Fall Diagnosis using Dynamic Belief Networks

A. E. Nicholson

Department of Computer Science, Monash University,
Clayton, VIC 3168, Australia,
annn@cs.monash.edu.au.

Abstract. The task is to monitor walking patterns and give early warn-
ing of falls using foot switch and mercury trigger sensors. We describe
a dynamic belief network model for fall diagnosis which, given evidence
from sensor observations, outputs beliefs about the current walking sta-
tus and makes predictions regarding future falls. The model represents
possible sensor error and is parametrised to allow customisation to the
individual being monitored.

1 Introduction

The task is to monitor the stepping patterns of elderly people, or recovering
patients. Not only are actual falls to be detected causing an alarm to be raised,
but irregular walking patterns, stumbles and near falls are to be monitored, and
early warning of possible falls made in time for giving assistance. The monitoring
is performed using two kinds of sensors: foot-switches which provide information
about a foot step; and a mercury sensor which is triggered by a change in height
such as going from standing upright to lying horizontal, and hence indicates a
fall has occurred. Timing data for the observations is also given.

Previous work in this domain performed fall diagnosis with a simple state
machine [3], however this does not allow representation of either degrees of belief
as to the person’s ambulatory status, or of the uncertainty in the sensor readings.
Dynamic belief networks integrate a mechanism for inference under uncertainty
with a secure Bayesian foundation, and are suitable for domains, such as the fall
diagnosis problem, where the world changes and the focus is reasoning over time.
In this paper we present a dynamic belief network model for the fall diagnosis
problem, an interesting practical application of an AT approach to the real world
problem of medical monitoring.

The organisation of this paper is as follows. The fall diagnosis problem is
described in detail in Sect. 2. Sect. 3 gives an introduction to dynamic belief
networks. In Sect. 4 we develop a complete belief network model for the fall
diagnosis problem, with results given in Sect. 5. Extensions to the basic network
are described in Sect. 6.

2 The Fall Diagnosis Problem

Davies [3] describes a project with Prof. Tan Brown at Monash University, Dept.
of Electrical Engineering, for monitoring the stepping pattern of elderly people
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Fig. 1. Davies’ State Machine for the fall diagnosis problem [3]

and patients. Step data is obtained using foot-switches and sent via a mobile
data network to a remote monitoring station, which attempts to detect falls and
near falls by using a state transition diagram, shown in Fig. 1. This model was
developed by Davies in conjunction with expert medical practitioners.

The sensor observations are as follows: L: data from the left foot switch;
R: data from the right foot switch; M: data from a mercury switch indicates a
change in height. Each sensor observation is accompanied by a time, which is
the time duration of the sensor observation. This timing information is crucial
in performing fall diagnosis: y is the threshold time below which a foot switch
reading is considered a stumble;  is the threshold time below which the mercury
trigger is taken to indicate a fall (a slow change in height would be consistent
with intended sitting or lying down). !

The states of the state machine are as follows. start is a state of igno-
rance, entered when a slow mercury trigger is recorded, or when the machine is
restarted after a fall alarm. left-foot, right are walking states, indicating which
foot is currently forward in the process of walking. Normal stepping patterns,
indicated by an observation time interval of > y, should see the state machine
alternate between these two states. possible-fall-danger is an intermediate
waiting state, entered after any abnormally fast step which may have been a

! Davies used the threshold times of ¢ = 2s, y = 0.8s.



stumble, as the next input will determine if the patient is really stumbling or if
the reading was a lone occurrence. The stabilising state will be reached after
possible-fall-danger if a slow-controlled step is observed. The imminent-
fall state will be reached after possible-fall-danger if another quick step is
observed. The system currently increments a counter storing the number of near
falls detected in the day. The fall state will be reached from imminent-fall
with any triggering of the mercury switch, in which case the system sounds a
local alarm and places an emergency call to the base station. This fall state is
also reached from states other than imminent-fall, however in these cases the
time data for the mercury switch must be < x seconds.

This state machine model has a number of limitations. First, there is no
representation of degrees of belief in the current state of the person’s ambulation.
Second there is no distinction between actual states of the world and observations
of that state, for example, the fall state is really a fall-alarm state. That 1s,
there is no explicit representation of the uncertainty in the sensor observation [8].
Possible sensor errors include: false positives, where the sensor wrongly indicates
that an action (left, right, lowering action) has occurred (also called clutter,
noise or false alarms); false negatives, where an action occurred but the sensor
was not triggered and no observation was made (also called missed detection);
wrong timing data. Also, there is no difference between a sequence of alternate
foot steps, and a sequence of same foot steps (hopping).

