoring and planning
applications�

� Results

The results described in this section were obtained using the Lisp�based IDEAL
belief network development environment �
�� on a GNU Common Lisp platform�
We present results of a Fall Diagnosis network modelled for a given set of pa�
rameters� s � ���� r � ���� u � ���� v � ��	� w � ��
� p� � ���� q� � ���� p�� �

� We do not model the situation Davies described where the mercury trigger data is
ignored if the time is � x� this would be more correctly modelled by� adding an
additional value� sitting to the state F� adding an additional value� sit� to the
action A� adding another alternative� sat� to the fall event fall� adding a connection
from Ti to Ai� changing the CPD for Ai to say that if the time is above the threshold�
then the sit action is possible�



Table �� CPDs for observation nodes M �mercury trigger�� AO �foot switch�� TO �time
data�

P�M�TjFall�T� � pos� ok
P�M�FjFall�T� � ��pos� missing
P�M�FjFall�F� � neg� ok
P�M�TjFall�F� � ��neg� false alarm

P�AO�leftjA�left� � pos� ok
P�AO�rightjA�right� � pos� ok
P�AO�rightjA�left� � ���pos���� wrong
P�AO�leftjA�right� � ���pos���� wrong
P�AO�nonejA�left� � ���pos���� missing
P�AO�nonejA�right� � ���pos���� missing
P�AO�nonejA�none� � neg� ok
P�AO�leftjA�none� � ���neg���� false alarm
P�AO�rightjA�none� � ���neg���� false alarm

P�TO�xjT�x� � pos� ok� y �� x� T and TO have m values�
P�TO�yjT�x� � �� pos��m��� ok� y �� x� T and TO have m values�

���� q�� � ��
 p� � ���� q� � ���� p�� � ���� q�� � ��
� p� � ���� q� � ���� p�� � ����
q�� � ��
� p� � ����� p�� � ����� p� � ����� p�� � ����� p� � ���� p�� � ���� pos� �
���� pos� � ���� pos� � ���� neg� � ����� neg� � ����� The T and TO time nodes
had 
 possible values� t�� t�� t�� and t�� the lowest� t� was below the threshold
y and meant the subject was considered to be stumbling�

After constructing the DBN� we entered a sequence of evidence� that is sim�
ulated observations from the sensors� and performed belief updating after every
new piece of evidence was added� Table � shows the posterior probabilities� or
beliefs� of the values of nodes in the network across this sequence of data� For
reasons of space� we left out the initial S� node and the T� and TO� nodes from the
model� and do not give all the beliefs� especially if they are uniform or otherwise
obvious� Probabilities have been rounded to 
 decimal places� Evidence added
results in a 
�� belief for that value� shown in bold in the table� also bolded are
the beliefs described below in the text� The evidence sequence added� and the
e�ect on the beliefs� was as follows�

No evidence added� All beliefs are based on the parameters� Belief in an im�
mediate fall is small� bel�Fall� � T����

�
� but chance of being o� feet in
	 steps is higher� bel�F��T����		���

TO� set to t�� This increases the probability that the person is stumbling� that
is� bel�S� � stumbling������ which in turn slightly increases the belief in a
fall� bel�Fall� � T� � ��
�	��

AO� set to left� Foot switch information leads to a change in the belief in
the initial starting state� bel�F��right� has increased from ���� to ��	����
re�ecting the model of alternate foot steps�



M� set to false� The negative mercury trigger data makes it very unlikely that
a fall occurred� bel�Fall��T�����	���

TO� set to t�� �Resetting� of the original timing data makes it less likely the
person was stumbling� reducing the belief in a fall� bel�Fall��T� � �������

M� set to true� However� resetting the mercury trigger data makes a fall most
probable� bel�Fall��T�����	��� although there is still the chance that the
sensor has given a wrong reading�

M� set to false� TO� set to t�� AO� set to none� No action� and no mercury
trigger data con�rms the earlier fall� bel�Fall��T��������� since if the per�
son is already on the ground they won�t take a left or right step�

