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Abstract

The desire of knowledge, like the thirst of riches,
increases ever with the acquisition of it.

Laurence Sterne, Tristram Shandy (1760)

Developments in sensing, communications and storage technologies made it possible
to collect and store large amount of business and scienti�c data. The process of
discovering nuggets of knowledge in this data is the focus of the rapidly growing �eld
known as Knowledge Discovery in Databases (KDD). Data mining is the central
step of this process consisting of applying computational techniques that, under
acceptable computational e�ciency limitations, discover patterns (or even models)
that are interesting or valuable over large datasets. Other steps in the KDD process
include data selection and preparation as well as pattern evaluation.

Data mining research draws upon several research areas that is statistics, ma-
chine learning and databases. This justi�es the existence of multifaceted contribu-
tions in data mining research. These contributions may be classi�ed according to
the kind of database to be mined (i.e. transactional, relational, object-relational,
object-oriented, etc.), the kind of knowledge to be discovered, the kind of techniques
to be applied and the kind of applications. Focusing on techniques they strongly
depend on the representation of data that eventually mismatches the data model
adopted by the database to be mined.

Classical data mining techniques look for patterns in a single table of data, i.e.,
data is represented as �xed-length vectors of variable values where each variable
assumes only a single, primitive value. This representation is the traditional one
adopted in statistics that makes it possible to devise e�cient algorithms. However,
real-world data is seldom in this form. Rather data is stored in multiple tables of a
relational database.

To overcome limitations of classical data mining and deal with information
about several object types scattered in separate tables of a relational database,
a large body of research has recently devoted to multi-relational data mining.
Multi-relational data mining cannot be simply de�ned as data mining in relational
databases, but it denotes the study of methods and techniques to discovering multi-
relational patterns over multi-relational data. This emphasizes that relational model
is an invariant of the discovery process.

Multi-relational data mining techniques have been developed within the area of
Inductive Logic Programming (ILP) that provides functionalities to navigate rela-
tional structure of data and generate potentially new form of evidence, not readily

4



Abstract 5

available in �attened single table representation. Data in ILP is expected to be
represented in Horn clausal logic, a subset of �rst-order logic which is implemented
in the logic programming language Prolog. Unfortunately the use of �rst-order logic
as a representational language entails a little attention to data stored in relational
databases and how the knowledge of the data model can help to guide the search
process. A solution is to mine multi-relational patterns taking advantage from a
tight-integration with large relational databases and implementing ILP methods as
special instances of a multi-relational data mining framework where both attribute-
value and structural information (e.g. foreign key associations) embedded in the
database schema are explicitly exploited.

In this dissertation, we focus on regression that is a fundamental task in data
mining where the goal is to examine samples of past experience with known contin-
uous answers (labels) and generalize in future cases through an inductive process.
We explore di�erent aspects of the induction of tree structured regression models
from data and focus the attention on model trees that is trees associating multiple
function to each leaf. A new method for the data-driven construction of model trees
is presented, namely Stepwise Model Tree Induction (SMOTI) method. Its main
characteristic is the induction of trees with two types of nodes: regression nodes,
which perform only straight-line regression, and splitting nodes, which partition
the feature space. The multiple linear model associated with each leaf is then built
stepwise by combining straight-line regressions reported along the path from the
root to the leaf. In this way, internal regression nodes contribute to the de�ni-
tion of multiple models and have a �global� e�ect, while straight-line regressions at
leaves have only �local� e�ects. We also tackle the problem of simplifying model
trees mined with SMOTI and propose two methods which are based on two distinct
simpli�cation operators, namely pruning and grafting. Experimental results show
data model trees induced by SMOTI are generally simple and easily interpretable,
and their analysis often reveals interesting patterns.

Nevertheless, SMOTI underlies data stored in a single table. This implies that
aspects of internal structure of data cannot be processed and mined trees cannot
refer to such a structural property. As a consequence, this might compromise the
application of SMOTI in domains where the internal structure of the unit of analy-
sis is naturally modeled by multiple tables of a relational database (e.g. chemistry,
biology or geo-referenced data analysis). To overcome this limitation, we present a
multi-relational data mining method, named Multi-Relational Stepwise Model Tree
Induction (Mr-SMOTI), that upgrades SMOTI algorithm to multi-relational repre-
sentations and takes advantage from a tight integration with database systems.

Finally, Mr-SMOTI is tested in some applications to both geo-referenced census
data analysis and bioinformatics.



Chapter 1

Introduction

In many problems encountered in practice the prediction of an attribute associ-
ated with a case has a great potential payo� [WI98]. The two principal prediction
problems are classi�cation and regression. Samples of past experience with known
answers (labels) are typically examined and generalized in future cases through an
inductive process. In the usual setting, data is generated independently and iden-
tically distributed from an unknown distribution P on some domain X and labeled
according to an unknown function g with range Y . The domain of g is spanned by
m independent (or predictor) random attributes or variables Xi (both continuous
and discrete), while the range of g is either a �nite set of unordered category labels
(i.e. classi�cation) or a subset of real number < (i.e. regression). Consequently,
in regression problems, the dependent (target) variable Y is continuous. In this
perspective, regression analysis can be loosely de�ned as a set of learning methods
that receive a training sample S = {(x, y) ∈ X×Y |y = g(x)} and attempt to return
a function f close to g on the domain X. Closeness of f to g can be measured in
many ways, for instance, by means of the expected square error. The discovered
f can then be used either to predict behavior of the (unknown) target variable for
given new values of the predictors or to reveal some yet unknown relationship in
the domain S under analysis.

Regression problems have been deeply investigated in several scienti�c domains
such as statistics, machine learning and data mining with interesting applications in
social sciences, physical and biological sciences, business and technologies as well as
humanities. Still in the majority of these studies, the regression model is assumed to
be a linear combination of predictor variables and the coe�cients of the combination
are determined by the method of the least square regression [DS82]. Re�nements
and extensions to non-linear models are also well-known in statistics and applied in
many real world applications.

However, classical statistical methods have several limitations. First, (non-) lin-
ear regression models are often hard to understand. Second, these regression models
are based on the assumption that all predictor variables are equally relevant in the
whole sample space. Third, the least square method does not allow prior domain
knowledge to be used in the construction of the regression model. In addition,

6
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standard linear regression has obvious drawbacks due to the linear structure that
is imposed on data.

To face some of these issues and deal with data having more complex data struc-
ture, sophisticated techniques have been developed. Non-parametric approaches to
regression are able to tackle a wide range of regression problems by not imposing any
a-priori de�ned global form to the regression surface [Har90]. Consequently, they do
not try to �t all training data with one single model, but assume a functional form
only at local level. For instance, in tree structured approaches a regression model
is typically top-down induced from training sample in form of a tree consisting of a
hierarchy of nodes starting in a top node that is the root node. Each node is gen-
erally associated with a logical test on predictor variables with exception of leaves
(i.e. bottom nodes in the hierarchy), which contain the prediction functions of the
tree-based regression model. Regression trees associate a constant with each leaf so
that the prediction is the same for all sample data falling in the same leaf. This
means that they approximate the function g by means of a piecewise constant one.
A generalization of regression trees is represented by model trees, which associate
leaves with multiple (linear) models that is, they approximate the function g by
a piecewise (linear) function. In model trees di�erent values can be predicted for
sample data falling in the same leaf.

Tree structured regression models have some nice properties such as the low
computational complexity, the wide range of applicability in several research �elds as
well as the comprehensibility of mined regression models due to the use of a symbolic
representation of the regression surface. However, as these models do not assume
any �xed form of the regression surface, they can easily generate too many local
areas to approximate the unknown surface and over�t training data. Furthermore,
over�tting may lead to lower predictive accuracy on unreliable or noisy data. To
keep the over�tting problem under control and deal with noise in training data,
sophisticated simpli�cation (pruning) methods have been developed. Simpli�cation
is usually regarded as a search through the space of all possible simpli�ed tree of an
overly large tree. Current approaches to this search problem are derived from those
developed for decision trees [EMS97] or apply other criteria such as minimizing the
binary description length of the tree model [RK98].

Although being one of the most successful regression analysis technique, the tree
structured family of regression models also has its limitations. The central problem
is properly the restrictive propositional data representation language due to the
single table assumption [Wro01]. Training data must be represented as �xed-length
vectors of variable values where each variable can have only a single, primitive value.
They are generally stored in a table (or �relation� in database terminology), where
each row corresponds to a unit of analysis1 while each column corresponds to either
a predictor variable or the target variable.

The situation is more complex in real world applications where units of analysis
may involve separate units of observation, i.e. the entities that are observed and
about which information is systematically collected in primary research. For in-

1In statistics, the unit of analysis is the basic entity or object about which generalizations can
be made based on an analysis and for which data is collected in the form of variables.
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stance, a major national study may use a form that collects information about each
person in a dwelling and information about the housing structure, hence it collects
data for two units of observation: persons and housing structures. From this data,
di�erent units of analysis may be constructed: household could be examined as a
unit of analysis by combining data from people living in the same dwelling or family
could be treated as the unit of analysis by combining data from all members in a
dwelling sharing a familial relationship.

Units of observation describe objects sometime of di�erent nature, therefore
units of analysis cannot always be constructed by simply aggregating (i.e. min, max,
count or average) properties of the corresponding units of observation. Conversely,
it may be important to distinguish units of observation which represent target objects
of analysis from other target-relevant objects and represent the relationships among
them.

Modeling properties of these di�erent objects as well as relationships among
them is a key challenge in prediction problems that arise in complex domains, such as
spatial domains [SSV+02] or biological domains [DBK+99], where the prediction of
a property of a target object can be strongly a�ected by properties of target-relevant
objects according to the relationships among them. For instance, if geographical
data are jointly mined with census data to predict the number of inhabitants in
a census enumeration district (ED), the target objects of analysis are the EDs
(i.e., the smallest areal unit for which census data are published) while the target-
relevant objects are the EDs forming the neighborhood as well as spatial objects in
di�erent geographic layers (e.g. urban areas, shopping areas or transport network)
overlapping or intersecting the ED boundary.

The single table representation, supported by traditional regression analysis
methods, appears totally inadequate in this case since di�erent units of observa-
tion (EDs, urban areas, shopping areas, transport network and so on) may have
di�erent properties, which are properly modeled by as many data tables (relational
data model) as the number of object types [KBSV99]. Moreover, relationships (e.g.
topological, distance and direction relationships, which are implicitly de�ned by the
location and the extension of spatial objects [Kop99]) among units of observation
forming the same unit of analysis can be also explicitly modeled in a relational
database by means of tables describing the relationship as well as foreign key as-
sociations between the table describing the relationship in question and the tables
representing objects involved in the relationship.

In principle, it is also possible to consider a single relation reconstructed by
performing a relational join operation on the tables. However, this approach is
fraught with many di�culties in practice [De 02][Get01].

A solution can be found in resorting to the �eld of relational data mining [DL01a]
which provides functionalities to navigate the relational structure and generate po-
tentially new forms of evidence not readily available in a �attened single table
representation. Discovered model (patterns) are multi-relational, that is, they in-
volve multiple relations from a relational database. They are typically stated in a
more expressive language (e.g. subsets of �rst-order logic) than patterns described
on a single data table.
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1.1 Objectives
The main objective of this dissertation is to revise the current state of art on top-
down induction of model trees (TDIMT) in order to improve interpretability and ac-
curacy of these regression models as well as to extend their applicability to practical
problems where data is naturally stored in multiple tables of a relational database.

We start from the strengths and weaknesses of well known data-driven ap-
proaches to mine model trees and propose a new method named Stepwise Model
Tree Induction (SMOTI). Its main characteristic is the induction of trees with two
types of nodes: regression nodes, which perform only straight-line regression, and
splitting nodes, which partition the training space. The multiple linear model as-
sociated with each leaf is then built stepwise by combining straight-line regressions
reported along the path from the root to the leaf. In this way, SMOTI, solves the
problem of modeling phenomena where some variables have a global e�ect while
others have only a local e�ect. Indeed, internal regression nodes contribute to the
de�nition of multiple models and have a global e�ect, while straight-line regressions
at leaves have only local e�ects.

We then explore the idea of combining the stepwise construction supported by
SMOTI with achievements of multi-relational data mining in and overcome limi-
tations due to single table assumption. Hence, we illustrate how to upgrade the
propositional SMOTI to relational setting and mine multi-relational model trees
directly from data which resides in multiple tables of a tightly integrated Oracler
9i relational database. Patterns associated with each node of the tree structure are
multi-relational patterns since they may involve multiple tables from the training
relational database.

Finally, we discuss an implementation of both SMOTI and its upgrade to multi-
relational setting, named Mr-SMOTI, and evaluate them empirically.