3 Dynamic Belief Networks

Belief networks are directed acyclic graphs, where nodes correspond to random
variables, which we assume to take discrete values (although in general they need
not be discrete). In this paper the variables pertain to the world state or the
sensor observations. The relationship between any set of state variables can be
specified by a joint probability distribution. The nodes in the network are con-
nected by directed arcs, which may be thought of as causal or influence links.
The connections also specify the independence assumptions between nodes. Each
node has associated with it a probability distribution, which, for each combina-
tion of the variables of the parent nodes (called a conditioning case), gives a
probability of each value of the node variable. The probability distribution for
a node with no predecessors is the prior distribution. Evidence can be specified
about the state of any of the nodes in the network — root nodes, leaf nodes or
intermediate nodes. This evidence is propagated through the network affecting
the overall joint distribution (as represented by the conditional probabilities).
There are a number of exact and approximate inference algorithms available for
performing belief updating [11]; in this paper we are not concerned with the
particular algorithm.

Belief networks have been been used in various applications, such as medical
diagnosis and model-based vision which initially were more static, i.e. essentially
the nodes and links do not change over time. Such approaches involve determin-
ing the structure of the network; supplying the prior probabilities for root nodes



and conditional probabilities for other nodes; adding or retracting evidence about
nodes; repeating the inference algorithm for each change in evidence.

More recently researchers have used belief networks in dynamic domains such
as the fall diagnosis problem, where the world changes and the focus is reasoning
over time [4, 6, 9]. Such dynamic applications include robot navigation and map
learning based on temporal belief networks [4], monitoring robot vehicles [7], oil
forecasting [2], [12], forecasting sleep apnea [1], automated vehicle control [5]
and traffic plan recognition [13]. For such applications the network grows over
time, as the state of each domain variable at different times is represented by a
sertes of nodes. These dynamic networks are Markovian, which constrains the
state space to some extent, however it 1s also crucial to limit the history being
maintained in the network.

A generic dynamic belief network structure for monitoring application is
shown in Fig. 2 [9]. The types of nodes are: World nodes, which describe the
central domain variables (for example, position, heading, velocity) variables;
Event nodes, which represent a change in the state of a world node; Observa-
tion nodes, which represent direct observations of world nodes, or the observable
effects of an event. Time is discretised at irregular intervals, usually divided by
the occurrence of discrete events. Each time slice within the network represents
the static environment during that time interval. The structure within time slices
is often regular. These networks are typically highly connected, particularly be-
tween adjacent time slices. The conditional probability distributions (CPDs) are
shown in rectangular boxes. The CPDs of nodes with parents in the previous
time slice are usually a function of the time interval. After addition of sensor
observations as evidence to the DBN (indicated by dark shading), belief updat-
ing is performed, providing prediction for the values of the world nodes at time
slice T+ 1.
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t

Fig. 2. Generic structure for a dynamic belief network



4 Basic DBN Model for Fall Diagnosis

Davies’ state machine essentially defines the fall diagnosis problem as a set of
if-then-else rules. When developing the DBN model, a key difference is that we
focus on the causal relationships between domain variables, and make a clear
distinction between observations and actual states of the world. A DBN for the
fall diagnosis problem is given in Fig. 3. In the rest of this section, we describe
the various features of this network in such a way as provide an insight into the
network development process.

TimeSlice0

Fig. 3. Dynamic Belief Network for fall diagnosis problem including interslice arcs. The
smaller nodes with thicker outlines are the sensor observations.

Nodes

When considering how to represent a person’s walking situation, possibilities
include whether the person is stationary on both feet, on a step with either the
left or right foot forward, or has fallen and hence is no longer on their feet. We call
the main world node representing this F, which may take 4 possible values: both,
left, right, off. The event node Fall, which is a boolean, indicates whether a
fall has taken place between time slices.

Fall warning and detection relies on an assessment of the person’s walking
pattern. The node S maintains the person’s status, and may take the possible
values ok and stumbling.

The action variable, &, may take the possible values left, right, or none.
The last value is necessary for the situation where a time slice is added because
the mercury sensor has triggered (i.e. the person has fallen) but no step was
taken, or a foot switch false positive observation was registered.