� Extensions to the DBN

The states imminent�fall� possible�fall� and stabilising in the original
state machine are an attempt to capture the idea that the history beyond the
current time interval gives information about the likelihood of a fall soon� This is
represented in a DBN by the use of a history node ���� which maintains a count of
how long the agent has been exhibiting one type of behaviour� For our domain�
this would be a status history node� Hi� for each time slice� its predecessors are
the previous and current walking status nodes� Si�� and Si� H then becomes a
predecessor of Fi��� and the CPD entries are changed so that the probability of
falling is a function of the stumble count�

We can also improve the model of what a person�s ordinary walking pace
is by adding an arc from Ti to Ti��� which would allow a representation of the
expectation that the walking pace should remain fairly constant�

The DBN described in the previous section provides a mechanism for han�
dling �by implicitly rejecting� certain inconsistent data� It represents adequately
the underlying assumptions about the data uncertainty� however it does not pro�
vide an explanation of why the observed sensor data might be incorrect� We can
represent the most usual source of incorrect data� namely a defective sensor� by
the addition of a sensor status node SS ��� for each sensor� Each sensor status
node becomes a predecessor of the corresponding observation node� and there is
a connection between sensor status nodes across time slices� See �
�� for details
of the extensions described in this section�

� Conclusions

We have shown the development of a dynamic belief network model for fall
diagnosis which overcomes the limitations of early work� Given evidence from
sensor observations� the model outputs beliefs about the current walking sta�
tus and makes predictions regarding future falls� The model represents possible
sensor error� and is parametrised to allow customisation to the individual being
monitored�



Table �� Changing beliefs as evidence is added or changed�

Node Val None TO��t� AO��left M��F TO��t� M��T SET
T� t� 
��� 
��


 
��


 
����� 
�
�
� 
�
��� 
�
���

t� 
��� 
�
��� 
�
��� 
�
��� 
��
�� 
����� 
�����
t� 
��� 
�
��� 
�
��� 
�
��� 
�
��� 
�
��� 
�
���
t� 
��� 
�
��� 
�
��� 
�
��� 
�
��� 
�
��� 
�
���

TO� t� 
��� ��� ��� ��� 
�
 
�
 
�

t� 
��� 
�
 
�
 
�
 ��� ��� ���

F� left 
�
� 
�
� 
�
��
 
�
��
 
�
��� 
�
��� 
�
���
right 
�
� 
�
� ������ 
����� 
����� 
����� 
�����
both 
��
 
��
 
����� 
����� 
����� 
����� 
�����
off 
�
 
�
 
�
 
�
 
�
 
�
 
�


A� left 
�
� 
�
� 
���
� 
����� 
����� 
��
�� 
�����
right 
�
� 
�
� 
�
��� 
�
��
 
�
��� 
�
��� 
�
�
�
none 
��� 
��� 
����� 
����� 
����� 
����� 
�����

AO� left 
����� 
����� ��� ��� ��� ��� ���

right 
����� 
����� 
�
 
�
 
�
 
�
 
�

none 
����
 
����
 
�
 
�
 
�
 
�
 
�


Fall� True ������ ������ 
����� ������ ������ ��	��� ��
���

False 
���
� 
����� 
����� 
����� 
���
� 
����� 
��
��
M� True 
����� 
��
�� 
����� 
�
 
�
 ��� ���

False 
����� 
����� 
���
� ��� ��� 
�
 
�


S� ok 
��� 
�� 
�� 
��
�� 
����� 
����� 
�����
stum�g 
��� ��� 
�� 
����� 
�
�
� 
�
��� 
�
���

