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PROBABILISTIC REASONING 1IN PREDICTIVE EXPERT SYSTEMS

David J. SPIEGELHALTER

MRC Biostatisties Unit
5 Shaftesbury Road
Cambridge CB2 ZBW
England

Techniques in developing a coherent probabilistic reasoning system
are illustrated with reference to a2 gimplified example. Recent work
relating statistical models to graphical representation of causal
and associative relationships allows a straightforward means of
propagating evidence whilst retaining a probabilistic interpretation
for predictive starements. This interpretation allows continual
criticism of a system's performance, while imprecise quantitative
assessments permit learning from experience. Fossible limitations
of a formal probabilistic approach are discussed,

1. INTRODUCTION

The pervasive, and often casual, disrepard for probabilistic metheds for
handling uncertainty in expert systems 15 now being faced by an increaging
counter-attack spiritedly mounted by, among others, Fearl, Cheeseman, and
Lemmer. Many mlsconceptions, it is to be hoped, have been laid to reat by
Cheeseman (1985) and other contributors te this volume, particularly with
regard to the misleading concept of there being 'true' precise probabilities
that either must be obtained from extensive data analysis, or - falling that -
the whole probabilistic structure must be rejected in place of an ad-hoc
formalism,

It could be argued that there Is a danger of overstating the universal
appropriateness of probabllistic methods, and alienating AI practitioners by
the apparent complexity of the numerical techniques required. However, we
believe that recent results in theoretical statistics, combined with the
literature on subjective Bayesian methods, provide considerable insight inte
recognising both where probabllistic reasoning is necessary, and how it may be
implemented in a relatively strailghtforward manner,

Contrasts with non—probabilistic methods are made in Spiegelhalter (1986a) and
the arguments are briefly summarised in Section 4; there it 1s concluded that
1f a system is to be judged, in part, by its ability to make numerical
predictions concerning events that can later be verified, then probabilicy is
hoth theorerically and practically appropriate, However, the bulk of this
paper consists of raking & small, stylised plece of medical 'knowledge', and
stepping through the stages of implementing a probabilistic reasoning system,
f1lustrating a number of 1ssues ralsed {m artificfal intelligence research.
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The ten stages considered are:-

i. qualitative representation of relationships as a directed graph;
i quantitative expression of subjective beliefs;

3. efficient storage as an undirected graph;

[’ coherent evidence propagation through the graph;

52 'uncertain' evidence;

6, Ygensitiviey' of probabilities due to limited evidence:

P 'imprecise' probabllities due to limited knowledge;

8. using data to learn about guantitative assessments;

9, using data to learn about qualitative structure;

10. explanation of conclusions.

In this paper, these 1ssues can only be covered briefly in relatjon to a small
example; the discussion 18 informal, and stages 7-1{) are particularly
tentative, However, the alm 1s to emphasise the conceptual clarity and
computational ease which can be gained by having a2 unified, coherent approach
to dealing with uncertainty; this point has been particularly strongly made by
Pearl (1985), who covers a number of the stages listed above. For more
extended discussion with relation to a probabllistie diagnostie system which
1s in use in a number of gastroenterclogical clinics, see Spiegelhalter and
Knill-Jones (1984).

2. AN EXAMFLE

We consider a deliberately restricted plece of medical 'knowledge' which has
been previcusly dealr with in more detail by Cooper (1984) :

"Metastatic cancer is a possible cause of a brain
tumgur, and 1s also an explanation for Increased total
serum calefum, In turn, either of these could explain
4 patient falling into a coma. Severe headache is also
possibly asgsoclated with 8 brain tumour.”

The stages outlined in the Introduction allow the gradual incorporation of
relevant statistical techniques.

2.1, Qualitative representation of relationshlps as a directed graph

The description above {s intended to imitate the type of 'knowledge' contained
in the causal network representation used by the CASNET (Weilss et al, 1978}
and INTERNIST/CABUCEUS (Pople, 1982) systems. A causal graph, displayed in
Figure 1, summarises the relationships.
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METASTATIC CAHNCER

INCREASETD TOTAL ERALN TUMOUR

SEHUM CALCIUM

SEVERE HEADACHES

FIGURE 1,

'Causal' model expressed as a directed graph

Here, the term ’causal’ 1s given an extremely wide {nterpretation and is not
necessarily restricted to direct physiologlcal reasoning., The directed links
are intended to represent any natural cognltive ordering that will, as we
shall see in the next sectfon, allew reasomably confident probability
assessments, Naturally, this is a highly stylised representation — for
example, mo element of "time' is explicitly fncorporated, although it could
be, We are also assuming events such &8 "increased calclum' are explicitly
defined; if levels of increase are required, non-blmary varfiables may be used,
We note the graph im Figure I is & basic 'static® graph before a new case is
encountered; as we shall see later, thils graph becomes dynamic in any
particular application, (see van Melle et al (1981} for a similar notion in
EMYCIN).