1.2 Motivation and Contributions
The majority of research on mining model trees has reserved much attention to
the propositional setting where training data is represented by a �xed set of single
valued attributes. Some of the model tree induction methods developed are: M5
[Qui92], RETIS [Kar92], M5' [WW97], TSIR [Lub94], HTL [Tor97], which has
been subsequently included in RT [Tor99], SUPPORT [CHLY94], which has been
extended in GUIDE [Loh02], and SECRET [DG02].

All these methods perform a top-down induction of model trees (TDIMT) by
recursively partitioning the training space. However, some of them (e.g., M5, M5'
and HTL) �rst build the tree structure through recursive partitioning of the training
data and then associate leaves with models. This means that the partitioning of
training data (splitting stage) does not take into account the regression models that
can be associated with the leaves (predictive stage). Consequently, the heuristic
evaluation function used to select the best partition is computationally e�cient,
but it may compromise the discovery of the correct trees because of its incoherence
with the linear model associated with leaves.
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This problem is solved in RETIS, whose heuristic evaluation function used for
a binary split minimizes a function of the mean square error (MSE) computed
with respect to the regression planes found for both the left and the right child.
In practice, for each possible partitioning the best regression planes at leaves are
chosen, so that the selection of the optimal partitioning can be based on the result of
the prediction stage. A di�erent approach is followed in SUPPORT and SECRET,
which reduce the computational complexity by transforming a regression problem
into a classi�cation problem, and then by choosing the best partition on the basis
of computationally e�cient evaluation functions developed for classi�cation tasks.

A weakness of solution implemented in RETIS is that the regression planes in-
volve all continuous variables. When some of the independent variables are linearly
related to each other, that is, they are (approximately) collinear, several problems
may occur [DS82]. First, if at least one of the independent variables is a per-
fect linear function of one or more other independent variables in the equation, the
coe�cients may not be uniquely determined. Second, estimates of the regression co-
e�cients �uctuate markedly from sample to sample. Regression coe�cients cannot
be used as interpretive tools to evaluate the relative importance of the independent
variables. Interestingly, problems due to collinearity do not show in the model's �t.
The resulting model may have very small residuals, but the regression coe�cients
are actually poorly estimated. A treatment suggested in this case is deleting some
of the variables in the full �tted model. Therefore, variable subset selection is a
desirable part of regression analysis that is not supported by RETIS.

An additional problem of almost all TDIMT methods is that the regression
model associated with a leaf is built on the basis of those training cases falling in
the corresponding partition of the training data. Therefore, models in the leaves
have only a local validity and do not consider the global e�ects that some variables
might have in the underlying model. In model trees, global e�ects can be represented
by variables that are introduced in the linear models at higher levels of the tree.
However, this requires a di�erent tree-structure, like that adopted in TSIR, where
internal nodes can either de�ne a partitioning of the training data or introduce some
regression variables in the models to be associated with the leaves.

In this context, our main contribution with this work is to propose SMOTI as
a means to overcome problems encountered in some existing TDIMT systems by
exhibiting the following characteristics:

1. Induced model trees have two types of internal nodes: regression nodes, which
perform only straight-line regression, and splitting nodes, which partition the
training data. Leaves are always regression nodes.

2. A multiple linear model can be associated with each leaf. It involves all the
continuous variables in the regression nodes along the path from the root the
leaf.

3. Variables involved in regression nodes at top levels of the tree capture global
e�ects, while those involved in regression nodes close to the leaves capture
local e�ects.
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4. The heuristic evaluation function is coherent with respect to the linear model
associated with the leaves.

5. Only a subset of continuous variables may be involved in multiple linear mod-
els associated with the leaves, thus solving problems due to collinearity.

6. Induced model trees can be easily interpreted.

In addition, our method has been implemented as a module of the knowledge
discovery system KDB2000[ACM02] (http://www.di.uniba.it/∼malerba/software/
kdb2000/) that does not input training data from a �le but interfaces a relational
database. Nevertheless, SMOTI underlies the single table assumption and requires
the training data to be stored in a single table. This implies that aspects of inter-
nal structure of data cannot be processed and mined trees cannot refer to such a
structural property. As a consequence, this might compromise the application of
SMOTI in domains where the internal structure of units of analysis is modeled by
multiple tables of a relational database.

To overcome this restriction, one solution is to mould a relational database
into a single table format that traditional attribute-value algorithms can handle
[KHS01]. This approach corresponds with the concept of propositionalization in
machine learning and has been employed into regression tasks as well. In [DTU95],
the DINUS algorithm [LD94] is applied to transform a Datalog representation of a
dynamic method into a propositional form (i.e., attribute-value pairs), so that the
classical model tree induction method RETIS based on the single-table assumption
can be applied (DINUS/RETIS). One way of obtaining an attribute-value repre-
sentation is to create a single table by deriving attributes from other joined tables.
However, this produces an extremely large table with much data being repeated,
which is di�cult to handle. A di�erent approach is the construction of a single
central table that summarizes and/or aggregates information that can be found in
other tables. Also this approach has some drawbacks, since information about how
the data were originally structured is lost. Therefore, a proper way of explicitly and
e�ciently dealing with multiple tables is necessary.

The idea of mining multi-relational regression models over data which resides in
multiple relations has already been reported in [D�95], where the multi-Relational
Regression problem has been formulated in the normal ILP (Inductive Logic Pro-
gramming) setting. Thus far, ILP has been proposed two approaches to solve multi-
Relational Regression problems. An approach is based on separate-and-conquer
(or sequential covering) strategy to build a set of Prolog clauses. The alternative
approaches is based on the divide-and-conquer strategy to induce tree structured
models and then translate these models into Prolog programs. Some examples
of methods that follow the �rst approach are FORS [Kar95] [KB97] and FFOIL
[Qui96], while three methods that follow the second approach are SRT [Kra96],
S-CART [Kra99] [KW01] and TILDE-RT [Blo98] [BD98].

In contrast with DINUS/RETIS, these methods solve the multi-Relational Re-
gression problem in its original form, and do not require transformation of the
problem. Moreover, they can process relational background knowledge.
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All these methods are based on processing main-memory data stored as Prolog
facts. This requires some pre-processing to transform tuples in facts when data
are originally stored in databases as in many real-world applications. Much of
the pre-processing, which is often expensive in terms of computation and storage,
may be unnecessary since that part of the hypothesis space may never be explored.
Furthermore, in applications where data frequently changes, this pre-processing is
frequently repeated.

Main-memory data processing is a common aspect of most data mining meth-
ods working not only in the multi-relational setting but also in the propositional
one. This results in high performance for computationally intensive processes when
enough memory is available to store all necessary data. However, most data mining
algorithms are characterized by frequent access to data that satis�es some selection
conditions. This suggests that for data intensive processes it may be useful to ex-
ploit powerful mechanisms for accessing, �ltering and indexing data, such as those
available in database management systems (DBMS).

In general, we may observe that little attention has been given to data stored in
relational databases and to how knowledge of a data model can help to guide the
search process [KBSV99]. A solution is to combine the achievements of the KDD
(Knowledge Discovery in Database) �eld on the integration of data mining with
database systems, with some results reported in the ILP �eld on how to correctly
upgrade propositional data mining algorithms to multi-relational representations.
For this purpose, we present a multi-relational data mining method, named Mr-
SMOTI, that upgrades SMOTI algorithm to multi-relational representations and
takes advantage from a tight integration with database systems.

From an inductive database perspective [IM96], this tight coupling also aims
at supporting a direct and uniform access to both data and patterns stored in
databases. Other equally important reasons are: i) the applicability of data mining
algorithms to large datasets; ii) the exploitation of useful knowledge embedded in
the data model available in the database schema free of charge, iii) the possibility
to directly specify which data stored in a database have to be mined without any
pre-processing.

1.3 Structure of the thesis
This dissertation is organized as follows. Chapter 2 presents an overview on knowl-
edge discovery from database focusing on multi-relational approaches to data min-
ing (MRDM) to deal with data scattered over multiple tables. We also provide a
database perspective to KDD exploring the possibility of tightly integrating a data
mining component with database systems. Finally, we exploit the achievements
of ILP �eld on how to correctly upgrade propositional data mining algorithms to
multi-relational representations. Indeed, considering the strong link with logics, it
is not surprising that many algorithms for MRDM originate from ILP.

In Chapter 3 the problem of mining regression models is formally de�ned in
both propositional and relational setting and related works in both statistics and
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machine learning are reported.
In Chapter 4 the method SMOTI is introduced and its computational complexity

is analyzed. Background and motivations of stepwise construction of models trees
with both splitting and regression nodes are discussed. Some experimental results
on both arti�cially generated datasets and benchmark datasets used for studies
on regression and model trees are commented and a comparison with state of art
model tree induction methods such as M5' and RETIS is performed. Regarding
experiments on benchmark datasets, we also look for interesting patterns in model
trees mined by SMOTI in order to reveal presence of variables that have a global
e�ect in training data rather than a local one. Finally, we tackle the problem
of simplifying SMOTI model trees in order to avoid over�tting of training data.
We propose two methods which are based on two distinct simpli�cation operators,
namely pruning and grafting. Theoretical properties of the methods are reported
and the e�ect of the simpli�cation on several datasets is empirically investigated.
Results are in favor of simpli�ed trees in most cases.

In Chapter 5 we demonstrate how SMOTI can be upgraded toward multi-
relational setting to mine model trees from data stored in multiple tables of a
relational database. The resulting Mr-SMOTI exploits the stepwise strategy to
build model trees with both regression and splitting nodes as well as detect the
global or local e�ect of variables that arise in the domain to be modeled. However,
di�erently from SMOTI, variables involved in both types of nodes can belong to
di�erent tables of a relational database. The join of these tables is dynamically
determined on the basis of the database schema and aims at involving variables
from several relations to build a predictive model for the target attribute. As a
consequence, mined model trees are expressed by multi-relational patterns repre-
sented in a graphical language based on selection graphs, which can be translated
into SQL, or equivalently into �rst-order formulae. Details of the tight integration
of Mr-SMOTI with Oracler 9i are also discussed.

In Chapter 6 some applications of Mr-SMOTI to both geo-referenced census
data and bioinformatics are presented. The former involves data provided by the
United Kingdom (UK) 1991 census where the goal is to investigate the migration
phenomena (i.e. number of migrants) in Stockport census enumeration districts.
The latter involves two datasets, namely Mutagenesis and Biodegradability, which
are extensively used in ILP. Mutagenesis concerns the problem of predicting the
mutagenic activity of molecules while Biodegradability concerns the investigation
of the biodegradability in an aqueous environment under aerobic conditions.

Finally, Chapter 7 concludes by discussing the main contributions of this work
and describing direction for future work.



Chapter 2

Relational Knowledge
Discovery in Databases

The rapidly expanding amount of data gathered by collection tools, such as satellite
systems or remote sensing systems has paved the way for advances in knowledge
discovery and data mining. It can be argued that nuggets of useful information
are hidden in masses of data and therefore the problem of how to turn collected
data into useful information becomes a signi�cant one. On the other hand, having
reached sizes that defy even partial examination by humans, modern databases and
collections of datasets are literally swamping users. This data �rehouse phenomenon
appears in many �elds including science data analysis, medical and health care,
corporate and marketing, and �nancial markets. Hence, (semi-) automatic methods
for locating interesting information from data are useful.

On-line Analytical Processing (OLAP) [Cod93] o�ers tools of interactive data
analysis by simply aggregating data and counting frequencies. However, OLAP
does not perform any explorative modeling of data. In addition, traditional ad
hoc mixtures of statistical techniques and data management tools are no longer
adequate for analyzing the large collection of data that is typically stored in real-
world databases.

In this context, knowledge discovery in databases (KDD) has emerged as a grow-
ing �eld of multidisciplinary research for discovering interesting/useful knowledge
(models or patterns) from large databases. Data mining is the central step in this
process, concerned with applying computational methods to discover patterns in
data (i.e. generalization extracted from the data), while other steps in the KDD
process include data selection and preparation as well as pattern evaluation.

Most of data mining techniques have been developed for data stored in the tra-
ditional matrix form, where rows represent units of analysis and columns represent
variables. This representation, derived from statistics, makes it possible to employ
matrix operations for representing several data analytic procedures quite succinctly
and devise e�cient algorithms. However, real-world data is seldom of this form.
Rather relational databases are widely used. As a consequence, a large body of
recent research has been devoted to the �eld of relational data mining in order
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to discover relational patters in relational data scattered in multiple tables of a
relational database.