F� left 
�
��� 
�
��� 
����� 
���
� 
����
 
����� 
�
��

right 
�
��� 
�
��� 
�
��� 
�
��� 
�
�
� 
�
��� 
�

�

both 
����
 
����� 
����� 
����� 
����� 
����
 
�����
off 
����� ������ 
����� 
�
�
� 
�

�� 
����� 
���
�

T� t� 
��� 
��� 
��� 
��� 
��� 
��� 
�
���
t� 
��� 
��� 
��� 
��� 
��� 
��� 
��

�

TO� t� 
��� 
��� 
��� 
��� 
��� 
��� ���

A� left 
�
��
 
�
��� 
�
��� 
��
�� 
����� 
�
��� 
�

��
right 
�
��
 
�
��� 
����� 
���
� 
����� 
����� 
�

��
none 
��
�
 
���
� 
����� 
����� 
����
 
��

� 
�����

AO� left 
���
� 
����� 
����� 
����� 
����� 
�
��� 
�

right 
���
� 
����� 
����� 
����� 
����� 
����� 
�

none 
����� 
����
 
����� 
����� 
����� 
���
� ���

Fall� True 
��
�� 
�
��� 
�
��� 
����� 
��
�� 
�
��� 
�

��
False 
����� 
��
�� 
��
�� 
����� 
���
� 
����� 
�����

M� True 
����� 
����� 
����� 
����� 
����� 
�
��
 
�

False 
����� 
����� 
����� 
����� 
����� 
����
 ���

S� ok 
��� 
��� 
��� 
��� 
��� 
��� 
�����
stum�g 
��� 
��� 
��� 
��� 
��� 
��� 
�
���

F� left 
�
��� 
�
��� 
�
��� 
��
�� 
����� 
�
��� 
�
���
right 
�
��� 
�
��� 
����� 
����� 
����� 
�
���� 
�

��
both 
����� 
����� 
����� 
��
�� 
��
�
 
����� 
����

off ������ 
���
� 
���
� 
����� 
����� 
����� 
�����



Acknowledgements We wish to thank Dr� Jon Oliver for suggesting this fall diagnosis
problem as an application for dynamic belief networks�

References

�� P� Dagum and A� Galper� Forecasting sleep apnea with dynamic network models�
In Proceedings of the Ninth Conference on Uncertainty in AI� pages ������ �����

�� P� Dagum� A� Galper� and E� Horvitz� Dynamic network models for forecasting�
In Proceedings of the �th Conference on Uncertainty in Arti�cial Intelligence� pages
������ �����

�� James Davies� Fall diagnosis with a mobile data network� Unpublished BCSE
Honours Report� Dept� of Electrical Engineering� Monash University� �����

�� Thomas Dean and Michael P� Wellman� Planning and control� Morgan Kaufman
Publishers� San Mateo� Ca�� �����

�� Je� Forbes� Tim Huang� Keiji Kanazawa� and Stuart Russell� The BATMobile�
Towards a bayesian automated taxi� In Proceedings of the ��th Int� Joint Conf�
on Arti�cial Intelligence �IJCAI���	� pages ���������� �����

�� U� Kj�rul�� A computational scheme for reasoning in dynamic probabilistic net�
works� In Proceedings of the �th Conference on Uncertainty in Arti�cial Intelli

gence� pages �������� �����

�� A� E� Nicholson and J� M� Brady� The data association problem when monitoring
robot vehicles using dynamic belief networks� In Proc� of the ��th European Conf�
on Arti�cial Intelligence �ECAI
��	� pages �������� �����

�� A� E� Nicholson and J� M� Brady� Sensor validation using dynamic belief networks�
In Proceedings of the �th Conference on Uncertainty in Arti�cial Intelligence� pages
�
������ �����

�� A� E� Nicholson and J� M� Brady� Dynamic belief networks for discrete monitoring�
IEEE Systems
 Man and Cybernetics� ������� �����

�
� A�E� Nicholson� A case study in dynamic belief networks� monitoring walking� fall
prediction and detection� Technical Report Technical Report ������� Department
of Computer Science� Monash University� �����

��� Judea Pearl� Probabilistic Reasoning in Intelligent Systems� Morgan Kaufmann�
San Mateo� Ca�� �����

��� Gregory M� Provan� Tradeo�s in constructing and evaluating temporal in�uence
diagrams� In Proceedings of the �th Conference on Uncertainty in Arti�cial Intel

ligence� pages �
���� �����

��� David Pynadeth and Michael P� Wellman� Accounting for context in plan recogni�
ition� with application too tra�c monitoring� In Proceedings of the ��th Conference
on Uncertainty in Arti�cial Intelligence� pages �������� �����

��� Stuart Russell and Peter Norvig� Arti�cial Intelligence� A Modern Approach�
Prentice�Hall� �����

��� Sampath Srinivas and Jack Breese� Ideal� In�uence diagram evaluation and anal�
ysis in lisp� Technical Report Technical Memorandum No� ��� Rockwell Interna�
tional Science Center� �����

This article was processed using the LATEX macro package with LLNCS style