Such directed graphs have a long history in the soclal sciences; see, for
example, Wright (1934), Wold {1954) and Blaleck (1971). When used as a
description of a statistical model, certain conditional independence
aggumptions can be read directly from the graph, which is also called & "Bayes
network' by Pearl (1986) and an 'Influence diapram' by Shachter (1986). Both
suggest such graphs as cognir{ve models rather than necessarily being
estimated from dara, and we refer to theln for furrther discussion as to thelr
construction.

In brief, a "node’ In the graph represents a randem varlable, say A, which in
our cage ls assumed to be a proposition taking values 'true' or 'falsze’,
denoted by a and & respectively. An arrow between two nodes, say A to B,
represents a 'caural' relationsghip, and we shall say that node A "precedes’
node E in the graph, since there i1s a directed path between A and E, A graph
without directed cycles, known as a 'recursive causal graph' (Kiiverl et al,
1984) allows at least one ordering of the nodes which conforms with precedence
~ the labelling A,B,C,D,E in Figure 1 represents one such ordering in which wa
shall say & is of 'lower order' rhan B, etc. Shachter describes the ;
independence asgumptions expressed in the graph, where a node 1 Iindependent ]
af all nodes with lower order, conditional on those that directly precede it.
Pear]l provides a more graph-~theoretic formulation. In ocur problem, for
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example, we are claimipg that in patlents with confirmed brain tumours,
knowledge concerning coma provides no information as to the likelihood of
having experlenced severe headaches, If this is not reasonable, then the
grapical model should be changed to Incorporate, say, a directed link between
D and E, or an Intermediate node below €, conditional on which D and E are
independent.

The joint distribution of apny five variables A,B,C,D,E may always be
factorised into the product form -
p{A,8,C,D,E) = p(E|4,B,C,D) p{(D[A,B,C) p(Cla,B) p(B|A) p(4)
but from the graph this can be simplified to
p(E{C) p(D|B,C) p(C|a) p(B|A) plA)

showing the dependencles explicitly,” This type of factorisation, described in
detall in Kiiveri et al (1984), links inte a rule-based representation, since
we need only conslder a series of local relationships in order to build up the
entire structure. Later we shall see how certain grouplngs of such 'rules'
lead naturally into a frame-based representation.

2.2. Quantitative expression of subjective bellefs

A serles of conditional probability azsessments are now required, We
fnitially make the unrealistic assumption that these can be made precisely -
this will be relaxed in Sectien 2.7, Eleven numbers are necessary to
completely specify our belief about A,B,C,Dr and E, and fictitious examples are
given below together with the features they are intended to represent:

plele) = .80
plele) = .60
p(d|b,c} = .80
pld|b,e) = .80
pld|®,c) = .80
p{d|D,c) = .05
p(bla) - .80:} increased calcium uncommon, but common consequence

p(b|;} - .20 of metastases

plcla) = 20 brain tumour rare, and uncommon consequence of
p(c1§) “ 05 metastases

pla) = .20

} headaches common, but more common if tumour present

coma tare, but common If eirher cause present

incldence of metastatlc cancer in relevant clinie

We emphasise rhat a full acsessment of p(D|B,C) has been necessary, and that
this may not be derived from separate assessments of p(D|B) and p{D|C), The
final assessment of p(a) is possibly the most difficult to make, since it is
the one most likely to vary between sites, depending on referral policles. We
do not deal with the problems of elicitation in detall, but mention that it
may be more 'acceptable' to assess likelihood ratios in the manner of
PROSPECTOR (Duda et al, 1976) and then solve for the conditionszl
probabilities.

2.3, Efficilent storage as an undirected praph

When the system 1is in operation, we assume that at any time evidence may be
received about any of the nodes in the graph. The directed structure described
5o far is unsufrable for propagating such evidence particularly when there
exist multiple paths in the network, as in Figure l. We therefore regquire a
gimple means of storing the elicited relationships in an undirected form.
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Fortunately, the statistical theory of 'graphical models' In contingency
tables {secc, for example, Darroch et al, 1980; Edwards and Kreiner, 1983;
Lauritzen, 1982) is of direct relevance, although Iits application In expert
systeme does not appear to have been considered previously. This forms part
of the general theory of Markov random fields (Isham, 1981} which are of
fncreasing Interest Iin spatial modelling and, in particular, image restotratlion
(Besag, 1986; Geman and Geman, 1984}, which in turn owes much to work In
statistical mechanics. The gqualitative relatjonships bertween variables are
raepresented by an undirected graph, whose links or 'edges' represent the
Markov property of our belief concerning the variables represented by the
nodes, Specifically, a varlable 1z independent of all those not adjacent to
it, conditional on those that are adiacent to ir. An important subclass of
graphical models contains those in which there is no cycle of length 4 edpes
or more, without a 'short cut'; these are termed '"decomposable’ and are
particularly Important since the relevant joint distributien may be expressed
as a simple function of the marginal distributions on the 'cliques® of the
graph — that is, the largest subgraphs im which the nodes are all adjacent to
each other and hence for which no simplifying independence properties may be
agsumed. Darroch et al {(1980) give a clear exposition of this work,

" 1dentifying decomposable models as those for which no iterative methods are

necessary when estimating parameters from data.