Relational data mining techniques have been mainly developed within the �eld
of Inductive Logic Programming (ILP) where data is expected to be represented in
subsets of �rst-order logic such as Horn clausal logic. It is noteworthy that �rst-
order logic makes ILP techniques able to �t relational data model. Nevertheless,
they reserve little attention to data actually stored in relational databases and to
how knowledge embedded in this data model can help to guide the search process.
Indeed, most of them work on main-memory data stored as Prolog facts. Hence,
some pre-processing is required to transform tuples stored in relational databases
into facts.

A solution may be to exploit the bridge between ILP and relational database to
correctly upgrade classical data mining methods to multi-relational representations
as well as the achievements of KDD in tightly integrating data mining methods
with databases.

This chapter introduces and illustrates the KDD process and focuses on the
concept of inductive databases. Indeed, inductive databases are databases that
in addition to data also contain patterns. This means that within the inductive
database framework, KDD is modeled as in interactive process in which users can
query patters as well as data by means of an inductive query language. This leads
to combine data mining methods with database language such as SQL. We also
explore how ILP can be adapted to KDD in order to search for patterns eventually
expressed in relational algebra instead of logic. Such an algorithm strictly does
not fall in the class of ILP algorithms but it does use techniques based on ILP.
Finally, we investigate the achievements and drawbacks of multi-relational data
mining approaches and draw some conclusions.

2.1 KDD and data mining
The term KDD was coined at the �rst KDD workshop in 1989 to emphasize that
knowledge is the end product of a data-driven discovery. Indeed, KDD was initially
de�ned as:

�the non trivial extraction of implicit, previously unknown and potentially useful
information from data� [FPM91].

However, a revisited version of this de�nition states that:
�knowledge discovery is the non-trivial process of identifying valid, novel, poten-

tially useful, and understandable patterns in data� [FPSSU96].
Here data is a set of facts (e.g. cases in a database), while pattern is an expression

in some language representing a parsimonious description of a subset of data or
a model (i.e. characterization of the global dataset) applicable to that subset.
Not trivial means that a pattern is not straightforward computation of prede�ned
quantities such as the average value of a set of numbers but some search or inference
should be involved in its discovery.

In this context, the term KDD refers the overall process of discovering useful
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Figure 2.1: Knowledge Discovery in Database process.

knowledge from data while data mining refers to a particular step in this pro-
cess. More precisely, data mining consists of applying computational techniques
that, under acceptable computational e�ciency limitations, produce a particular
enumeration of patterns (or even models) over the data.

The two primary goals of data mining in practice tend to be prediction and
description. Prediction involves using some variables or �elds in databases to predict
unknown or future values of the other variable of interest. Description focuses on
�nding human-interpretable patterns describing data.

In a sense, data mining is a central step in KDD process. However, blind ap-
plications of data mining methods can be a dangerous activity easily leading to
the discovery of meaningless patterns. Hence, the additional steps concerning with
data selection and preparation, data mining and pattern evaluation are essential to
ensure that useful knowledge is derived from data (see Figure 2.1).

KDD has evolved as an interdisciplinary �eld which merges together machine
learning, statistics, databases, knowledge acquisition, data visualization, high per-
formance computing and expert systems. Indeed, KDD overlaps with machine
learning and pattern recognition in the study of data mining algorithms for mod-
eling data and extracting patterns, but it puts a strong emphasis on working with
large datasets stored in real-world databases. Thus scaling properties of algorithms
are of fundamental interest. It also focuses on discovering patterns that can be in-
terpreted as interesting knowledge. Since many (often in�nitely) patterns or models
may be discovered from the same data, criteria for deciding what structures con-
stitute knowledge are needed. Classical measures such as validity (e.g. estimated
predictive accuracy on new data) or utility (e.g. gain in running time or accuracy
due to the better prediction) can be adopted from decision analysis or statistics.
Conversely, other measures such as novelty and understandability are more di�cult
to de�ne. For instance, understandability can be de�ned by simplicity (e.g. the
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number of bits to describe a pattern). The interestingness is usually taken as the
overall measure of pattern value combining validity, novelty, usefulness and simplic-
ity [PM94] [ST95] and a pattern can be considered as knowledge if its evaluation
exceeds some interestingness threshold.

KDD also has much in common with statistics, particularly exploratory data
analysis. Indeed, a statistical approach o�ers method for quantifying the inherent
uncertainty resulting when some patterns are inferred from a sample of an overall
population. KDD systems (e.g. KDB2000 [ACM02] and WEKA [WF00]) embed
statistical procedures for sampling and modeling data, evaluating hypotheses as well
as handling noise. In contrast to traditional approaches in statistics, KDD approach
typically employs more search in model extraction and operates in the context of
large datasets with richer data structures.

Finally, another area related to KDD is data warehousing that refers to the pop-
ular business trend for collecting and cleaning large collections of data. The goal is
to provide views of collected data that are non practical for individual transactional
sources and make them available for on-line analysis and decision support. The most
popular approach for analyzing data warehouse is OLAP. However, OLAP tools are
targeted toward simplifying and supporting data analysis, while KDD tools aim at
automating as much of the process as possible [FPS96].

2.2 A database perspective on KDD
The current generation of database systems have been designed mainly to support
business applications. The success of Structured Query Language (SQL) [Cod72]
for relational databases has capitalized on a small number of primitives su�cient
to support a vast majority of such applications. However, these primitives are not
completely able to capture the emerging family of novel applications dealing with
knowledge discovery. Indeed, conventional database systems provide answers if the
answers are in the databases. Deductive databases try to overcome this limitation
by adding a database the capabilities for drawing deductive consequences from
data using a rule base, which is called the intensional component of the database.
When data mining methods remain not integrated with DBMSs only very limited
domain knowledge is employed in the KDD process. This leads to an emerging new
frontier for database research that states the growing need for Knowledge and Data
Discovery Management Systems (KDDMS) to manage KDD applications just as
DBMSs successfully manage business applications [IM96].

Queries in KDDMS are more general than SQL queries since queried objects are
far more complex than tuples stored in a relational database. To achieve this, we
need to distinguish between a KDD object and a KDD query. A KDD object is
a pattern that may be a rule, clustering, classi�cation or regression model. Rules
are essentially probabilistic formulas or multidimensional correlation. Clustering
refers to collections of sets of objects such that each set consists of objects grouped
together by similarity according to a similarity measure. Conversely, classi�cation
and regression models are typically obtained using neural networks, decision or
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regression trees, etc. A KDD query is a query that returns a set of objects, which
can be either KDD objects or database objects such as tuples. The KDD objects
may not exist a-priori, thus querying them requires their run time generation, but
they may be simply retrieved in the case they have been previously generated and
stored in a database.

This view gives rise to inductive database [Man97] that does not only store data
but also patterns. As a consequence, it allows to answer queries that require drawing
inductive inferences and deriving plausible conclusions. In addition, it leads to the
tightly integration of conventional databases, databases of patterns and methods of
inductive mining.

Hence, an inductive database I(D, P) consists of a data component D and a
patten component P. The assumption is that both data and pattern components D
and P are sets of sets. This is motivated by an analogy with traditional relational
databases. A relational database can be considered as a set of relations where
each relation is a set of tuples. So relational databases are exactly sets of sets.
This assumption is further justi�ed because data mining step is often coping with
di�erent datasets (e.g. training set and testing set) [De 02].

Everything that is commented for data component D also applies to pattern
component P. This means that during the knowledge discovery process one will
often work with di�erent sets of patterns, each of which may reside in the inductive
database. These new sets may correspond to hypotheses constructed on di�erent
datasets during cross-validation or under various parameter setting as well as post-
processed patterns. The consequence is that, within inductive databases framework,
KDDMS should be able to persistently store and manage the KDD objects as well as
provide the ability to query them. Thus, querying has two major roles: generation
of new KDD objects and retrieval of the ones previously generated.

Obviously, this requires a new generation of query languages (in a wider sense,
of DDL, DML too), called KDD query languages or data mining query languages
that allows us to reinterpret the KDD process as a query processing. KDD queries
allow the data miner to perform data selection and transformation (this is sup-
ported by conventional databases), specify patterns of interest, retrieve patterns of
interest already stored in the database or induce new patterns of interest from pre-
processed data, evaluate induced patterns on fresh data, specify domain knowledge
and constraints for the inductive process and keep persistency of induced patterns.

It is worthwhile that a KDD query language also satis�es the closure principle
[BKM99] which states that a query in relational database does not care if the
argument is the original database or the result of another query. Thus, a KDD
query may use multiple layers of nesting that involve several times both database
objects layer and KDD objects layer. A KDD query can be also nested in a regular
relational query and relational queries should form a proper subset of KDD queries.
Some examples of KDD queries:

1. Discover the strongest rule (according to some prede�ned criteria) with some
user speci�ed attributes occurring in the antecedent and/or consequent of
rule. Then �nd all tuples that violate this rule and discover a rule satis�ed
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by such set of tuples.

2. Find tuples belonging to the largest cluster in a clustering built according to
a user speci�ed similarity measure.

3. Generate a regression model (e.g. a regression tree) to predict the value of a
continuous attribute trained on a user de�ned training set (speci�ed through
a SQL query) with user speci�ed predictor attributes and target attribute.
Then predict the unknown value of the target attribute in a testing set and
use this set to mine a new regression model.

This inductive database view con�rms that data mining cannot be simply an-
other synonym for statistical data analysis or inductive learning on large datasets.
The key new component is the ad hoc nature of KDD queries and the need for e�-
cient query compilation into a multitude of existing and new data analysis methods.

Hence, data mining builds upon the existing body of work in statistics and
machine learning, but it also provides completely new functionalities. The main
task of the inductive databases is exactly to e�ciently answer the queries expressed
in some data mining query language and, as a consequence, the need of speeding
up knowledge discovery in databases.

2.2.1 Knowledge discovery query languages
Several data mining (or knowledge discovery) query languages have been proposed
in the literature. MSQL is a rule query language proposed by Imielinski and Virmani
[IV99] for relational databases. It satis�es the closure property, that is, the result
of a query is a relation that can be queried further. Moreover, a cross-over between
data and rules is supported, i.e. there are primitives in the language that can map
generated rules back to the source data, and vice-versa. The combined result of
these two properties is that a data mining query can be nested within a regular
relational query.

Another data mining query language for relational databases is DMQL [HFW+96].
Its design is based on �ve primitives, namely the set of data relevant to a data min-
ing task, the kind of knowledge to be mined, the background knowledge to be used
in the discovery process, the concept hierarchies, the interestingness measures and
thresholds for pattern evaluation.

GMQL is based on DMQL and allows the user to specify the set of relevant data
for a spatial mining process, the type of knowledge to be discovered, the thresholds
to �lter out interesting rules, and the concept hierarchies as the background knowl-
edge [Kop99]. In the process of selecting data relevant to the mining task, the user
has to specify (i) the relevant tables, (ii) the conditions that are satis�ed by the
relevant objects and (iii) the properties of the objects which the mining process is
based on. Conditions may involve spatial predicates on topological relations, dis-
tance relations and direction relations. Although data can be selected from several
tables, mining is performed only on a single table which results from an SQL query
(single table assumption). GMQL queries can generate di�erent types of knowl-
edge, namely characteristic rules, comparison rules, clustering rules, classi�cation
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rules and association rules. All observations reported above for DMQL applies to
GMQL as well.

DMQL is an object-oriented extension of DMQL [ESF01]. The design of ODMQL
is based on the same primitives used for DMQL, so the main innovation is that each
primitive is in an OQL1-like syntax. Path expressions are supported in ODMQL,
while more advanced features of object-oriented query languages, such as the use
of collections and methods, are not mentioned.

Finally, a spatial data mining object query language, named SDMOQL [MAC03],
has been proposed to solve problems, due to the integration of di�erent technologies,
such as data mining, object-oriented (OO) DBMS, and Geographical Information
System (GIS) in INGENS [MEL+03]. INGENS is a prototypical GIS that embeds
data mining facilities support sophisticated end users in their topographic map
interpretation tasks. SDMOQL is based on OQL and interfaces an ILP system,
named ATRE [Mal03] that works with �rst-order representations of both input
data and output patterns. It separates the logical representation of spatial objects
from their physical or geometrical representation. SDMOQL does not allow users
to formulate nested queries, however it supports some form of cross-over between
data and mined rules. This characteristic is naturally supported as the result of
the integration of deductive inferences for extracted rules and data selection queries
expressed in OQL. Moreover, to face the challenging problems deriving from natural
complexity of spatial domains seven primitives have been considered as guidelines
for the design of SDMOQL. They are:

1. the set of objects relevant to a data mining task,

2. the kind of knowledge to be mined,

3. the set of descriptors to be extracted from a digital map,

4. the set of descriptors to be used for pattern description,

5. the background knowledge to be used in the discovery process,

6. the concept hierarchies,

7. the interestingness measures and thresholds for pattern evaluation,

8. the expected representation for visualizing the discovered patterns.

