Laurea Specialistica in Informatica a.a. 2005-2006

Interazione Uomo-Macchina II:

Interfacce Intelligenti

Valeria Carofiglio & Fiorella de Rosis

Introduzione

Prima parte: Formalizzazione e Ragionamento

- 1.1. Ragionamento logico:
 - Formalizzazione
 - Risoluzione
- 1.2. Ragionamento incerto
 - Reti Causali Probabilistiche
 - Reti dinamiche
 - Apprendimento di Reti

Seconda parte: Modelli di Utente

- 2.1. Modelli logici (cenni)
- 2.2. Modelli con incertezza

Terza parte: Interazione in linguaggio naturale

- 3.1. Generazione di messaggi
 - Introduzione
 - Teorie
 - Metodi
- 3.2. Comprensione di messaggi *Quarta parte*: *Simulazione di dialoghi*

Programma del Corso

Modelli di Utente

Quando è necessario?

Cosa contiene?

Come si connette ad altre fonti d'informazione?

Quale delle forme di rappresentazione della conoscenza e di ragionamento che abbiamo visto è più opportuno utilizzare, e quando?

E' possibile combinare forme di ragionamento diverse?

Modelli e Profili di Utenti

Insieme coerente di proprietà
(presunte o verificate)
di una categoria di utenti
o di un utente specifico
(modelli vs profili)

Esempio:

'le studentesse del primo anno della Laurea Specialistica' vs Terry (modelli come 'stereotipi'; specializzazione graduale in 'profili')

Quando è necessario un UM?

- Quando s'intende adattare l'interazione alle caratteristiche dell'utente. Ad esempio:
 - No, nel caso di un sito sulle previsioni del tempo
 - Si, nel caso di un sito di commercio elettronico
- In tutti i sistemi di dialogo, anche i più semplici, oppure

Modello 'statico' vs modello 'dinamico':

- Nella simulazione di <u>dialoghi</u>, il modello è sempre aggiornato dinamicamente durante l'interazione;
- Nella generazione di messaggi, può essere aggiornato, ma ad intervalli di tempo più lunghi;
- Negli <u>ipertesti adattivi</u>, il modello può essere 'short-term' (cambia nel corso di un'unica interazione) oppure 'long-term' (può cambiare da un'interazione alla successiva).

Esempi di quesiti a cui un UM deve rispondere

A quale informazione U è più interessato, in questo momento? Come rappresento i dati che U mi ha chiesto di elaborare? In forma grafica, tabellare o altro?

U preferisce vedere la partita o le Iene?

C'è qualcuno, in questa classe, che sa cos'è la trigonometria?

U sta sorridendo: perché?

U rifiuta di fare l'esercizio: perché?

Anna crede che mangiare troppi dolci fa male alla salute?

Marco ha inarcato le sopracciglia: forse non mi crede?

Sono tutti quesiti che implicano
un'osservazione del comportamento di un individuo e
un ragionamento sul suo 'stato mentale' o sul suo
'atteggiamento'

(Utente di un Sistema, o Agente artificiale, o insieme di Agenti per qualche ragione 'omogenei')

Quali proprietà dell'utente modellizzare?

Una regola fondamentale suggerita da Elaine Rich: "Rappresentare soltanto quello che è necessario per la particolare applicazione considerata."

• Caratteristiche generali (nome, età, ...), e inoltre

due altre categorie di caratteristiche, diverse dal punto di vista della formalizzazione:

- Interessi, preferenze, conoscenze, ...
- Credenze, obiettivi, sensazioni (stati mentali o attitudini)

... vediamo come...

1. Interessi, preferenze, conoscenze, ...

Date: a, u, x 'variabili', dove

u denota una 'persona'

x denota un 'concetto'

a denota una 'azione'

Tutte queste caratteristiche sono rappresentabili con formule nella logica del prim'ordine. Si può ragionare su di

esse con il Principio di

Risoluzione

Introduciamo i seguenti predicati binari:

KnowAbout(u, x) : "u conosce x";

Prefer(u, x) : "u preferisce x";

Like(u, x): "ad u *piace* x";

IsInterestedIn(u, x): "u è interessato a x";

KnowHow(u,a): "u sa come eseguire a"

CanDo(u, a): "esistono le condizioni per cui u esegua a"

Su questi dati si può ragionare in modo logico... abbiamo già visto un Esempio (da Es 2.4)

Caratteristiche generali

Name(U, GIUSEPPE)

Age(U,24)

Gender(U,M)

Healthy(U)

 \neg HasMoney(U)

. . .