The vital connection between a 'directed/recursive' and an
‘undirected/graphical' representation has been provided by Wermuth and
Lauritzen (1983). They show that the class of recursive models and the class
of grapbical models intersect in the class of decomposable models, and a
recursive model 1s a member of this intersection provided it does not have two
non-adjacent nodes beth directly preceding the same node, Thus Figure 1
cannot be expressed as a decomposable model as it stands, since B and C are
unjoined and are both direct predecessors of O. The tree models of Kim and
Pearl (1983} are also recurslve without necessarily %belng decomposable.

However, the 'missing link' between B and C is easily Introduced as a kind of
*vacuous rule', leaving us able to drop the arrows and leave the undirected
representation in Figure 2, (Efficient algorithms for "filling out' causal
models to allow an equivalent undirected representation are provided by Tarjan
and Yannakakis {1984) in the context of relational databases), Thus, for
example, Figure 2 tells us that E {g conditional independent of A, B and D,
given C.

The joint distribution may be written, as before, as
p(A,8,C,D,E) = p(E|A,B,C,D) p(D|4,B,C) p(C{A,B) p(B]A) p(A}

= p(E|C) p(D|B,C} p(B,C|A} p(A) by the Markov property

on Figure 2

= E B,C,D
p(C,E) . p(B,C,D) . p(4,B,0) by conditional

p(C) p(E,C) probability law.

- the product of the marginal distributions on the ’'cliques’, divided by the
product of the distributions on their intersecticns. The general formula for
deriving the loint distribution from the graph is given by Darroch et al
{1980}, Thus our entire belief structure can be expressed simply in terms of
the marginal distributions on the c¢liques, which may be derived from the
aggessments made on the causal representation; for example,

pla,b,e} = p{bja) plcla) pla) = .8 x .2 x .2 = .032.
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Figure 2,

Re-representation of Figure 1 as an undirected graphical model, showiog
added edge B-C. The structure can now be stored as three geparate
cliques, [A,B,C], [B,C,D], [C,E).

The explicit recognition of the condirional independence of B and C, glven A,
is lost In the re-representatlon, although it 13 implicitly retained in the
agsigned probabilities which obey the original ronstraints imposed by the
initial *ecausal' structuring.

These cliques may be best stored as self-contained frames, encapsulating

knowledge of intimately related phenonema, and remembering which other frames

contain insersecting variables, Thus a complex causal network representation

can be broken down into autonomous lecal components, while retaining a

strictly coherent probability model, We have therefore put into an

established statistical framework the suggestions of Lemmer and Barth (1982) . .-
who also emphasice the advantages of this decomposition into a tree of

¢liques, using an alternative terminolegy in terms of 'local event groups'.

Table 1 contains, for future reference, the stored marginal distributions on
the cligues.
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Table 1: Marginal distributiong on the cliques of Flgure 2,
derived from probability assessments on the causal
modael in Figure |

Clique [A,B,C] Clique (B,C,D] Clique [C,E]
pla,b,c} = 032 pib,c,d) = ,032 plec,e} = (064
p(a,b,c) = 008 p(B,c,d) = 032 p(c,e) = .552
pla,B,c) = .008 plb,T,d) = .224 ple,E) = .016
p(a,F,c) = .032  p(5,T,d) = .032  p(c,e) = .368
pla,b,T) = .128 plb,c,d) = 008
p{a,b,c) = .152 p(B,e,d) = .008
pla,b,c) = .032 (b, C,d) = 056
pla,b,c) = .608 p(b,c,d) = .608

1,000 1.000 1.000

1

The interpretation of Table 1 may not be immediately transparent, but it is
not intended to be communicated directly to the system user. From it we may
derive, for instance, that our prior prebabilities are p{b) = .32, p{c) = .08,
p{d) = .32 and p{e) = .616. TIf our assessor did not agree that he would
expect, say, J2% of patients under study te lapse inte coma, then the source
of inconsistency should be investigated and rectified, either by changing the
gquantitative assessments or the qualitative structure. This is in contrast to
the PROSPECTOR approach that allows inconsistent assessments at the expense of
bending the probability caleulus.

In a8 more technical sense, we are suggesting expressing the joint
relationships as a particular type of log-linear model that, were It being
estimated from data, would not require iterative estimation methods
{Lauritzen, 1982). 1In contrast, both Cheeseman (1983) and Geman {1984)
suggest a representation in a more general log-linear form requiring complex
algorithms for obtaining model parameters from probability assessments. Their
methods do, however, explicitly deal with incomplete specification of the
probabilistic relationships, and this is discussed in Section 2.7. In that
gection we also mote that in complex problems it may be more reascnable to
complete the quantitative sssessments after the representation as cliques, so
that an appeal to 'maximum entropy' may be made for high-order Interactions.