In this way, SDMOQL, di�erently from GMQL is able to separate the set of
automatically generated (primitive) descriptors from the set of descriptors used
to specify the patterns in geographical objects of interest for the application. An
additional design principle is that of visualization, since in spatial data mining it is
important to specify whether results have to be visualized or presented in a textual
form.

1OQL is the standard de�ned by ODMG (Object Database Management Group) for designing
object oriented models (www.odmg.org).
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2.2.2 Speeding up knowledge discovery in databases
Scalability and e�ciency are crucial in KDD due to the huge amount of data stored
in real-world databases. Most data mining (or KDD) systems still process data
in main memory. This results in high performance for computationally intensive
processes when enough memory is available to store all necessary data. However,
a common aspect of many data mining algorithms is their frequent access to data
that satis�es some selection conditions. For data intensive processes, it is important
to exploit powerful mechanisms for accessing, �ltering and indexing data, such as
those available in database management systems (DBMS). This motivates a tight
coupling between data mining methods and database systems.

In the inductive database perspective, this tight coupling also aims at supporting
a direct and uniform access to both data and patterns stored in databases. Other
equally important reasons are: i) the applicability of data mining algorithms to
large data sets; ii) the exploitation of useful knowledge of data model available, free
of charge, in the database schema, iii) the possibility to specify directly what data
stored in a database have to be mined, without any pre-processing.

The last reason is even more justi�ed by the emergent trend in KDD research,
namely multi-relational data mining [DL01a], which looks for patterns that involve
multiple relations of a relational database. Thus data taken as input by multi-
relational data mining systems typically consists of several tables and not just a
single one. Conversely, the single-table assumption [Wro01] forces the user of tra-
ditional data mining systems to perform complex SQL queries in order to compute
a single table whose rows (or tuples) describe independent units of analysis.

Some examples of integration of data mining and database systems are presented
in [STA98] for association rules, in [OC00] for clustering and in [SD01] for decision
trees. In [MS03], a system named MiningMart has been proposed for approaching
the knowledge discovery in database by building upon database facilities and inte-
grating data mining algorithms into the database environment. In all these works it
is advocated the importance of implementing some data mining primitives [FL96] to
implement them by exploiting DBMS extension facilities, e.g. packages, cartridges
or extenders.

In [ACL+03] a package implemented in PL-SQL has been presented to support
the extraction of spatial relations between geographical objects stored in an Oracle
Spatial database. This is also a rare example of multi-relational data mining sys-
tem, named SPADA [LM04], (loosely) integrated with an object-relational spatial
database. Other two examples of tight integration of multi-relational data mining
systems with a database are MRDTL [Lei02] and SubgroupMiner [KM02]. These
three examples refer to the tasks of association rule mining, classi�cation (with
decision trees), and subgroup discovery, respectively.

2.3 Inductive logic programming for KDD
Inductive Logic Programming (ILP) is a research area situated at the intersection
of several scienti�c domains. It is built on logic programming whence it borrows
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a knowledge representation formalism but it also exploits achievements in machine
learning [ND97] that are often relevant to the �eld of knowledge discovery and
particularly data mining.

Logic programming is a programming paradigm in which a program consists
of �rst-order logic formulae. The most common logic programming language is
Prolog [Kow88], whose engine can deduce those facts which are certainly true from
�rst-order formulae assumed to be true.

An example of this deductive reasoning is the Aristotelian syllogism:
�if all humans are mortals and Socrates is human then Socrates is mortal �.

The premises of the reasoning may be expressed in Prolog as follows:
mortal(X ) :- human(X ). (i.e. for each X such that X is human then X is mortal)
human(socrates). (i. e. Socrates is human).

Thereby, it is possible to query the Prolog engine whether Socrates is mortal
(i.e. :- mortal(socrates).) or for which X it can be proved that X is mortal (i.e :-
mortal(X ).). In the former case, the engine answers �yes�, while in the latter case
it returns �X = socrates�.

Machine learning can be trivially de�ned as the study of how to make machines
learn. Learning is generally considered one of the most important ability that
characterizes any agent (be it a human, animal or machine) to be called intelligent.
Indeed, Langley (1996) de�nes the learning as:

�the improvement of performance in some environment through the acquisition
of knowledge resulting from experience in that environment� [Lan96].

According to this de�nition, the learning process consists of two subtasks: ac-
quiring knowledge and putting it to use. Focusing on the �rst task, we may consider
the acquisition of knowledge as the inference of a general theory (i.e. knowledge)
from a set of examples (i.e. experience). This reasoning from speci�c to general
is named inductive reasoning. In contrast to deductive reasoning which proceeds
from general to particular, inductive reasoning does not guarantee that the answer
is correct. Therefore, the result of inductive reasoning is usually referred as hypoth-
esis. Such a hypothesis needs some external motivation, such as statistical evidence.
Both machine learning and data mining depend heavily on inductive reasoning that
is obviously harder than deduction.

Many di�erent techniques and approaches exist, but at present only ILP of-
fers a framework for inductive reasoning. Hence, ILP is an obvious candidate as a
paradigm for both machine learning and data mining [Blo98]. Moreover, ILP, which
is more powerful than most other techniques such as attribute-value (or propo-
sitional) learning, seems to �awlessly deal with current database systems where
relational technologies with multiple tables has long been the standard. From a
KDD perspective, ILP can be seen as the development of techniques and systems
for multi-relational data mining [DL01b] to emphasize the ability of dealing with
multi-relational data and discover multi-relational patterns. This allows problems
to be treated that cannot be handled easily with classical data mining methods
which only deal with data that resides in a single relation (or table). ILP also re-
duces the need for manual pre-processing to integrate data from multiple relations
into a single relation before data mining method can be applied (see next Section).
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In this case, the problem is that integrating data from multiple relations through
joins or aggregations typically causes loss of information.

Finally, besides the ability to deal with data stored in multiple relations di-
rectly, ILP methods are usually able to take into account background knowledge
and support qualitative reasoning.

Despite these clear advantages of ILP approaches to data mining, there are still
few examples of applications in which ILP is considered. This depends on the
typically high computational complexity of ILP methods, which is a problem in the
context of data mining, where e�ciency is crucial. A solution to e�ciency problem
is found in learning from interpretations [De 96]. In this setting, each example e is
a Prolog program encoding the speci�c properties of the example. It is also possible
to specify the background knowledge B in the form of a Prolog program2. In this
way, learning from interpretation that is able to combine e�ciency of attribute-value
learning with expressive power of classical ILP also opens up new possibilities for
employing ILP in knowledge discovery.

2.3.1 The single table assumption: problems and solutions
Classical data mining methods share a restrictive data representation formalism,
known as single table assumption [Wro01]: it is assumed that data to be mined
are represented in a single table (or relation) of a relational database, such that
each row (or tuple) represents an independent unit of the sample population and
columns correspond to properties of units. In complex real-world applications this
assumption turns out to be a great limitation.

As an illustrative example of some research issues due to the single table as-
sumption let us consider the census data table reported in Table 2.1, where each
row represents an enumeration district (ED), the smallest areal unit for which census
data are published in United Kingdom (UK)3. EDs are spatial objects, since they
have a geographical location. Having recognized this peculiarity, the data analyst
may be interested in investigating the socio-economic phenomenon of deprivation
(e.g. percentage of cars) in association with the geographical distribution of EDs.
To achieve this goal, the analyst may decide to augment the data table in Table
2.1 with information on neighboring units. In particular, for each ED, the analyst
proposes the following data speci�cations:

1. the number of schools in the neighboring EDs,

2. the number of banks in the neighboring EDs, and

3. the number of commercial activities in the neighboring EDs,
2The interpretation corresponding to each example e is then the minimal Herbrand model of

e ∧B.
3NSIs make a great e�ort to collect census data, but they are not the only organizations that

analyze them: data analysis is often done by di�erent institutes. By law, NSIs are prohibited from
releasing individual responses to any other government agency or to any individual or business
enterprise, so data are summarized for reasons of privacy before being distributed to external
agencies and institutes. Therefore, data analysts are confronted with the problem of processing
data which summarize characteristics of groups of individuals.
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since he/she suspects that the low percentage of cars can also be related to the
number of services available in the neighborhood.

Table 2.1: An example of census data table. Data are summarized per enumeration district (ED).
c1 c24 c25 c26 c27 c28 c30 c32 c33 c34 c35 c36
03BSFA01 44 69 23 6 5 7 0 0 7 15 109
03BSFA02 56 108 36 8 11 22 0 2 12 27 233
03BSFA03 74 98 27 5 9 18 1 0 13 33 127
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c1: ED level code, e.g. '03BSFA01', where '03' denotes a country/region (Greater
Manchester), 'BS' denotes a district (Stockport), 'FA' denotes a ward (Bredbury)
and '01' is the enumeration district.
c24: Total females of employees (full time) aged 16 and over
c25: Total males of employees (full time) aged 16 and over
c26: Total females of employees (part time) aged 16 and over
c27: Total males of employees (part time) aged 16 and over
c28: Total females of self-employed � with employees aged 16 and over
c30: Total males of self-employed � with employees aged 16 and over
c32: Total females of on a government scheme aged 16 and over
c33: Total males of on a government scheme aged 16 and over
c34: Total females of unemployed aged 16 and over
c35: Total males of unemployed aged 16 and over
c36: Total car availability in all households (households with three or more cars
counted as having three cars)

If the analyst decides to represent the above data only for one neighboring ED,
the data table in Table 2.1 can be extended by simply adding three attributes (see
Table 2.2). What if he/she wants to represent the three attributes for all spatially
adjacent EDs, which are variable in number? Under the single-table assumption
he/she can create one entry for each adjacent ED in the original data table. How-
ever, this solution presents two main disadvantages:

1. we have the usual problems connected with non-normalized tables, such as
redundancy and anomalies in the insertion and removal of data,

2. we have one line per neighboring ED, which means that the analysis results
will really concern neighboring EDs. In other words, the units of analysis have
deceptively changed.

The former is a typical database issue, while the latter is more related to the data
analysis procedure. To solve these problems and keep the single-table assumption,
the data analyst may try to summarize the information on the neighboring EDs,
say, by averaging the number of schools, banks and commercial activities (see Table
2.3). It is noteworthy that in this case there is no redundancy and standard data
mining methods work well. However, there is an information loss that might lead
to the understanding of the underlying phenomenon. For instance, an ED can be
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Table 2.2: Three additional attributes of the nearest neighbors added to the single table.
c1 c24 c25 . . . c36 No.

schools
No.
banks

No. commercial
activities

03BSFA01 44 69 . . . 109 1 1 13
03BSFA02 56 108 . . . 233 0 0 23
03BSFA03 74 98 . . . 127 0 1 6
. . . . . . . . . . . . . . . . . . . . . . . .

adjacent to another ED with many services, as well as to other EDs with no services
at all, since they fall into the green belt of the city. By averaging the number of
services per neighboring ED, the analyst may give a totally wrong indication on the
deprivation distribution.

Table 2.3: Three additional attributes computed by averaging corresponding values of the nearest
neighbors added to the single table
c1 c24 c25 . . . c36 Av.

no.
schools

Av.
no.
banks

Av. no. comm.
activities

03BSFA01 44 69 . . . 109 0.25 0.25 3.3
03BSFA02 56 108 . . . 233 0.33 0 0.36
03BSFA03 74 98 . . . 127 0 0.2 0.12

From a database perspective, the best representation of data would be that in
Figure 2.2. In this database two relations are de�ned, one for the target EDs, that
is, the EDs whose socio-economical factors are the subject of investigation, and
one for the neighboring EDs, which are considered target relevant, because they
are spatially adjacent to some target EDs. Obviously, mining this simple database
requires for more powerful methods which go beyond the single table assumption. At
this aim, the ILP research �eld has been exploiting relational analysis technologies
for a number of years to now with signi�cant results in dealing with relational data
and analysis results by both representing and exploiting the relational structure of
data in the learning process.

2.3.2 Relational learning in ILP
As stated before, ILP has been concerned with �nding patterns expressed as logic
programs. It initially focused on the automated synthesis of logic programs from
examples and background knowledge. This task that is typically referred as a
concept learning task (inducing binary classi�ers), can be also formulated as the
learning of logical (intensional) de�nitions of relations. More recent developments,
however, have broadened the scope of ILP to consider all the main data mining
tasks such as classi�cation, regression, clustering or association analysis. Hence, ILP
methods have been developed to learn multi-relational patterns in multi-relational
data.