Interessi, preferenze ecc

¬Likes(U,RUN)

CanDo(U,AIKIDO)

ShouldDo(U,AIKIDO)

Prefer(U,EconomicTarif)

Da caratteristiche generali si possono derivare dati su altre caratteristiche generali oppure su preferenze, interessi, ecc

... vediamo qualche altro esempio...

Un esempio nel campo della presentazione d'informazioni adattata all'utente

Tutti desiderano informazioni su argomenti a cui sono interessati e che non conoscono.

Giovanni s'interessa di cinema

e non conosce gli spettacoli attualmente in corso a Bari.

E' il caso che gli mostri un elenco di questi spettacoli?

 $\forall u \ \forall x \ (IsInterestedIn(u, x) \land \neg KnowAbout(u, x)) \rightarrow WantsToKnow(u,x)$

 $\forall u \ \forall x \ (IsInterestedIn(u, x) \land Is-a(y, x)) \rightarrow IsInterestedIn(u, y)$

Is-a(P-MOVIE, MOVIE)

Is-Interested-In(G, MOVIE)

¬KnowAbout (G, P-MOVIE)

WantsToKnow (u,x)?

Credenze, obiettivi, sensazioni ... (stati mentali o attitudini)

u crede che ϕ sia vero u desidera ϕ sia vero

u è una variabile φ è una formula Rappresentiamo 'crede' con Bel, 'desidera' con Goal.

Come possiamo ragionare sulle 'credenze', sui 'desideri' e sulle 'intenzioni'?

Operatori Modali

Estendiamo il nostro linguaggio del prim'ordine introducendo due *operatori modali:* Bel e Goal.

Un operatore modale ha due argomenti:

- Il primo è una *variabile* che denota *un individuo* (agente, utente, ..)
- Il secondo è una *formula* che denota la proposizione in cui l'individuo crede (o che desidera diventi vera)

Bel (u, ϕ), che chiameremo *belief atom,* sta per `u crede che ϕ sia vero'

ed è indicato anche con (Bel u $\phi)~$ oppure $B_u~\phi$... idem per Goal

Componenti degli 'Stati Mentali'

Data la wff φ :

Bel A φ : "A crede che φ sia vero Know A φ : "A sa che φ è vero" nota: Know A $\varphi \Leftrightarrow$ Bel A $\varphi \land T(\varphi)$

Goal A φ : "A desidera che φ sia vero"

Riprendiamo un esempio (Es 2.5) che avevamo lasciato da parte:

U crede che il suo peso sia giusto: Bel U Correct Weight(U)

U vorrebbe migliorare il suo peso: Goal U ImprovedWeight(U)

Esercizio

Quali di queste formule sono valide e qual è il loro significato? (a è una variabile)

- 1. Bel R CanDo(R,a)
- 2. Bel Ra
- 3. Bel R (Simple(a) \rightarrow CanDo(R,a))
- 5. Bel R F°(a)
- 6. Bel R (F°(a) \rightarrow P°(a))

Abbiamo bisogno di una teoria che permetta di ragionare:

- all'interno del mondo dei 'belief'
 (e cioè sullo 'stato mentale' dell'utente),
 per derivare nuovi belief da un insieme di belief noti
 ragionamento sugli operatori modali
 - Sulle relazioni fra stato mentale dell'utente e 'mondo esterno' (azioni svolte o da svolgere)

ragionamento sulla combinazione di operatori modali con linguaggio del prim'ordine

Combinazione di operatori modali con linguaggio del prim'ordine

Le formule in questo linguaggio 'esteso' possono essere ottenute combinando formule 'ordinarie' con 'belief atoms' mediante i connettivi ∧,∨,¬,→

Esempi:

 $P(A) \rightarrow Bel R P(A)$ per "se P(A) è vero, R lo crede" SunnyDay(A) \rightarrow Bel R SunnyDay(A) per "se A è una giornata assolata, R lo crede"