2.4, Coherent evidence propagation through graph

Suppose our only information on a patient 1s that he suffers from severe
headaches (E 1s true); and that we wish to assess how that changes ocur belfef
tn him lapsing into coma f.e. p(d|e). Kim and Pearl {1983) describe an
efffelent algorithm For propagating the implications of evidence through a
graph with a tree-structure, that Is, no multiple paths of the type exhibited
by ABCD {n Figure 1. Pearl (1986} suggests a means of dealing with general
networks by conditfoning on the value of a node, such as A, that *hreaks the
eycle', but this requires, in our case, a direct assessment of p{ale) and it
{8 not clear how this 1= to be obtained. Shachter (1986) suggests an
alternative algorithm, but this appears to lose the localised representation
that 1s essential 1n constructing complex models.

However, having formulated the original causal model into a decomposable
graph, we can return 1t to a different directed representation te allow
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efficlent evidence propagation. Specifically, directed dependencles, or
‘arrows', may be added to the praph with the realised node as the starting
point, retaining the original probabillistic model, but expressed in a new
recursive form. We may, for example, use 'maximum cardinalicy search’
(Tarjan and Yannakakis, 1984) to re-order the nodes: label the reallsed node
as '1', then at each step label the node attached to the maximum number of
nodes that are already labelled; ties are broken at random. In our case, this
can glve the ordering displayed in Figure 3, and we note that this creates a
sequence of cliques [C,E], {A,B,C][B,C,D] through which evidence can be
propagated,

Figure 3.

Having observed E as '"true’, the nodes are re-ordered, giving a
sequence of cliques te recursively update in a single pass.

Suppose we indicate our current belief, given available evidence, by an
asterisk. Then p*{e) = p{c|e) which may be calculated to be .104 from Table
1. Going on to the next eclique, we have, for example, that

p*{a,b,c) = p(a,b,ce) by definition
= pla,b|c,e) plele) by conditioning
= p(a,b|c) pr(c) _
= pla,b,c) pr(c) / plc)
= ,032 x 1.3

= 042

from graphical model .. . ..
by conditional probability
from Table 1

In turn, we way calculate
p*({b,c,d) = p(b,c,d]|e)

= p{d{b,c,e) plb,cle)

= plb,c,d) p*(b,e} / p(b,c)
which again may be obtained from current beliefs and Table l. Thus evidence
‘chaing' through the cliques, each joint probability being multiplied by the
ratio of the 'new belief' to the prior belief in the appropriate values of the
nodes Intersecting with the preceding clique. We emphasise the simllarities
with the regults of both Cheegeman (1983) and Lemmer and Barth (1982);

however, Cheeseman's propagation scheme does not provide updated probabiliries
for all nodes in a single pass, while Lemmer and Barth appeal to an
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information-theoretic justification that appears unnecessary when the joint
disteihution on the "loral event groups' is fully specified.

Having propagated the influence of ohserving E as true, we find our new
marginal prohabilities are p*{a) = 208, p*{(b} = .325, p*{c) = .104 and, as
outr primary concrrn, p*{d)} = p(d|e) = 331 compared to our pricr pf{d} = .3%;
since B had quite a high prior probability, koowledge of its presence does not
lead to substantial revision In heliefs, particularly in "distant' nodes. In
practice, evidence propagation could stop when the 'propagation weights'
p*{.. ) p{...) are within some small distance of | for all realisations of the
clique intersections,

The node E can now be "removed' from the dynamic graph for this patient, which
still leaves a decomposable representation with no known nodes, Thus the
asterisks can be dropped and new evidence treated as if it were the first
ohtained, Removal of a 'realised' node may disconnect the graph, as would
have happened were C the filrst item eliciced.

2.5, 'Uncertain® evidence

Suppose the user was fairly certain that E was false, but stil) wished to
sperify a 10X chance that severe headaches occurred. (We strongly emphasise
that such a response does not correspond to a milder form of headaches; If
this is a possibility then It should be explicitly Included as a pessible
response). If we can assume that this judgement is made without any
conslderarion of the other nodes in the network, then the dynamic graph for
this patient may be temporarily extended to include a node E', as in Figure 4,
producing the additional clique [E,E'] with, say, ple,e') = .030,

ple,e’) = 270, ple,e') = .586, ple,e') = 114, This 'coheres’ with rthe prior
ple) = .616, and cnsures plele'} = .10. Setting E' as "true', and propagating
its effect using the techniques of Section 2.4, provides 2 means of using
uncertain evidence.