Traditional representation languages based on propositional logic (i.e. single
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Figure 2.2: A multi-relation representation of socioeconomic attributes of some reference EDs
and of their neighboring ED. The attribute `Reference ED' in the lower table is a foreign key of
the upper table.

table assumption) appear completely inadequate to express these multi-relational
patterns including relational association rules, relational decision tree and regression
tree, among others. Therefore, ILP methods mainly employ languages based on logic
programming that is a subset of �rst order logic also called relational logic.

A logic program consists of clauses that is �rst order rules where the conclusion
part is termed the head and the condition part the body of the clause. The head
and the body of a clause consist of atoms, where an atom is a predicate applied to
some arguments. In particular, a program clause is in the form H ← B1 ∧ . . .∧Bm

such that H is an atom and B1 ∧ . . . ∧ Bm are literals. A literal is either positive
(atom) or negative (the negation of an atom). It is noteworthy that a program
clause contains exactly one atom in the head. Logic programs are sets of program
clauses, while the program clauses with the same predicate in the head forms a
predicate de�nition.

Relational algebra, the formalism of relational databases, is also considered a
subset of �rst-order logic [DL01a]. A relational database consists of a set of tables
and a set of associations (i.e. constrains) between pairs of tables describing how
tuples (or records) in one table relate to tuples in another table [Ull88]. Both
tables and associations are known as relations. This suggests a relationship between
database and logic programming terms that can be adequately modeled by resorting
to the concept of deductive database.

A deductive database is a set of database clauses. A database clause is a typed
program clause, i.e., a domain is associated with each argument. In this spirit,
a database may be boiled down to a deductive relational database once the rela-
tions are expressed by means of predicates such that the arguments of a predicate
correspond to the attribute of a relation. In deductive databases, relations can be
expressed extensionally by a set of tuples (as in relational databases) or intentionally
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as a set of database clauses (views). This means that ILP methods for relational
learning may exploit the expressive power of �rst-order logic in databases to specify
hierarchies or integrity constraints as well as domain speci�c knowledge expressed
as sets of rules and support a qualitative reasoning.

Typically, ILP methods for relational learning have been upgraded from propo-
sitional logic (i.e. single table case) toward �rst order logic (i.e multi table case).
For example distance-based algorithms for prediction and clustering have been up-
graded from propositional to �rst-order logic by de�ning a distance measure between
examples represented in �rst-order logic [KWH01]. The methodology for upgrading
an existing propositional learner toward �rst order logic is explained into [VD01].
This methodology represents the most important lesson learned during the develop-
ment of several ILP systems including TILDE [Blo98] [BD98], CLAUDIEN [DD97],
ICL [DW95] and WARMR [De 97].

2.4 Multi-relational data mining
An important aspect of data mining methods and systems is that they have to
scale well to large databases. Paying a lot of attention to e�ciency is especially
necessary in the case of databases that may contain very complex patterns. In such
databases, experience has proved that classical single table mining methods scale
well. The idea is to transform a relational representation of a learning problem into
a propositional form [KLF01].

From a database perspective, this corresponds withmolding a relational database
into a single table format that traditional attribute-value algorithms can handle
[KHS01]. However, the downside of the single table representation is that more
complex patterns are simply not expressible in this format and, thus, cannot be
discovered. One way to face this issue is to enlarge the expressiveness by gener-
alizing from single table mining to multiple table mining. In such situations, ILP
methods provide functionalities to navigate relational structure of data and gener-
ate potentially new form of evidence, not readily available in �attened single table
representation.

Unfortunately the use of �rst-order logic as a representational language limits
the application of these methods in many real world applications. Indeed, ILP
approaches are mostly based on data stored as Prolog facts and little attention has
been given to data stored in relational databases and how the knowledge of the data
model can help to guide the search process.

Some pre-processing is required to transform data stored in relational databases
into Prolog facts. This pre-processing may be expensive in terms of computation
and storage and partially unnecessary since part of the hypothesis space may never
be explored. Furthermore, in applications where data can frequently change, this
pre-processing has to be frequently repeated.

The solution to e�ciently mine multi-relational patterns directly from a large
database can be found in implementing ILP methods as special instances of a multi-
relational data mining framework where both attribute-value and structural infor-
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Figure 2.3: The relational data model of CustomerDB database.

mation embedded in the database are explicitly exploited. In this way, discovered
patterns are relational since they concern structure of units of analysis composed
by a single target object (primary data), zero, one or more target relevant objects
(secondary data) as well as the relationships among them.

Both target objects and target relevant objects are naturally stored in a set
S of multiple tables T1, . . . , Tv of a relational database D. Hence, a relationship
between objects can be modeled by means of a constraint describing an association
between pairs of tables which states how tuples in one table relate to tuples in
another table. The nature of a relationship between the tables Ti and Tj depends
on the multiplicity of the association that determines whether several tuples in Ti

relate to single or multiple tuples in Tj . A special case of association is a foreign
key constraint FK (Ti, Tj) that describes the relationship from a foreign key in Ti

to the primary key in Tj .
In this way, a unit of analysis may consist of a single tuple t of some target table

T in D joined with all tuples in S, which are related to t following a foreign key
path in D.

Formally, a foreign key path is de�ned as follows:

De�nition 2.1 A foreign key path between a table Th and a table Tk (Th 6= Tk) in
S is an ordered sequence of tables ϑ(Th, Tk) = (Ti1 , Ti2 , . . . , Tis) such that:

1. Ti1 = Th and Tis = Tk,

2. ∀j = 1, . . . , s, Tij ∈ S,

3. j = 1, . . . , s - 1, there is a foreign key constraint from Tij to Tij+1 , or vice-
versa.

¨
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In Figure 2.3 some examples of foreign key paths are reported. In this case,
S= {Customer, Agent, Order, Detail, Article} and the foreign keys are: FK_C_A,
FK_C_O, FK_O_D, FK_D_A. If �Customer� is the target table then possible
foreign key paths on Customer table are:

(Customer, Agent)
(Customer, Order)
(Customer, Order, Detail)
(Customer, Order, Detail, Article)
Foreign key paths are exploited in expressing the declarative bias to guide and

constraint the search in the pattern space. The set of relational patterns derived
from a relational database is bigger than the set of propositional patterns which
can be derived from a single table. Therefore, some attention is given to reduce the
search space and e�ciently evaluate potentially interesting patterns. At this aim,
constraints available in the conceptual data model of a relational database may
be used to drastically prune the search space by considering only the structural
information that is intended by the design of the database without wasting time on
potentially large numbers of conceptually invalid patterns.

Considering the special attention reserved to database technologies, multi rela-
tional data mining di�ers from ILP in three other aspects. Firstly, it is typically
restricted to the discovery of non recursive patterns. Secondly database primitives
are typically employed to ensure e�ciency. These primitives (e.g. summarization of
both attribute values and structural information) are direct generalization of those
adopted in many data mining architectures with extra facilities to cope with data
in multiple tables [FL96]. They can be expressed in SQL and processed by either a
conventional relational DBMS or a dedicated server that is optimized to e�ciently
compute primitives. Thirdly, the restriction to non-recursive patterns combined
with data rapresented as tuples scattered in multiple tables of a relational database
rather than �rst-order logic facts suggests that SQL besides �rst-order logic may
be used to express discovered relational patterns. In [KSV99], the authors present
a graph based language to graphically describe relational patterns containing de-
cisions associated with each node of a multi-relational decision tree and also show
their translation into SQL statement. In this way, the classi�cation model can be
completely expressed by the set of SQL queries associated with the leaves. Each
SQL query corresponding with a node of the tree has also a class label associated
with it, that is the classi�cation based on the majority of training objects matched
by the query itself.

2.5 Conclusions
In this chapter, we have introduced the basics of the KDD process and discussed
the motivations of an inductive database framework where KDD can be modeled as
an interactive process in which users query patters as well as data by means of an
inductive query language. This leads to a tight integration between KDD process
and databases.
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Data mining is the central activity in this process concerning with mining
patterns in data. Most data mining methods look for patterns in a single table
(attribute-value representation) of a relational database. Since data typically re-
sides in multiple tables of real world databases, much e�ort is devoted in trans-
forming such data into a single table (e.g. through joins or aggregations) with a
consequently loss of information or change of data structure.

The problem of directly dealing with data stored in multiple tables without any
preliminary transformation has been tackled in ILP �eld. Indeed, ILP systems can
be directly applied to multi-relational data to mine patterns that involve multiple
relations. In addition, ILP methods are generally able to take into account valid
background knowledge in form of a logic program. However, the use of �rst-order
logic as a representational language may restricts the actual employment of these
methods in real world applications since only little attention is given to data stored
in relational databases and how the knowledge of the data model can help to guide
the search process.

The idea is to combine the achievements in KDD �eld on the integration of
data mining with database systems, with some results reported in ILP �eld on
how to correctly upgrade attribute-value data mining algorithms to multi-relational
representations. This leads to implement ILP methods as special instances of a
multi-relational data mining framework where both attribute-value and structural
information embedded in the coupled database are explicitly exploited. In this re-
spect, di�erences between ILP and multi-relational data mining have been discussed.



Chapter 3

Induction of Regression Models

During the past �fty years regression analysis has been one of the most widely
used methodologies for analyzing relationships among variables. Indeed, several
regression methods have been developed in statistics, machine learning as well as
data mining. At present, they have become a basic support for solving real world
problems due to their �exibility, usefulness, applicability, theoretical and technical
sauciness. Regression methods are typically based on the inductive inference that
consists of hypothesizing H, given C and B in the following entailment:

H ∪B ² C,

where H is named the set of premises, while B is the background knowledge and
C is a set of consequences. A special application of inductive inference is properly
in the context of supervised learning, where observations (training cases) of some
phenomenon are a-priori labeled by a domain expert. In regression tasks, this
label is a number. This means that the regression training cases may be seen as
instances of an unknown continuous function. Hence, the mining goal in regression
consists of using the inductive inference to obtain a general description (or model)
of this function from a set of labeled observations together with some background
knowledge.

The representational language used to describe the observations, the background
knowledge as well as the discovered model is a central choice that in�uences the
pattern (regression model) space to be generated and evaluated in induction phase.
The classical approach adopts a language based on propositional logic where each
case is described by a �xed set of variables. An alternative is the use of a powerful
representation language (e.g. subset of �rst-order logic) that encompasses most of
the real world regression problems since it allows to represent both relational data
and relational patterns.

The task of inducing regression models based on labeled observations is the main
topic addressed by this dissertation. In the remaining of this chapter, we present
an overview of existing approach to regression problems within machine learning as
well as other research �elds.

31
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3.1 The regression problem
In the classical regression settings, training data D are described by a �xed set of
m predictor (independent) variables Xi, either continuous or discrete, and a target
(dependent) variable Y , which normally takes values in the set of real numbers <.
Each variable has only a single, primitive value.

In a matrix notation, D may be represented as the matrix D whose i -th row is
the input vector X1i

, . . . , Xmi
, Yi, which describes the i -th training case. If there

are n training cases, D is a matrix with dimension n× (m + 1).
Regression analysis is mainly concerned with estimating the statistical expecta-

tion E(Y |X1, . . . , Xm) of Y according to the values of X1, . . . , Xm. This estimation
is actually based on the training set D of labeled data (i.e. observations of the phe-
nomenon to be modeled), since the true underlying regression function is typically
unknown.

The assumption is that the relationship between predictors and target variable
assumes some �xed form (e.g. linear or kernel functions) and it can be described
by:

Y = f(X) + ε, (3.1)

where f(X) is a regression model on the vector of variables X = X1, . . . , Xm,
while ε are observation errors. Therefore, a regression method aims at discovering
the best f according to a selected preference criterion. This search bias typically
includes the estimation of the predictive accuracy of f .

As the target variable of regression problems is continuous, the predictive accu-
racy of f can be quanti�ed by revolving around the di�erence between the values
predicted by f and the true values for a set of regression cases labeled a-priori.

The mean absolute deviation (MAD) averages the absolute deviations of pre-
dictions performed by the regression model f on n labeled regression cases (xi, y),
such that:

MAD(f) =
1
n

∑

i=1...n

|yi − f(xi)|. (3.2)

This measure leads to the least absolute deviation regression that determines
the regression model f which minimizes the average absolute deviation on D.

However, for reasons due to ease of computations, the measure of accuracy really
used in regression is the mean square error (MSE ), that is:

MSE(f) =
1
n

∑

i=1...n

(yi − f(xi))2. (3.3)

The methodology revolving about this measure is the least square regression.
As discussed in [BFOS84], the mean square error MSE(f) can be also de�ned as:

MSE(f) = E(Y − f(X))2. (3.4)

This suggests that the regression model f∗ which minimizes MSE(f) is:

f∗(x) = E(Y |X = x), (3.5)
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which means that f∗(x) is the conditional expectation of the response value, given
that the measurement vector is x. This depends on the elementary Lemma 3.1.