Ma anche:

(Likes(U InShape) ∧ ¬Inshape(U)) -> Goal U ImprovedWeight(U)

Come ragionare sugli stati mentali? una estensione del Principio di Risoluzione: la 'Regola di Attachment'

Bel
$$A \varphi_1 \vee \psi_1$$

Bel $A \varphi_2 \vee \psi_2$
......
Bel $A \varphi_n \vee \psi_n$
 \neg Bel $A \varphi_{n+1} \vee \psi_{n+1}$
 $\varphi_1 \wedge \varphi_2 \wedge ... \varphi_n \mid \neg_A \varphi_{n+1}$
 $\psi_1 \vee \psi_2 \vee ... \vee \psi_{n+1}$

Interpretiamo la Regola di Attachment nella sua forma piu' semplice

Bel A
$$\phi_1$$

Bel A ϕ_2
......
Bel A ϕ_n
 \neg Bel A $\phi_{n+1} \lor$
 $\phi_1 \land \phi_2 \land ... \phi_n \mid \neg_A \phi_{n+1}$
 $\overline{\{\}}$

Se
$$\psi_1$$
, ψ_2 , ..., ψ_{n+1} = nil

la regola di attachment si riduce alla applicazione del principio di risoluzione all'insieme dei belief di A

Che ipotesi?

L'ipotesi alla base della Regola di Attachment è che l'agente rappresentato ragioni in modo 'coerente'.

Cioè che, se $\phi_1 \wedge \phi_2 \wedge ... \phi_n \mid -_A \phi_{n+1}$ se l'agente crede nei primi n ϕ_i , non può non credere anche nella loro conseguenza ϕ_{n+1} (che è derivabile nel suo sistema di inferenza)

Aggiungendo ϕ_{n+1} all'insieme ϕ_1 , ϕ_2 , ..., ϕ_n si introduce una contraddizione e si può, quindi, derivare la clausola vuota.

Invece:

Se ψ_1 , ψ_2 , ..., $\psi_{n+1} \neq \text{nil}$

Siccome non è possibile che se $\varphi_1 \wedge \varphi_2 \wedge ... \varphi_n \mid -_A \varphi_{n+1}$ l'agente creda in $\varphi_1, \varphi_2, ... \varphi_n$ e non in φ_{n+1}

Allora deve essere vero uno degli ψ_{i}

$$\psi_1 \vee \psi_2 \vee ... \vee \psi_{n+1}$$

Verifiche di consistenza

Il ragionamento è essenziale per garantire consistenza nella rappresentazione dello stato mentale dell'utente, specialmente nei *modelli dinamici* utilizzati, ad esempio, nella simulazione di dialoghi.

Le verifiche di consistenza possono essere effettuate:

- all'interno della parte del modello rappresentata con linguaggio del prim'ordine (interessi, preferenze, ecc) oppure
- all'interno della parte rappresentata con operatori modali (belief, goal,...), o
- nel complesso del modello.

Riprendiamo Alcuni dei Quesiti Iniziali

```
A quale informazione U è interessato?
{¬IntendsToKnow (U, x), Ans (x)}

Come rappresento i dati che U mi ha chiesto di elaborare?
In forma grafica, tabellare o altro?
{¬Prefers (U, x), Ans (x)}

C'è qualcuno, in questa classe, che conosce la trigonometria?
{¬KnowAbout (ag, TRIG), Ans (ag)}

Qual è l'esercizio che U rifiuta di fare?
{¬IntendsToDo (U, x), Ans (x)}
```

Quando usare i due metodi di rappresentazione e ragionamento?

- Interessi, preferenze, conoscenze, ...
 per rappresentare caratteristiche dell'utente utili per
 adattare la generazione di messaggi in linguaggio naturale,
 ipermedia adattivi, ...
- *Credenze, obiettivi, sensazioni* (stati mentali o attitudini): per costruire 'modelli cognitivi' dell'utente o di altri agenti, nei sistemi di simulazione del dialogo, nell'e-learning, nella generazione di messaggi persuasivi, ecc

Riferimenti principali

 Sulla regola di attachment: ancora il libro di Genesereth e Nilsson