2 Note that we can easily extend the model to handle a person jumping, by adding an
additional possible value for A, say jump.



There is an observation node for each of the two sensors. The foot switch
observations are essentially observations on the step actions, and are represented
by the A0 node which contains the same values as the action node. The mercury
sensor trigger is represented by the node M, which represents a boolean variable.

The time between sensor observations is given by the node T. Given the
problems with combining continuous and discrete variables [14, p.465] and the
limitations of the sensor, node T has discrete values representing tenths of sec-
onds. In order to represent the uncertainty in the sensor data, we say it can
take values within an interval around the sensor time reading that generates
the addition of a new time slice to the DBN. If there is some knowledge of the
patients expected walking speed, values in this range can be added also. The
time observation node, TO, has the same state space as T.

There is a new copy of each node added for each time slice; we will indicate
the time slice by the subscript. The possibility of adding more time slices is
shown by the dashed arcs to the right.

Note that there is no need to explicitly include imminent-fall or fall in
the status node. The belief of a fall in the current time slice ¢ is given by the
posterior obtaining after adding evidence and running the inference algorithm,
that is, bel(Fall,=T), ?, and a warning about an imminent fall can be based on
the predictions for the next time slice, that is whether bel(Fall; ;1) is greater
than some warning threshold.

Structure and Conditional Probability Distributions

The CPDs for the nodes A, F, Fall and S are given in Table 1. The model for
walking is represented by the arcs from F; to 4;, and F;, 4; and S; to F;41.

We assume that normal walking involves alternating left and right steps.
Where the left and right are symmetric, only one combination is included in
the table. We have priors for starting on both feet () or already being off the
ground (s). Because we have restricted the possible actions to moving either feet
or neither, there is no way for this model to reflect a person getting to their feet;
we are assuming use of the model will begin with the person upright, and if not,
they stay off their feet. Looking at the CPD for F;;1, we can see that a left step
can have the walker finish on one foot or both feet, depending on whether it is
a half or full step. By definition, if a person finishes on a particular foot, it rules
out some actions; for example, if F;;1 = left, the action could not have been
right. These zero conditional probability are omitted from the table.

The CPD for F;41 for the conditioning cases where S;11 = stumbling is
exactly the same as for ok except the p and ¢ probability parameters will have
lower values, representing the higher expectation of a fall; that is, pi < p;, ¢} <
q;, for all relevant 1.

If there are any variations on walking patterns for an individual patient,
for example if one leg was injured, the DBN can be customised by varying the

? Also given by bel(F;=off); the redundancy is useful for describing the problem, but
could be removed to improve computational efficiency.



Table 1. CPDs for step action node A, the foot node F, the Fall node and the walking

status node 8

P(Fo=1left||right|)
P(Fo=both|)
P(Fo=off|)

P(A=left|F=right)
P(A=right|F=right)
P(A=none|F=right)
P(A={left||right}|F=both)
P(A=none|F=both)
P(A=none|F=off)
(Fiy1=1left|F;=right A;=left,S;{1=0k)
(Fiy1=Dboth|F;=right A;=left,S;};=0k)
(Fiy1=off|F;=right, A,=left,S;;=0k)
(F1+1_1eft|Fl_1eft Al_left Sz+1—0k)
(Fz+1—b0th|Fz—left Al_left Sz+1—0k)
(Fz+1—0ff|Fz—1eft A,_left Sz+1—0k)
(Fz+1—1eft|Fz—b0th Al_left Sz+1—0k)
(Fz+1—b0th|Fz—b0th Al_left Sz+1—0k)
(F1+1—Off|Fz—b0th A,_left Sz+1—0k)
(Fiy1=1left|F;=left,A;=none,S;;1=0k)
(Fiy1=off|F;=left,A;=none,S;;1=0k)
(
(
(
(
(

Fi11=off|F;=right,A;=none,S; 1 =0k)
Fi11=both|F;=both,A;=none,S; 1 =o0k)
Fi11=o0ff|F;=both,A;=none,S;1=0k)
Fit1=off|F;=off A;=left,S;;1=any)

TvvyvvyvvyvvwvwYwwYWvyvug9YwYwYYod

P(Fall=T | Fiy1=off F;={left|right|both})

P(Fall=F | Fi;1=any,F;=off)

P(Si41=0k|T;=t)
P(Siy1=stumbling|T;=t)

Fi;1=right|F;=right,A;=none,S;;;=0k)