Lemma 3.1 The constant a which minimizes:

E(Y − a)2

is E(Y ). (A complete proof is presented in [BFOS84], pp. 266-269).
¨

In [BB03], the authors discuss the use of regression error curve (REC) area as a
valid measure of the expected performance of regression model f . The REC curve
plots the error tolerance on x-axis versus the percentage of points predicted within
the tolerance on y-axis. The resulting curve estimates the cumulative distribution
function of the error. REC curve analysis represents an extension to regression
tasks of Receiving Operating Characteristic (ROC) analysis [FF03] that de�nes an
evaluation measure to take into account the con�dence in classi�cation tasks. In
regression case, the area over REC curve (AOC) is proved to be a biased estimate
of expected error.

Mean absolute deviation as well as mean square error and area over REC curve
are statistical estimators of the error ε of a regression model f . However, when
these estimates are obtained by the same data used to induce the regression model,
they are known to be unreliable (or biased) [Tor99].

Obtaining a reliable estimation of ε is important, since it enables to estimate
the future accuracy of f on new (un-labeled) data. It guides the choice of the
best regression model among several alternative models generated by a regression
method. Finally, reliable error estimate is important when combining models [BT90]
or their predictions [Wol92] [Bre96].

There are several approaches to achieve reliable error estimates. For instance, re-
sampling methods such as holdout [Hig62] [Rip96], cross validation [MW63] [Sto74]
or bootstrap [Efr79] [ET93], which proceed by obtaining the estimates with data not
already processed to mine the regression model f .

Conversely, bayesian estimation methods obtain the estimates by combining the
prior expectation of the parameter being estimated (e.g. ε) and the observed value.
An example is the m-probabilities estimates [Ces90], that is, a generalization of the
Laplace's law of succession [Goo65].

Finally, a di�erent approach consists of studying the sampling distribution prop-
erties of the estimates obtained on several sample data of size n. It is possible to
look at these computed estimates as values of another variable named sampling
distribution. Analyzing the sampling distribution of an estimate of ε (e.g. MAD,
MSE or AOC ) allows to draw important conclusions regarding the con�dence on
any particular estimate.

3.2 Statistical regression methods
Regression has been extensively investigated in statistical data analysis. This sec-
tion presents the major regression paradigms developed in statistic �eld, distinguish-
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ing among global parametric approaches, non parametric approaches and additive
approaches. The main advantages and drawbacks of these di�erent approaches are
adequately pointed out.

3.2.1 Global parametric approaches
Global parametric methods construct a single functional model that is easily inter-
preted and �ts the entire set D of n training cases. They have fast computational
solutions, but impose a strong assumption, that is, an a-priori prede�ned functional
form for the regression model f to be discovered. Obviously, this leads to lower
accuracy when this hypothesized functional form does not correspond to the ac-
tual structure of the g unknown function really underlying the phenomenon to be
modeled.

In linear regression, this assumption is that:

f(x) = β0 + β1x1 + . . . + βmxm, (3.6)

where β = (β0, . . . , βm) is estimated according to the least square error criterion as
the parameter vector value β̂ = (β̂0, . . . , β̂m), which minimizes the sum of square
errors (SSE):

SSE(f, β̂) = min
β

∑

(xj ,yj)∈D

(yj − (β0 + β1x1j + . . . + βmxmj ))
2. (3.7)

This minimization problem has an elegant and e�cient solution in matrix algebra
[Wei85]. The linear regression model can be expressed as a matrix equation of the
form:

DY = DXβ + ε (3.8)

where:

- DY is the (n× 1) vector of observed Y ,

- DX = (1, X1, . . . , Xm) is the (n × (m + 1)) matrix such that 1 is a column
with only 1s, while each Xi is a column with the observed Xi,

- β is the ((m + 1)× 1) vector of the βi parameters to be estimated,

- ε is the (n× 1) vector of errors.

The sum of square error is then:

εT ε = (DY −DXβ)T (DY −DXβ) (3.9)
= DY

T DY − βT DX
T DY −DY

T DXβ + βT DX
T DXβ (3.10)

= DY
T DY − 2βT DX

T DX + βT DX
T DXβ, (3.11)

where, βT DX
T DY is a 1 × 1 matrix (i.e a scalar value) and the corresponding

transpose matrix (βT DX
T DY )T = DY

T DXβ must have the same value.
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The least square estimate of β is exactly the vector value β̂ that minimizes εT ε.
It is obtained by di�erentiating Equation 3.11 with respect to β1 and setting the
resultant matrix equation to zero, at the same time replacing β with β̂. This leads
to the normal equation:

−2DX
T DY + 2DX

T DX β̂ = 0, (3.12)

which consists of m equations in m unknowns. If the m equations are independent,
DX

T DX is not singular, and its inverse matrix exists. In this case the solution of
the normal equation can be written as:

β̂ = (DX
T DX)−1DX

T DY . (3.13)

Example 3.1 Let us consider a training set D on X × Y such that m = 1, the
straight line Y = β̂0 + β̂1X �tted by least square is the one that makes the sum of all
discrepancies between each point (xj , yj) ∈ D and the line as small as possible (see
Figure 3.1). The estimate β̂0 (intercept) and β̂1 (slope) are computed according to
Equation 3.13 as follows2:

β̂1 =

∑
i=1...n

(xi −X)(yi − Y )
∑

i=1...n

(xi −X)2
(3.14)

β̂0 = Y − β̂1X (3.15)

where X = 1
n

∑
1...n

xi and Y = 1
n

∑
1...n

yi.
¨

There are many variants of this general approach that di�er in the way they ac-
tually induce regression model from data. For instance, a multiple linear regression
model may be incrementally built via a forward stepwise procedure, by sequencing
straight line regression and removing the linear e�ect of the introduced variables
each time a new independent variable is added to the model [DS82]. The forward
stepwise procedure starts with an empty model and then iteratively alters the cur-
rent model by adding a predictor variable until a stopping criterion (e.g. maximum
number of steps) is satis�ed.

Example 3.2 Let us consider the problem of building a multiple regression model
Y = β̂0 + β̂1X1 + β̂2X2 with two independent variables (X1, X2) through a sequence
of straight-line regressions. The forward stepwise procedure starts regressing Y on
X1 according to least square criterion, so that the model: Y = β̂01 + β̂11X1 is
built. The �tted equation does not predict Y exactly. By adding the new variable
X2, the prediction might improve. Instead of starting from scratch and building a
model with both X1 and X2, the forward procedure builds a linear model for X2

if X1 is given: X2 = β̂02 + β̂12X1, then computes the residuals on X2 and Y :
X ′

2 = X2 − (β̂02 + β̂12X1) and Y ′ = Y − (β̂01 + β̂11X1),
1Di�erentiating εT ε with respect to the vector quantity β is equivalent to di�erentiating εT ε

separately with respect to each each element of β in order, writing down the resulting derivatives
one below the other, and rearranging the whole in the matrix form.

2Details are reported in [DS82].
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Line

X

Y

Figure 3.1: The vertical deviation whose sum of square is minimized according to the least square
criterion.

and �nally regresses Y ′ on X ′
2 alone:

Y ′ = β̂03 + β̂13X
′
2.

By substituting the equations of X ′
2 and Y ′ in the last equation we have:

Y − (β̂01 + β̂11X1) = β̂03 + β̂13(X2 − (β̂02 + β̂12X1)).
that is:

Y = (β̂03 + β̂11 − β̂02β13) + (β̂11 − β̂12 β̂13)X1 + β̂13X2.

It can be proven ([DS82], pp. 196-201) that this last model coincides with the
�rst model directly built solving Equation 3.13, that is, β̂0 = β̂03 + β̂01 − β̂02 β̂13 ,
β̂1 = β̂11 − β̂12 β̂13 and β̂2 = β̂13 .
¨

The counterpart of stepwise forward procedure is the backward stepwise proce-
dure to identify and �lter out all variables do not signi�cantly improve accuracy
of induced regression model. This means that after the whole model containing
all predictor variables X1, . . . , Xm is built, a removal statistic (e.g. partial F -test
value) is computed for each Xi treated as though it was the last variable to enter
the regression equation. The removal statistic is associated with a test of:

H0 : βi = 0 versus H1 : βi 6= 0

for any regression coe�cient βi. In the case the test is not rejected, the variable
Xi is removed and the regression model f is recomputed on the remaining variables
[DS82].
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3.2.2 Non parametric approaches
Non-parametric regression belongs to a data analytic methodology known as local
modeling [Fan95]. It often adopts di�erent types of simple and local models in
di�erent portions of training data to build up an overall model of the data. The
basic idea behind local regression consists of relaxing assumptions on the form of an
unknown function of interest and letting data to choose a suitable function that �ts
well the given dataset. This makes non-parametric regression a good competitor
to non-linear regression for modeling situations in which a theoretical model is not
known or is di�cult to �t.

Local regression is strongly related to the work on instance-based learning (e.g.
[AKA91]) and includes locally parametric methods which obtain the prediction for
a regression case x by �tting a regression function in the neighborhood of x. Given
a test case x, the neighborhood N(x, D) is the set of training cases in D which are
most similar to x. This neighborhood is then used to build the local model fN(x,D)

and perform the prediction fN(x,D)(x).
The instance-based inductive methodology is named lazy learning [Aha97] since

it does not perform any kind of generalization of the given training data and delays
learning till prediction time. This highlights the main drawback of local modeling
that is no comprehensible model of training data is made available to data analysts
and domain experts.

Cleveland and Loader have provided in [CL96] an historical survey of the work
done on local regression traces since the 19th century. The modern work on local
modeling starts in 1950 with kernel methods which combine achievement of prob-
ability density estimation [Ros56][Par62] with requirements of regression setting
[Nad64][Wat64]. Kernel methods have been proposed to �t a polynomial of degree
zero (a constant) into a neighborhood. Local polynomial regression is a general-
ization of this early work on kernel regression that aims at �tting a polynomial of
degree p around a query point (or test regression case) xq using the training data in
its neighborhood. This includes various settings such as kernel regression (p = 0),
local linear regression (p = 1), etc. A further generalization consists of using a
polynomial mixing where p takes non integer values [CL96].

Spline smoothing provides another powerful tool for estimating non parametric
functions [Eub88][GS94] [Wah90][HT90]. It is essentially based on the assumption
that the random errors are independent. Observations are often correlated in ap-
plications; for example, time series data, spatial data and clustered data. It is well
known that correlation greatly a�ects the selection of smoothing parameters, which
are critical to the performance of smoothing spline estimates. Popular methods
for selecting smoothing parameters are generalized maximum likelihood (GML),
generalized cross-validation (GCV) or unbiased risk (UBR) [Wah90].

Most of studies on local modeling in regression are carried out for a unique inde-
pendent variable, but applications to the multivariate case have been proposed for
several domains [AMS97] [MSD97]. Nevertheless, the application of local modeling
to high input space dimensions has some limitations due to the curse of dimen-
sionality that is training cases described by an high number of variables are so
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sparse that the notion of local neighborhood cannot be seen as local [Har90][HT90].
Indeed, the sparseness of data in this setting in�ates the variance of the estimates.

3.2.3 Additive approaches
Parametric methods such as linear regression are known to be attractively simple,
however they often fail in real world applications since real life e�ects are generally
not linear. Similarly, non-parametric methods have limitations due to both the
curse of dimensionality and the low interpretability of kernel and smoothing spline
estimates.

To overcome these di�culties, Stone [Sto85] has proposed additive models as
a �exible statistical means to estimate an additive approximation of multiple re-
gression function. The bene�ts of an additive approximation are at least twofold.
Firstly, since each of the single additive terms is estimated using an univariate
smoother, the curse of dimensionality is avoided at the cost of not being able to
approximate universally. Secondly, estimates of terms explain how the dependent
variable changes with the corresponding independent variables.

Hastie and Tibshirani [HT90] have proposed generalized additive models. These
models assume that the mean of the target variable depends on an additive predictor
through a nonlinear link function. Therefore, generalized additive models permit
the response probability distribution to be any member of the exponential family
of distributions.

The main drawback of this methodology is its computational complexity [Tor99].
One has a potentially large set of candidate basis functions to choose from, and
afterwards one has to tune the parameters of each of these basis functions. Still,
there are some simpli�cations that allow fast algorithms to be used. An example of
an additive model is a regression tree [BFOS84], which can be e�ciently obtained
with a recursive partitioning algorithm.

Another example of an additive model is projection pursuit regression [FS81].
Projection pursuit provides a model of the form:

f(x) =
∑

i=1...m

fi(
∑

j=1...a

βj,ixi) (3.16)

Adaptive regression splines are other additive models, which are generalizations
of regression trees. They are implemented in the system MARS [Fri91] that builds
a regression model of the form:

f(x) = β0 +
∑

fo(xo) +
∑

fo,p(xo, xp) +
∑

fo,p,q(xo, xp, xq) + . . . , (3.17)

where the �rst sum is over all basis functions involving only a single variable, the
second sum is over all basis functions involving two variables, and so on.