FIGURE 4

Temporary node ET introduced to produce a specified level of
uncertainty concerning the truth of E; arrows show propagation
af evidence from E'
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If E' does depend in part on nodes of the original network, then this must
either be explicitly represented within the graphiecal structure, or -
preferably -~ a 'thought experiment’ carried out in order to assess what our
belief is in E ignoring all information currently tepresented 1n the system.
See Pearl {1%985) for a parallel discussion in terms of likelihood ratios.

2.6, "Sensitivity' of probabilities due to limited evidence

(me reason that has been glven for wishing to have a range, rather than a
point numerical measure of uncertainty, 1s to provide a means of expressing
one's 'ifgnotance' concerning the current case in hand. We Iinterpret this as
meaning that because little evidence I{s avallable, our beliefs are extremely
susceptible to change and we would not wish te make a firm probabilistie
statement, Thus a patient presenting to a speclalist may have a 10% chance of
gastrie cancer just froem the known incidence in rthat referral clinic.

However, one may be unwilling to make a decision until many further questions
were asked, after which it may well be reasonable to perform an endoscopy even
on the basis of the same 102 belief, since no further incterrogation will
substantially alter our bhelief,

Suppose, say, we conslder our bellef in am increased serum calcium, node
B, which before any further evidence arrives is p(b) = .32. However, by the
law of conditional probability,

p(b) = 3 p(b]4,C,D,E) p(4,C,D,E)
A,C,D,E

We can gee that our current belief can be thought of as the expectation of
what our belflef could become on recelpt of further evidence. The 'local’
nature of the graphical representation makes this sensitivity to further
evidence straightforward to investigate, since the belief in a node only
depends on our beliefs In adjacent nodes. In the case of node B, this means
the above expression simplifies to —

p(b) = D p(bl4,C,D) p(A,C,D).
4,C,D

We can easily calculate the terms in the summation by noting that the
'potential' belief

p(b|A,C,D) ~ p(4&,b,C,0) / p(A,C,D), and
p(4,C,DB) = p(4,b,C,D) + p(4,5,c,D) SR A
= p(a,b,C) p(b,C.D) | p(4,b,0) p(b,,D)

p(b,C) p(b,0)

the values of which may be cbtalned from Table 1. For example, our belief
could become as low as p(b|a,z,d) = .05 1f the patient were found to have no
metagtases, tumour or coma; a combination we predict with probabiliry

p(a.C,g) = .608. 1In contrast, our dbelief in B could become as high as
p(bla,c,d) = _O985, if the patient were found to have metastases and lapse into
coma wlithout having a tumour, a combination of events we predict with
probability pla,c,d) = .104. OQur distribution of possible future beliefs in B
is shown in Figure 5. Other intermediate values for p*(b) are possible, of
course, 1f A, or I are not known with certainty.
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Predictive distribution of what our bellef in B could become on
receipt of adjacent information — the mean is our current belief, .32

This distribution emphasises the semsitivity to further information and hence
expresses our 'ignorance' comcerning B. As evidence accumulates, this
predictive distributrion will tend to get tighter around Ite6 mean,

It may be reasonable to use some measure of rhe spread of this distribution
for control purposes in order to guilde questionning towards areas where there
is still much to be learnt. The primary care system IMMEDIATE (Dodson and
Rector, 1985) makes use of the ranmge for this purpose, bur this seems rather
too sensitive to events which may have very low predictive probabllity.

z.7. 'Imprecise’ probabilities due to limited knowledge

We have assumed so far that all probabilities are specified precisely.
However, in practice there will usually be considerable doubt as to many of
the quantities - in fact, such matural doubt is a prerequisite for the
‘quantitative learning' procedure outlined in the next section.

Twe sltuatione should be distinguished. Firstly, an 'expert' may claim
complete lack of knowledge concerning higher order interactfions in cliques
with 4 or more members — in this case it seems reasonable to adopt the
tmaximum entropy' ot ‘minimum informatiom' appreach {Cheeseman, 1981) of
agsuming such terms are zero until evidence arrives to the contrary. Lemmer
and Barth {1982), Lemmer {1983), Cheeseman {1983} and Geman (1984) alil appeal
to such a principle in coping with a probability distribution that is
fucompletely specified; Lemmer (1983) alsc discusses inconslstent probability



assessments, but our original causal representatlon avoids this problem. The
second gltuation concerns Impreclsion concerning the low-level conditiomal
probabilities of preatest importance - for example, our experience may indeed
suggest that severe headaches are common in these with brain tumours, but a
precise figure of p(efc) = .B0 scems to overstate the accuracy of the
judgement. How can doubt about this filgure be incorporated whilst retaining a
coherent probabllistic framework?