1-u-v
w/2
1-w

P1

q1
1-p1-¢1
P2

q2
1-p2-q2
P3

q3
1-p3-q3
Pa

1—p4

Ps

1—p5

Pe

1—])6

alternate feet

hopping

stationary

start with left or right
stationary

can’t walk when off feet

succ. alternate step
half-step

fall prob

succ. hop

half-hop

fall prob

succ. first step
unsucc. first step

fall prob
fall when on left foot

fall when on right foot

fall when on both feet
no “get up” action

from upright to ground
can’t fall if on ground

ift>y
ift<y

probability parameters, s, r, p;, ¢;, u, v and w, and removing the assumption
that left and right are completely symmetric. For example, we can relax the
assumption that the person is equally likely to start on the left foot as the right.
Note that having different p parameters indicates different expectations of a fall
when the person is walking compared to hopping. Also, a person can end up off
their feet even if the status node S is indicating ok.

The fall event node Fall has F; and F;41 as predecessors; a fall only occurs
when the subject was on his or her feet to start with (F; # off), and finishes off



their feet (F;4; = off). *

The value of walking status node S is determined solely by the time between
sensor readings (see next section for an extension which takes into account status
history). In this DBN model, the T node has no predecessors. One possible model
is to have uniform priors, or the prior can also be modified, based on sensor
observations over time, to reflect an individual’s ordinary walking speed.

When constructing the conditional probability distributions for the various
observation nodes, the confidence in the observation is given by some value based
on a model of the sensor’s performance and is empirically obtainable; pos is the
sensitivity of the positive sensor data, neg is the specificity of the negative sensor
data (or, 1-neg is the probability of ghost data). We make the default assumption
that missing or wrong data are equally likely — this need not be the case and
can be replaced by any alternative plausible values.

Each observation node has a single predecessor: the mercury trigger obser-
vation node M has predecessor F; the foot-step action observation node AQ has
predecessor A; the time observation node TO has predecessor T. The conditional
probability distributions for M, A0 and TO are shown in Table 2. Note that the
CPD for the case where the sensor 1s defective is uniform over the other time val-
ues; this could easily be changed to cluster around the true time interval. If the
timing sensor fails and no data is obtained, fall diagnosis becomes impossible,
so we do not handle the case of missing time data.

Note that when the monitoring begins, we do not need to have a known start
state; we need only have a prior over the possible starting positions. Because
the standard left foot, right foot, walking model, 1s represented by the condi-
tional probability distribution between F; and F; 11, if the first data received is a
left S;, then after belief updating, the belief vector will include bel(F;=off) =
0, bel(F;=left) < 0.25, bel(F;=left) > 0.25 and bel(F;=left) > 0.25.
The DBN presented is one possible model for the fall diagnosis problem; many
other variations are possible. For example, the DBN does not handle the case
where both foot switches provide data at the same time. See [10] for a compari-
son of the use of action nodes in this model with other monitoring and planning
applications.

5 Results

The results described in this section were obtained using the Lisp-based IDEAL
belief network development environment [15] on a GNU Common Lisp platform.
We present results of a Fall Diagnosis network modelled for a given set of pa-
rameters: s = 0.0, r = 0.9, u =07, v =02, w=0.1,p; =06, ¢1 = 0.3, p} =

* We do not model the situation Davies described where the mercury trigger data is
ignored if the time is > x; this would be more correctly modelled by: adding an
additional value, sitting to the state F; adding an additional value, sit, to the
action A; adding another alternative, sat, to the fall event £all; adding a connection
from T; to A;; changing the CPD for A; to say that if the time is above the threshold,
then the sit action is possible.



Table 2. CPDs for observation nodes M (mercury trigger), AD (foot switch), TO (time
data)

P(M=T|Fall=T) = posy ok

P(M=F|Fall=T) = 1-pos; missing

P(M=F|Fall=F) = neg1 ok

P(M=T|Fall=F) = l-neg; false alarm

P(AD=1left|A=1eft) = posq ok

P(AD=right|A=right) = poss ok

P(AD=right|A=1left) = (1-pos2)/2 wrong

P(AD=1left|A=right) = (1-pos2)/2 wrong

P(AD=none|A=left) = (1-pos2)/2 missing

P(AD=none|A=right) = (1-pos2)/2 missing

P(AO=none|A=none) = neg: ok

P(AO=1left|A=none) = (l-neg2)/2  false alarm

P(AO=right|A=none) = (l-negz)/2  false alarm

P(T0=x|T=x) = poss ok, y # x, T and TO have m values.
P(TO=y|T=x) =1 —poss/m-1, ok, y # x, T and TO have m values.