Finally, many widely used statistical models belong to this general class, includ-
ing additive models for Gaussian data, nonparametric logistic models for binary
data, and nonparametric log-linear models for Poisson data.
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3.3 k-Nearest Neighbor regression methods
k -Nearest Neighbor (k -NN) [Das91] is an instance-based method, which assumes
all cases (or observations) correspond to points in m-dimensional space <m. In
regression tasks, k -NN estimates the continuous outcome y for a query point x on
the basis of the k-sized neighborhood (Nk(x, D)) that is the k examples over the
training set D, which are closest in distance3 to x.

Assuming that all neighbors have equal in�uence on predicting the outcome
y irrespective of their relative distance from the query point x, this prediction is
typically obtained by averaging the outcomes yi of the k nearest neighbors of x

belonging to Nk(x, D), that is:

y =
∑

i=1...k

1
k

yi. (3.18)

An alternative approach is to give more importance to the cases which are closer
to the query point [She68]. This is achieved using the so-called distance weighting
as follows:

y =

∑
i=1...k

wiyi

∑
i=1...k

wi
, (3.19)

where wi ≡ 1
d(x,xi)2

, such that d(x, xi) is the distance between the query point x

and a neighbor training example xi ∈ Nk(x, D).
Locally (weighted) regression [Mit97] is a generalization of k -NN approach,

which builds an explicit approximation of f for the neighborhood surrounding x

by �tting a linear (or quadratic, kernel ...) function to the k nearest (weighted)
neighbors. Kibler and his colleagues [KAA89] have proposed the use of a kernel
model within the k -sized neighborhood determined for x query point. Each neigh-
bor enters in the prediction calculation with a weight proportional to its distance
to x. The work of Connel and Utgo� [CU87] have suggested a similar strategy with
the di�erence that all training instances contribute to the prediction.

Example 3.3 Let us consider the case of locally (weighted) regression in which
the regression function f is approximated close to x as fx using a linear regression
function. Least square procedure is modi�ed in order to derive a local approximation
rather than a global one. This leads to rede�ne error estimation to be minimized.
Three possible criteria are discussed in [Mit97], that is:

1. minimize the sum of square errors over just the k nearest neighbors in Nk(x, D):

SSE1(fx) =
∑

xi∈Nk(x,D)

(yi − fx(xi))2, (3.20)

2. minimize the sum of square errors over the entire set D of training cases
weighting the error of each training example by some decreasing function K

of its distance from x:

SSE2(fx) =
∑

xi∈D

(yi − fx(xi))2K(d(x, xi)), (3.21)

3One of the most popular choices to measure this distance is known as Euclidean [Mit97].
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3. combine Equations 3.20 and 3.21:

SSE2(fx) =
∑

xi∈Nk(x,D)

(yi − fx(xi))2K(d(x,xi)), (3.22)

¨

It is noteworthy that regression by k -NN is conceptually simple and easy to
implement, but it appears slow at prediction time and easily fooled by irrelevant
variables. Moreover, it generally su�ers from opacity: the model does not reveal
anything about the function that it represents. Finally, the accuracy of k -NN model
is strongly a�ected by the choice of k. Hence, k can be regarded as one of the most
important factors of the model since it strongly in�uences the quality of predictions.
In the case all training examples contribute to predict the outcome value for the
query point, k -NN works as a global method, while in the case only the k (k < n)
nearest neighbor examples are considered, it works as a local method. In local k -NN
only data local to the area around the test case contribute to obtain the prediction.

An appropriate way to look at the number of nearest neighbors k is to deal with
it as with a smoothing parameter, where, for any given problem, a small value of
k will lead to a large variance in predictions. Alternatively, setting k to a large
value may lead to a large model bias. Thus, k should be set to a value large enough
to minimize the error estimation and small enough (with respect to the number of
cases in the training set) so that the k nearest points are close enough to the query
point. Thus, like any smoothing parameter, there is an optimal value for k that
achieves the right trade o� between the bias and the variance of the model.

Some k -NN can provide an estimate of k using cross-validation [GW02][ADED04].
Alternative solutions for an adaptive determination of local k are discussed in
[WD94].

3.4 Arti�cial neural network regression methods
Arti�cial neural networks (ANNs) provide a robust and �exible approach to induce
approximation of real-valued as well as discrete-valued and vector-valued functions
from examples.

The study of ANNs has been inspired in part by the observation that biological
learning systems are built of very complex webs of interconnected neurons. In
rough analogy, ANNs are built out of a densely interconnected set of simple units,
where each unit (i.e. perceptron) takes a number of real-valued inputs (possibly the
outputs of other units) and produces a single real-valued output (possibly input to
many other units).

McCulloch and Pitts [MP43] have proposed the �rst model of perceptron. Since
then many new more complex models have been proposed. Ronsenblatt [Ros58]
has generalized the McCulloch-Pitts neural networks. This work has been then
extended by Minsky and Papert [MP69].

A perceptron o (see Figure 3.2) is a computing unit that takes a vector of real-
valued inputs with associated weights, and computes a linear combination of these
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Figure 3.2: A perceptron unit.

inputs, then outputs 1 if the result is greater than a threshold (or bias) θ and -1
otherwise. More precisely, given the input vector x = x1, . . . , xm, the output o(x)
computed by the perceptron is:

o(x) =

{
+1 if wo + w1x1 + . . . + wmxm > θ

−1 otherwise.
(3.23)

where each wi is a real-valued constant, or weight, that determines the contribution
of input xi to the perceptron output o(x). To simplify notation, an additional
constant input x0 = 1 is considered in order to write the above inequality as:

∑
i=0,...,m

wixi > θ.

Learning with these units consists of �nding the weights associated with each
input variable. One way to learn an acceptable weight vector is to begin with
random weights, then iteratively applying the perceptron to each training case,
modifying the weights when predictions are wrong. Weights are modi�ed at each
step according to the perceptron training rule, that is:

wi = wi + ∆wi, (3.24)

where ∆wi = η(y − o(x))xi. Here y is the actual target output for the current
training example x, while o(x) is the output generated by the perceptron o, and η

is a positive constant named learning rate. The role of learning rate is to moderate
the degree to which weights are changed at each step. It is usually set to small
value (e.g. η = 0.1) and it sometimes decays as the number of weight-tuning
iterations increases. This learning procedure can be proved to coverage within a
�nite number of steps whenever the training cases are linearly separable and η value
is su�ciently small [MP69]. If data are not linearly separable, convergence is not
assured. Other learning algorithms have been proposed in literature such as instance
linear programming techniques [Man91] or the Karmarkar's algorithm [Kar84].
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In order to relax the requirement of linear separability, the delta rule may be
used since it allows the learning to converge toward a best-�t approximation to the
target function [Mit97].

The key idea behind the delta rule is the use of gradient descent to search the
hypotheses space of possible weight vectors to �nd weights that best �t the train-
ing examples. This rule provides the basis of backpropagation algorithm [Wer75]
[Wer96], which can learn network with many interconnected units. It is also in-
teresting since gradient descent serves as basis for learning algorithms that must
search through hypotheses space containing many di�erent types of continuously
parameterized hypotheses.

The delta rule is generally applied to an unthresholded unit, that is, a linear
unit corresponding with the �rst stage of a perceptron without the threshold, for
which the output is given by:

o(x) =
∑

i=0,...,m

wixi (3.25)

The measure generally adopted to estimate the error of the weight vector w =
(w0, w1 . . . , wm) is:

E(w) =
1
2

∑

(xi,yi)∈D

(yi − o(x))2, (3.26)

that is simply half the sum of square errors over training cases in D. The vector
obtained by computing the derivative of E with respect each weight wi is named
gradient of E, written (∇E(w)), that is the vector:

∇E(w) = [
δE

δw0
,

δE

δw1
, . . . ,

δE

δwm
]. (3.27)

Consequently, the gradient can be interpreted as a vector in weight space, which
speci�es the direction that produces the steepest increase in E, while the negative
of this vector gives the direction of steepest decrease. Therefore, by setting:

∆wi = −η
δE

δwi
, (3.28)

the steepest descent is achieved by altering each weight wi in proportion to δE
δwi

.
A practical algorithm for iteratively updating weights according to Equation

3.28 needs an e�cient way of calculating the gradient at each step, that is:

∆wi = η
∑

(xj ,yj)∈D

(yj − o(xj))xij . (3.29)

Details about computation of 3.29 are reported in [Mit97] (chapter 4, pp. 91-92).
Generally, a single perceptron can only express linear decision surfaces. In con-

trast, multi-layer networks are capable of expressing a rich variety of non linear
decision surfaces. They consist of an input layer related to the input variables, one
or more hidden layers and an output layer.

Multiple layers of cascaded linear units still produce only linear functions. The
alternative is to cascade perceptron units, but their discontinuous thresholds make
them undi�erentiable and hence unsuitable for gradient descent.
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Figure 3.3: A multi-layer ANN architecture for regression.

A solution is the sigmoid unit that is a unit very much like a perceptron, but
based on a smoothed, di�erentiable threshold function. The threshold output of a
sigmoid unit is a continuous function of its input vector x:

o(x) =
1

1 + e
− P

i=0...m
wixi

. (3.30)

The common set-up for applying ANNs in regression consists of using a 3-layered
network with one hidden layer (see Figure 3.3). Both the input units and the hidden
layer units are sigmoids, while the output unit is an unthresholded unit.

Neural networks are employed in several successfully applications [RWL94]. For
instance, Wu and Zhu discuss a neural network regression model for relative dose
computation [WZ00] that exhibits a good generalization and interpolation ability.
Similarly, Subramanian and his colleagues use neural networks to optimize the for-
mulation parameters of cytarabine liposomes [SYM04] obtaining a more accurate
prediction when compared with the multiple regression analysis method. However,
neural networks appear clearly inadequate in problems where interpretability is a
key factor, due to the di�culty of users in interpreting their predictions.

3.5 Tree structured regression methods
Tree structured regression can be seen as a kind of additive model [HT90] also
named piecewise regression that is in the form:

f(x) =
∑

i=1...l

I(x ∈ Di)× fi(x), (3.31)

where:

- D1, . . . , Dl is a partitioning of the training set D in a set of disjoint regions
such that

⋃
i=1...l

Di = D and
⋂

i=1...l

Di = φ,
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- I(.) is an indicator function returning 1 if its argument is true and 0 otherwise,

- f1, . . . , fl are regression functions such that each fi is �tted within the region
Di.

Models of this type provide a propositional logic representation of the regions
corresponding to D1, . . . , Dl in the graphical form of a tree and, at the same time,
they �t a regression function fi within each region Di.

De�nition 3.1 A (rooted) tree τ is a �nite set of nodes Nτ and an associated
relation Bτ ⊆ Nτ ×Nτ for which the following properties hold:

1. there exists exactly one node t0 ∈ Nτ , named root, such that ∀〈ti, tj〉 ∈ Bτ :
tj 6= t0,

2. ∀tj ∈ Nτ with tj 6= t0, there exists only one node ti ∈ Nτ such that 〈ti, tj〉 ∈
Bτ .

¨

The set of nodes Nτ can be partitioned into internal nodes N I
τ and leaves NL

τ

such that:

- N I
τ = {ti ∈ Nτ | there exists at least a node ti ∈ Nτ such that 〈ti, tj〉 ∈ Bτ},

- NL
τ = {ti ∈ Nτ | there exists no node tj ∈ Nτ such that 〈ti, tj〉 ∈ Bτ}.

Note that a binary tree τ is a special case of rooted tree such that for each
internal node ni ∈ N I

τ there are no more than two distinct nodes nh, nk ∈ Nτ

(nh 6= nk) such that (ni, nh) ∈ Bτ and (ni, nk) ∈ Bτ .

De�nition 3.2 Given a set D of n training regression cases, each of which is de-
scribed by both m (continuous and discrete) predictors X1, . . . , Xm and a target
continuous variable Y , it is possible to build a binary tree structured regression
model that is a binary rooted tree τ = (Nτ , Bτ ), where:

1. each node ti ∈ Nτ is associated with a subset of D, denoted by D(ti),

2. the root t0 is associated with D itself,

3. each leaf node ti ∈ NL
τ is labeled with a regression function fti : X1 × . . . ×

Xm → Y ,

4. each edge 〈ti, tj〉 ∈ Bτ is labeled with Lτ (〈ti, tj〉).