We should first follow Cheeseman {19853) In emphasising that it is quite
reasonable te gllow 'second-order’ uncertainty concerning probabilities. This
has a respectable tradition {Fisher, 1957; Good, 1965) and, although for most
deedision-making purposes it is simply the mean probability that is important,
there are clear psychologlcal advantages, both for the constructor and user of
the system, in allowing a measure of doubt cencerning a probabiliscie
prediction. We simply regard the probabllities of the system as being unknown
parameters with limited Information concerning their value. Two approaches
seem possible,

First approach : 'attached imprecisions®

The simplest way to conceptualise this is by thinking of every probability
agsessment, say plefc) = .80, as actually belng an observed proportiom based
on an 'imaginary sample' of n patients with brain tumours, of whom .80n had
severe headaches. By standard hinomial theory, our doubt concerning p{eje)
follows an approximately Gausslan curve with centre .80 and standard deviation
(.80 x .20/m)7, Thus, if our expert were particularly Lll-at—ease with his
assegsment of .80, he may state his imaginary sample slze is only 25 of whom
20 had headaches, giving,an approximate 95X incerval for ple|c) of

.80 + 2 x (.80 x .20/25)% = (,64,.96). In fact, it Is often more natural to
elicit the interval directly and then sclve to find n. How this interval will
shorten with experlience will be discussed in the next sectlen.

In constructing the original cauzal network, it is therefore conceivable that
the directed links should have sssoclated 'precisions' expressed as integers.
The problem remains, however, of how to store and propagate such measures of
precision within the graphical framework adopted, although it should be kept
in mind that the 'second-order' nature of the precisions makes the use of
crude approximations more justifiable than for the primary probabilities.

With regard to storage, it i{s initially attractive to assign & single

precision number n to each clique, poszibly the minimum precision attached to

its constituent links, However, this ignores the fact that some relationships

in the clique may be better known than others. Additionally, while the -
'local’ representation using cliques may be reasomable in view of conditional
independence of events, 1t is feasible that the probabilities of such events

are highly dependent. An extveme cxample 1s when one has a sequence of

conditionally independent events, each occurring with an identical but

currently unknown probabllity. This particular clircumstance 1s discussed in

more detail in the next section.

Propagation creates further problems, since a means is required of ascessing
the Imprecision of the propagatien welghts p*(...}/p(...} and combining it
with the imprecision of the current prebabilities. This only seems
straightforward under unrealistic {ndependence assumptions.

Second approach @ auxiliary nodes

This technique stays within the graphical structure since our doubt about a
conditional probability, say, p{e|c), is ewxpliclitly represented by creating a
new, uncbservable, random variable, say X, whase realisation decides the value
of plelc). Specifically, it might be rcasonable to represent the doubt of the
rupert by saying that X could take on values corresponding to

plefe) = ,7,.8 and .9 respectively, and that p(¥=.7) = .1, p{¥X=.8) = .8,
p(X=.9} = .1, independently of any other evidence., This extends the network
to that shown 1n Figure 6 with conditieonal probabilities

ple|c,x=.7) = .7, plefc,X=.8) = .8, plele,X=.9) = .9,
and hence extending the clique [C,E] to [C,F,X] with joint distribution
p(E,C,X) = p(E|C,X) p(C) p(X)

given, for reference, in Table 2.

FIGURE 6,

Auxiliary node X introduced to represent doubt about the
conditional probability p(elc). Dashed edges need to be
added to original graph in Figure 1.

Table 2. Joint distribution
on extended clique [{,E,X]

“ple,T,.8) = (0128
p(T,5,.8) = .2944

plc,e,X=.7) = 0056
p(T,e,.7) = .0552

ple,8,.7) = 0024 ) ple,e,.9) = 0072
p{E,e,.7) = .0368 pl(c,e,.9) = ,0552
ple,e,.B) = 0312 p{c,€,.9) = ,0008

plc,e,.8) = L4416 p{c,€,.8) = ,0368
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Now it is straightforward to sec that when E Js observed to be true, our
conditional bellef p*{c} = plc{e) = .104 ia the same as 1t was before X was
introduced. However, this belief has a certain imprecislon, since

ple|e) HZp(c|e,X) p(%|e)
X

and from Table Z we can calculate that
plele,X=.2) = 092 , pl¥=.7]e) = .099
plcle,%=.8) = [10& , p(X=.8]e) = ,B0OO
plcle,X=.9) = 115 , p{X=.9]e) = .101

Tguizthere 1s about a 10Z chance that p*(c) could be + 1% of its mean value of

We note two important aspects of this means of Introducing imprecision:

Firstly, we have remained within the structure developed through this paper.

At any time, the Imprecision in our belfef in a nede, say ¥, can be obtained Comeriett

by assessing its 'sensitivity', using a slight extension of tha techinique
deseribed in Section 2.6, to alternative realisations of those 'auxiliary!
nodes which are elther predecessors of Y in the original directed graph, or
predecessors of nodes that are successors of Y, that have been observed and
are still connected to Y.

Secondly, our belief in the auxiliary node has changed as a result of evidence
obtained on rhe patient. 1In the next sectlon, we gee how thie provides a
natural mechanism for automatic learning by the system.