05,1 =04 py =0.6,92 =0.3, p), =05, g5 =04, ps = 0.6, g3 = 0.3, p5 = 0.5,
g5 = 0.4, pa = 0.95, p,, = 0.85, p5 = 0.95, pi = 0.85, ps = 0.9, p§ = 0.8, pos; =
0.9, poss = 0.9, poss = 0.9, negy = 0.95, negs = 0.95. The T and TO time nodes
had 4 possible values, t1, to, ts, and ty4; the lowest, t; was below the threshold
y and meant the subject was considered to be stumbling.

After constructing the DBN, we entered a sequence of evidence, that is sim-
ulated observations from the sensors, and performed belief updating after every
new piece of evidence was added. Table 3 shows the posterior probabilities, or
beliefs, of the values of nodes in the network across this sequence of data. For
reasons of space, we left out the initial Sp node and the T5 and TO; nodes from the
model, and do not give all the beliefs, especially if they are uniform or otherwise
obvious. Probabilities have been rounded to 4 decimal places. Evidence added
results in a 1.0 belief for that value, shown in bold in the table; also bolded are
the beliefs described below in the text. The evidence sequence added, and the
effect on the beliefs, was as follows.

No evidence added: All beliefs are based on the parameters. Belief in an im-
mediate fall is small, bel(Fally = T)=0.1194, but chance of being off feet in
2 steps is higher, bel(Fy=T)=0.2238.

TOy set to t1: This increases the probability that the person is stumbling, that
is, bel(S; = stumbling)=0.9, which in turn slightly increases the belief in a
fall, bel(Fally = T) = 0.1828.

A0y set to left: Foot switch information leads to a change in the belief in
the initial starting state; bel(Fo=right) has increased from 0.05 to 0.2550,
reflecting the model of alternate foot steps.



My set to false: The negative mercury trigger data makes it very unlikely that
a fall occurred, bel(Fally=T)=0.0203.

TOp set to to: “Resetting” of the original timing data makes it less likely the
person was stumbling, reducing the belief in a fall, bel(Fally=T) = 0.0098.

My set to true: However, resetting the mercury trigger data makes a fall most
probable, bel(Fally=T)=0.6285, although there is still the chance that the
sensor has given a wrong reading.

M; set to false, TO; set to t4, AD; set to none: No action, and no mercury
trigger data confirms the earlier fall, bel(Fally=T)=0.7903, since if the per-
son 1is already on the ground they won’t take a left or right step.

6 Extensions to the DBN

The states imminent-fall possible-fall, and stabilising in the original
state machine are an attempt to capture the idea that the history beyond the
current time interval gives information about the likelihood of a fall soon. This is
represented in a DBN by the use of a history node [9], which maintains a count of
how long the agent has been exhibiting one type of behaviour. For our domain,
this would be a status history node, H;, for each time slice; its predecessors are
the previous and current walking status nodes, S;_; and S;. H then becomes a
predecessor of F; 41, and the CPD entries are changed so that the probability of
falling is a function of the stumble count.

We can also improve the model of what a person’s ordinary walking pace
is by adding an arc from T; to T;y1, which would allow a representation of the
expectation that the walking pace should remain fairly constant.

The DBN described in the previous section provides a mechanism for han-
dling (by implicitly rejecting) certain inconsistent data. It represents adequately
the underlying assumptions about the data uncertainty, however it does not pro-
vide an explanation of why the observed sensor data might be incorrect. We can
represent the most usual source of incorrect data, namely a defective sensor, by
the addition of a sensor status node SS [8] for each sensor. Each sensor status
node becomes a predecessor of the corresponding observation node, and there is
a connection between sensor status nodes across time slices. See [10] for details
of the extensions described in this section.

7 Conclusions

We have shown the development of a dynamic belief network model for fall
diagnosis which overcomes the limitations of early work. Given evidence from
sensor observations, the model outputs beliefs about the current walking sta-
tus and makes predictions regarding future falls. The model represents possible
sensor error, and is parametrised to allow customisation to the individual being
monitored.



Table 3. Changing beliefs as evidence is added or changed.

Node |Val None TOp=t1 |[AQp=1eft[Mo=F |TOg=t2|Mo=T SET

To t1 0.25 0.9000 [0.9000 0.8914 [0.0305 |0.0535 |0.0616
t2 0.25 0.0333 [0.0333 0.0361 [0.9026 |0.8812 |0.8736
t3 0.25 0.0333 [0.0333 0.0361 [0.0334 |0.0326 |0.0323
ty 0.25 0.0333 [0.0333 0.0361 [0.0334 |0.0326 |0.0323

TOo |t1 0.25 1.0 1.0 1.0 0.0 0.0 0.0
t2 0.25 0.0 0.0 0.0 1.0 1.0 1.0

Fo left |0.05 0.05 0.0870 0.0860 [0.0856 |0.0964 |0.0911
right |0.05 0.05 0.2550 [0.2717 |0.2515 |0.2792 |0.2767
both |0.90 0.90 0.6581 0.6422 [0.6628 (0.6244 |0.6322
off 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Ao left |0.09 0.09 0.6403 0.6483 [0.6453 |0.6047 |0.5427
right |0.09 0.09 0.0356 0.0360 [0.0359 ]0.0336 |0.0302
none |0.82 0.82 0.3241 0.3156 [0.3188 |0.3617 |0.4271

ADo [left |0.1265 |0.1265 (1.0 1.0 1.0 1.0 1.0
right |0.1265 [0.1265 |0.0 0.0 0.0 0.0 0.0
none |[0.7470 {0.7470 (0.0 0.0 0.0 0.0 0.0

Fallp|True |0.1194|0.1828|0.1645 0.0203|0.0098/0.6285 |0.7903
False |0.8806 [0.8173 |0.8355 0.9797 10.9902 |0.3715 |0.2096

Mo True |0.1515 [0.2053 |0.1898 0.0 0.0 1.0 1.0
False |0.8485 [0.7947 |0.8102 1.0 1.0 0.0 0.0

S1 ok 0.75 0.1 0.1 0.1086 [0.9695 (0.9465 |0.9383
stum’g|0.25 0.9 0.9 0.8914 [0.0305 |0.0535 |0.0617

F1 left |0.0638 (0.0425 |0.2737 0.3208 [0.5120 ]0.1921 |0.0340
right |0.0638 [0.0425 |0.0168 0.0197 [0.0303 |0.0114 |0.0020
both [0.7530 [0.7322 [0.5451 0.6391 [0.4478 0.1680 |0.1736
off 0.1194 (0.1828(0.1645 0.0203 [0.0098 |0.6285 |0.7903

Ty t1 0.25 0.25 0.25 0.25 0.25 0.25 0.0326
ty 0.25 0.25 0.25 0.25 0.25 0.25 0.9006
TO; |t 0.25 0.25 0.25 0.25 0.25 0.25 1.0

Ay left (0.0950 [0.0749 |0.0938 0.1099 (0.1461 |0.0548 |0.0035
right |0.0950 [0.0749 |0.2222 0.2605 [0.3869 |0.1451 |0.0092
none |(0.8090 |0.8502 |0.6841 0.6296 10.4670 |0.8001 |0.9872

AD; |left |0.1308 [0.1137 |0.1297 0.1434 [0.1741 |0.0966 |0.0
right |0.1308 [0.1137 |0.2389 0.2714 (0.3788 |0.1734 |0.0
none (0.7383 |0.7730 [0.6315 0.5851 [0.4671 |0.7301 |1.0

Fall;|True |[0.1044 |0.0975 [0.0959 0.1124 (0.1099 |0.0412 |0.0024
False |0.8956 |0.9025 |0.9041 0.8876 [0.8901 |0.9588 |0.9976

My True |0.1387 [0.1329 |0.1315 0.1455 (0.1434 |0.0850 |0.0
False [0.8612 [0.8671 |0.8685 0.8545 [0.8566 (0.9150 |1.0

S2 ok 0.75 0.75 0.75 0.75 0.75 0.75 0.9673
stum’g|0.25 0.25 0.25 0.25 0.25 0.25 0.0327

F2 left [0.0673 [0.0531 |0.0898 0.1053 [0.1472 |0.0552 |0.0258
right |0.0673 [0.0531 |0.1335 0.1565 [0.2291 |0.08594(0.0076
both |0.6415 |0.6136 [0.5164 0.6055 [0.5040 |0.1891 |0.1740
off 0.2238|0.2802 10.2603 0.1327 [0.1197 |0.6698 |0.7927
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