There is clearly a need for some consideration of imprecisiom in probability
assessment, and the two approaches outlined above are possible candidates for
study. Although both methods Introduce additional problems that tend to
oppose the sttractive local representation obtsained through the use of deceom-
posable models, the second approach appears tc have congiderable potential.

2.8. Using data to learn about quantitactive assessments

Any self-respecting expert system should learn by experience in order to
overcome the inevitable limits on the knowledge of those who initially
developed it, However, as has been previcusly menticned, it is only by
acknowledging imprecision in the quantitative assessments in a system that
learning ie possible,

Both approaches ocutlined in Section 2.7 have little difficulcy in
incorporating revision of the doubt attached to conditional probabilities.
The first approach essentially stores each probability as a fraction, say
plele) = 20/25 in the given example, vather than as a single number, .8, Thus
{f & further patfent with a tumour 1s observed with severe headaches this
will increase both the numerator and denominator by 1 to produce a r;viaed
conditional probability plelc) = 21/26 = ,81. In the second approach, we have
seen how our bellef {n the 'auxiliary' node X ig 6lightly altered simply by
observation of E without even knowing whether C were true or not, If we
assume a common "true' conditional probability applies te all patients, then
this revised belfef pP*(x} should carry over to future cases to become ; new
initial value p(x). Thus by identifying auxiliary nodes as those which should
retain changes in belief when congldering new cases, we have conceptually
?istlnguished the process of 'updating' beliefs in a particular cage, from
learning' from case to case, while uniting them within a single simple
computational structure.
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i Using data to learn about qualitative structure

It should also be possible to question the qualitative aspects of our belief,
as expressed by the graphlcal structure. This is difficult to do directly,
since Independence assumpticns are neither verifiable nor falsifiable on the
basis of a sinple case. However, if a system can record 'surprise' at what
it is being told, then hopefully it will be possible to identify areas of poor
gqualitative modelling.

Fortunately, 2 coherent probabilistic approach allows a simple means of
monitoring 'surprise’, since at any time it 1s essentially storing a
probabilistic prediction of what the response would be, were the user
questioned as to the true value of a currently unspecified node, and were able
to provide a reply. Such probabilistic predictions may be evaluared by means
of a 'proper scoring rule' (Winkler, 1969}, which measures the discrepancy
bhetween the prediction and the truth. & popular cheice i{s the 'Brier score'
in which the squared predictive error is recorded. Thus when E (severe
headache} 1s recorded as true, with a current probability p(e) = .616, the

Brier score is
(- .616)% = L1,
Were headaches absent, the score would have been

{0 - .616)2 = .38, registering increased surprise,

Naturally, some poor predictions must be expected, even if the model is quite
reasonable. However, by continuous monitoring of specific parte of the system
over a series of patients, consistent 'surprise' can be identified and used to
rectify the structure. Monitoring over all questions asked of a particular
patient also should allow identificatfon of 'outlying' cases who produce
unexpected findings, In each type of moniroring & 'quality control' approach
can bhe adopted, Specifically, suppose a series of n events have been recorded,
to which the system has assigned predictive probabilities pp, ..., pg. glving
& total Brier score B = I (]—pi)z. Were the system glving 'reliable’ or
tealibrated' predicticns, we would expect 2 Brier score of Eo(B) = I py(l-pg)
with varlance Vg {B) = £ (1-2p1)2pi(1—pi]. Thus [B — Eo(B)]/V,{B} provides
a standardiged test statistic for calibration, (Hilden et al, 1978;
Splegelhalter, 1986h).

Our essentlal idea Is that when a system interrogates a uset, it should
already be guessing {probabilistically) what the response will be., TIf the
responses are consistently surprising, either for a series of questions
concerning a specific individual, er for a specific questiou over a serles of
tndividuals, then some close inspection of the knowledge-base 1s In order.

2.10 Explanation of conclusicons

In 'shallow’ graphs, such as a set of symptoms §y conditiomally independent
given a disesse D, it is straightforward to use the 'weight of evidence'
logglp(sgld)/p{ay[d)} as a simple summary of the suppert for or against a
diagnoeis, and Splegelhalter and KEnill-Jones (1984) and Splegelhalter {1985)
show how this can be extended to cope with dependent symptoms and multiple
diseagses. Within a more complex praphical structure, it appears the raties
p*{...)/p(...) propagated through the intersectioms of the cliques may form a
natural explapation of the source of the evidence for revised beliefs,
although It remains to be investigated how this can best be implemented.

Pearl (1985) makes further suggestlons concerning explanatien in probabilistic

models.
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3 'EXCHANGEABILITY' AND TOUBT ABOUT PROBABILITIES
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FIGURE 8

Distribution representing our bellef in the probability ¥,
before sampling ¢ ), and after observing 10 7's in 100 digits
{(———=-). Both distributions have mean il

The doubt concerning the propertiom has considerably reduced, but in spite of
our increased confidence, if we had to make a bet on the mext digit, we would
actually accept the same odds as we would have done before we had observed 100
digite. De Finetti (1974) shows that our belief im the true underlying
prebability in an exchangeable sequence is gimply our bellef in what the
eventual proportion of 7's will turn out to be were we Lo continue sampling.
Thug, in this particular instance of exchangeable observations, the assessment
of 'sengitivity' to uncbserved data deseribed in Section 2.6, is precisely
equivalent to the assessment of imprecision of Section 2,7, since the unknown
quantities on which each acsessment conditions colncide in the auxiliary

node Y.

4. DISCUSSION: WHEN IS PROBABILITY APPROPRIATE ?

s rlassic treatise, de Finetti {1974) statee that
In saying this, he rejects any jidea of there
g — as does

In the preface to hi
“PROBARILITY DOES NOT EXIST".
being a "true’ objective probability of an event, and argue
Cheegeman (1985) - that probablliries may change from persen to person,
time to time, as Information accupulates; all probabilities are conditional on
the evidence deemed to be relevant by the assessor. How, then, can we 8ay
what probabilities are? On one level, they are numbers which obey certain
basic mathematical laws that ensure mutual consistency over varlous
combinations of events. However, these laws are not axioms, but may be

from
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derived from intuitive behavioural criterla that appear particularly relevant
Lo erxpert system construction and evaluation.,

Lindley {1982) has generalised de Finetti's original specification of the
operational justification for probability. Briefiy, Lindley describes a
situation in which a person has to describe his uncertainty concerning an
event E by a real number x. Conditional on a second event F occurring, the
person will receive a penalty f(x,E)¥, and this penalty 1a additive over
repeated sets of eventg and Assesements, say xj, ..., ¥p- Then 1f the person
will not choose 'inadmissible’ values for %{, such that there exist
alternative choices ¥q{ with guaranteed smaller penalty no matter what events
occur, then there exists a transform of X, specified by the form of the
penalty f, which obeys the laws of probabllity. Lindley goes on to argue that
confidence intervals, significance tests, '"possibility' measures {Zadeh, 1983}
upper and lower probabilities, and belief functlons (Shafer, 1986}, are
"inadmissible’.

In the published discussion of Lindley's paper, it 1z not surprising that
Shafer and Zadeh, amengst others, criticize Lindley for being too restrictive
in his concept of uncertainty. However, little is mentioned of a crucial
feature of Lindley's argument: that the measure of uncertainty is applied
only to events, that ts, propositions which are - at least potentially -
verifiable. The thesretical argument for probability would therefore appear
to be restricted to sitwations in which an expert system 1s to be evaluated 1in
terms of its explicit prediction concerning events that are potentially
observable given further investigation. Early diagnostic and classification
systems such as MYCIN and PROSPECTOR fit inte this category, but it could be
argued that in systems concerned, for example, with planning or critiquing
proposed courses of actlion, 'uncertainty' is of a different type.

Two contexts in which there is ‘uncertainty’ concerning apparently non-
verifiable statements ceccur frequently in the AI 1ftersture. The first
concerng a statement that is imprecise, such as there being a limguistic
qualifier of the extent to which a proposition is true, ("John is fairly
tall"). The fuzzy set approach 1s often argued to be appropriate in assessing
the degree to which a particular case-in-hand fulfils a loosely-defined
concept. The second context concerns ‘uncertainty' about the reasonableness
of an acrion or a conclusion; for example, Cohen (1985, p.52) states that
"one's certainty in a result should depend on what the result is wanted for',
and goes on to a non-numerical theoty of "endorsements’.

O0f course, probability theory can be given a place even within the contexts
outlined above, by contriving some suitable decidable proposition (Giles,
1982). For example, s 'test' of =n imprecise statement might be put in terms
of the probability that a random pereon, when asked to answer 'yes' or 'no' to
whether John was fairly tall, would answer 'yes'. Similarly, the
reazsonablenese of a conclusion could be expressed in terms of the probability
of whether an expert in the fleld would or would not draw that conclusion
given the availahle evidence.

The important feature remains, however, that the procedure by which an expert
syatem 1e to be Judged affects the means by which uncertainty is handled,
This has consequences in the design of systems, since 'uncertain trules’ that
dre statistically testable should be carefully distingulshed from those that
are not objectively verifiable, but are only subject to peer review.

It might be saild that it is unreasonable to evaluare an expert system solely
on the basis of numerical predictions, and that clarity of explanation, eage
of assessment, ability te learn, and transparency of the knowledge
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. In this paper we hope to have showm

sentation are also desirable aims

::gzpprcbabllistic reasoning, in addition to being theoretically nece:farybi:e
11y justified in relation Lo the abo

£ dictive context, {s alsc practically

Z:{tﬁ:ia as well as p;oviding efficlent evidence propagation, cperatiomal

intefpreiation of outputs, and systematlc criticism of performance.
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