Lτ (ti, tj) can be:

- a test in the form Xi ≤ α (or Xi > α), which involves a continuous predictor
variable Xi ( continuous splitting label),

- a test in the form Xi ∈ {xi1 , . . . , xis}(or Xi /∈ {xi1 , . . . , xis}), which involves
a discrete predictor variable Xi(discrete splitting label).
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¨

The general approach to build a binary tree structured regression model τ from
a training set D is to start at the root and perform a top-down induction. At each
internal node ti ∈ N I

τ the region D(ti) is recursively split according to the mutually
exclusive tests (queries) labeling the two edges outgoing from ti until the tree is
su�ciently accurate. The best split is chosen according to a splitting rule.

An internal node ti is a continuous (discrete) splitting node i� there exists an
edge 〈ti, tj〉 ∈ Bτ such that Lτ (〈ti, tj〉) is a continuous (discrete) splitting label.

If pi is the path from the root t0 to a leaf node ti ∈ NL
τ :

pi = 〈t0, t1〉, 〈t1, t2〉, . . . , 〈ti−1, ti〉,
then the label associated with pi, Lτ (pi), is the conjunction of labels:

Lτ (pi) = Lτ (〈t0, t1〉) ∧ . . . ∧ Lτ (〈ti−1, ti〉),
which provides an intentional description of the region corresponding to the parti-
tion D(ti).

The tree τ maps a generic regression case x into a leaf ti ∈ NL
τ through the

path pi as follows: starting with the root node t0, it selects its child node t1 such
that x satis�es the test associated with Lτ (〈t0, t1〉). This procedure is recursively
applied to t1 until the leaf node ti is reached and y = fti(x) is returned.

Using the more concise representation of Equation 3.31, the tree τ can be equiv-
alently written as:

f(x) =
∑

ti∈NL
τ

I(x ∈ Lτ (pi(x)))× fti(x),

where x ∈ Lτ (pi(x)) when x satis�es Lτ (pi(x)).
When each regression function fti is a constant value, τ is named regression

tree. Model trees are generalizations of regression trees, which associate multiple
linear functions (or quadratic functions, kernel functions, etc.) with each leaf. In
this way, regression trees perform the same prediction for all data falling in the
same leaf while model trees may predict di�erent values also for data falling in the
same leaf.

Both regression and model trees are known for their comprehensibility as well as
simplicity and e�ciency when dealing with large domains. However, they can su�er
of over�tting training data and lower predictive accuracy on unreliable data (i.e.
noise). To avoid over�tting problems, a solution is the simpli�cation of an overly
large tree. In spite of their advantages, regression and model trees are also known for
their instability [Bre96]. A small change in training set may lead to a di�erent choice
when building a node, which in turn may represent a drastic change in the tree,
particularly if this change occurs in top level nodes. The function approximation
provided by standard regression and model trees is highly non smoothed leading to
very marked function discontinuities. Although there are applications where this
may be advantageous, regression functions are typically supposed to have a certain
degree of smoothness that is hardly captured by standard tree models. Some hybrid
tree models that improve smoothness of tree structured approximation are presented
in [Tor99].
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Figure 3.4: An example of a regression tree with one continuous predictor X.

3.5.1 Regression trees
A regression tree is a piecewise constant constructed by recursively partitioning the
training data D (see Figure 3.4). Its name derives from the practice of displaying
the partitions as a decision tree with continuous constant values associated with
leaves. AID algorithm [MS63] is the �rst implementation of this idea. However, the
major reference on regression trees is the seminal work of [BFOS84] that provides
a thorough description of the system CART.

CART is suitable for the prediction of both a continuous target variable (i.e.,
regression trees) and a discrete target variable (i.e., classi�cation trees). It performs
the top-down induction of a regression tree τ by recursively partitioning D and
growing τ by introducing, at each step, a splitting node ti until stopping criteria
are not ful�lled and a leaf is created. Branches of a splitting node ti are then
built by applying the same algorithm for partitions of D(ti) obtained according to
splitting tests outgoing from ti. At each step, the best node is chosen with respect
to a local criterion, that is, least square (LS) regression or least absolute deviation
(LAD) error.

LS regression trees induction is formally based on the Lemma 3.1 that has paved
the way for building a regression tree τ by minimizing the expected value of the
sum of square error with the expected value (i.e mean value) of the target variable
Y . Each leaf ti ∈ NL

τ is then assigned with a constant c(ti) that is the average of
Y values for the n(ti) training cases falling in D(ti):

fti(x) = c(ti) =
1

n(ti)

∑

(xj ,yj)∈D(ti)

yj . (3.32)

Assuming the constant c(ti) obtained with Equation 3.32, LS regression suggests
the natural goodness of choosing the splitting test outgoing from any node ti, which
most reduce the mean square error on D(ti).

We denote by:

MSE(ti) =
1

n(ti)

∑

(xj ,yj)∈D(ti)

(yj − c(ti))2 (3.33)
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the �tting error of a node ti ∈ Nτ . The mean square error of a regression tree τ is
then the weighted average of the square errors in its leaves:

MSE(τ) =
∑

ti∈NL
τ

pi ×MSE(ti) (3.34)

=
∑

ti∈NL
τ

(
n(ti)

n
× 1

n(ti)

∑

(xj ,yj)∈D(ti)

(yj − c(ti))2) (3.35)

=
∑

ti∈NL
τ

pi × s2(ti). (3.36)

where pi = n(ti)
n is the estimated probability that a training case reaches the leaf ti

and s2(ti) =
∑

(xj ,yj)∈D(ti)

(yj − c(ti))2 is the sample variance at ti.

At each step, LS splitting rule chooses the split which maximizes the decrease in
variance of the tree resulting from this splitting. In binary trees, where an internal
node ti has two children, this corresponds with minimizing the weighted average of
variance on the resulting sub-nodes , that is:

MSE(ti, tiL
, tiR

) =
n(tiL

)
n(ti)

× s2(tiL
) +

n(tiR
)

n(ti)
× s2(tiR

), (3.37)

where tiL (tiR) is the left (right) child of ti.
In the case ti is a binary continuous splitting node then L(ti, tiL

) = Xi ≤ α and
L(ti, tiR

) = Xi > α. Possible values of α are found by sorting the distinct values
of Xi in D(ti), then identifying a threshold (e.g. midpoint) between each pair of
adjacent values. If the cases falling in ti have k distinct values for Xi, k−1 thresholds
are considered. Obviously, the lower MSE(ti, tiL , tiR) with L(ti, tiL) = Xi ≤ α and
L(ti, tiR

) = Xi > α, the better the split Xi ≤ α according to LS criterion.
Conversely, if ti is a binary discrete splitting node then L(ti, tiL

) = Xi ∈
{xi1 , . . . , xis} and L(ti, tiR) = Xi /∈ {xi1 , . . . , xis}. We denote by k the number
of distinct values for Xi and SXi = {xi1 , xi2 , . . . , xik

} the set of distinct values of
Xi, SXi is sorted according to the sample mean of Y over all cases in D(ti). A
theorem by Breiman et al. [BFOS84](Theorem 4.5, Proposition 8.16) proves that
the best binary split is one of k−1 partitions {xi1 , . . . , xis} and SXi−{xi1 , . . . , xis},
thus greatly reducing the search for the best subset of categories from 2k−1 to k-1
partitions.

The bene�ts of LS criterion have been extensively discussed in [BFOS84] and
some simpli�cations of LS splitting criterion which lead to gains in computational
e�ciency are then proposed in [Tor99]. Buja and Lee [BL01] have argued that LS
criterion, in spite of its computational advantages, can appear not adequate for
several applications such as outlier processing. Outliers are generally a problem for
LS regression trees since they may distort the selection of the best splits and have
a large impact on the average value chosen for the leaves of the trees [FP99]. A
solution can be found in adopting a LAD criterion, where the di�erence between
LS and LAD lies in the use of medians instead of averages in the leaves and mean
absolute deviation as error criterion.

The main advantage of LAD regression trees is the robustness of the obtained
models since medians and absolute deviations are known to be more robust with
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Figure 3.5: An example of a linear model tree with one continuous predictor X.

respect to the presence of outliers and skewed distributions. However, LAD criterion
brings additional computational di�culties to the task of growing a tree. Moreover,
with respect to discrete variables, Torgo [Tor99] shows that the theorem proved by
Breiman et. al. [BFOS84] for subset splits in LS regression trees does not hold for
the LAD error criterion. Still, he has experimentally observed that the use of the
results of this theorem as a heuristic method of obtaining the best split does not
degrade predictive accuracy.

Finally, a splitting criterion based on the F-measure [Van79] has been proposed
in [TR03] with the objective of inducing regression trees that are accurate at pre-
dicting outliers but are also interpretable from the user perspective.

3.5.2 Model trees
Model trees are analogues to piecewise multiple functions: they are tree structured
models, but whereas regression trees have constant values at their leaves, model
trees may have multiple functions (see Figure 3.5). In this way, model tree induction
combines the achievement of CART-like top-down construction of tree models with
the main results in �tting training samples with regression models whose basis
functions are splines [Fri91] or polynomial equations [DT95] [TLD04].

Some of the model tree induction systems developed are: M5 [Qui92] [Qui93b],
RETIS [Kar92], M5' [WW97] [FWI+98], TSIR [Lub94], HTL [Tor97], which has
been subsequently included in RT [Tor99], SUPPORT [CHLY94], which has been
extended in GUIDE [Loh02], and SECRET [DG02]. All these systems perform a
top-down induction of model trees (TDIMT) by recursively partitioning the training
set D and associating multiple functions with leaves.

M5 [Qui92][Qui93b] and its further extension M5'4 [FWI+98][WW97] partition
feature space by choosing at each step the split that minimizes a measure of the
standard deviation computed with respect to the average of Y values falling in
the regions under analysis. A multiple linear model is then associated with each
leaf. Regression coe�cients of this model are locally determined by least square

4M5' is an implementation of M5 that also deals with enumerated variables and treats missing
values.
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regression on the set of training cases falling in the leaf. Only continuous variables
involved in tests along the path from the root to the current leaf are actually
included in regression model which is then simpli�ed by dropping useless variables
if this results in a lower expected error on future data (more speci�cally, if the
decrease in the number of parameters outweighs the increase in the observed training
error). Finally, a smoothing mechanism is applied to adjust the predicted value by
combining the model at a leaf with the models on the path starting in the root to
form the �nal model that is placed at the leaf.

RETIS [Kar92] partitions feature space and minimizes ntiL

n(ti)
s2(tiL

)+ niR

n(tiR
)s

2(tiR
)

at each step. In this case, s2(tiL) (s2(tiR)) is computed as the mean square error
with respect to the regression plane ftiL

(ftiR
) �tting training data falling in the left

(right) child. Multiple linear functions are associated with leaves. Each regression
function is locally determined by least square regression on training cases falling in
the leaf and involves all continuous predictor variables.

SUPPORT, GUIDE and SECRET transform a regression problem into a classi�-
cation problem, and then choose the best partition on the basis of computationally
e�cient evaluation functions developed for classi�cation tasks. They associate a
polynomial equation with each leaf. SUPPORT implements some smoothing mech-
anism that uses a weighted average to combine piecewise polynomial regression
estimates into a single smooth one. Similarly GUIDE, which has been speci�cally
designed to extend SUPPORT in order to eliminate variable selection bias, is able
to associate either a complex model (e.g. polynomial) or a simple linear model with
each leaf.

HTL [Tor97] chooses the split that minimizes a measure of the variance on
child nodes. Similarly to evaluation measure adopted in both M5 and M5', this
evaluation measure is computationally e�cient since it involves the average of Y

values falling in the regions under analysis. Moreover, HTL is a hybrid system
since it integrates several approaches to regression from linear regression to kernel
regression and k -nearest neighbor models.

Integrating partition-based methods with instance-based models is not a novel
idea. The work of Weiss and Indurkhya [WI95] already integrates a rule-based
partitioning method with k -nearest neighbors. These authors deal with regression
by mapping it into a classi�cation problem and transforming the original Y values
into a set of I intervals.

Deng and Moore [DM95] have combined Kd-trees [Ben75]5 with kernel regression
producing what they call kernel regression trees and looking at kernel regression as
a form of lazy learner.

Torgo [Tor00] has proposed to merge partial linear regression and model tree
induction. Partial linear regression [Har90] is a semi-parametric technique that
integrates a linear polynomial with a kernel smoother applied to the residuals (error)
of polynomials on the neighborhood. By integrating these two approaches partial
linear functions at leaves loose some of the intelligibility of linear polynomials,

5Kd-trees are binary trees built in a similar fashion as regression trees. However, while regres-
sion trees are built with the goal of grouping training data with similar Y values, Kd-trees try to
optimize the storage of these data in order to achieve faster access time.
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however they may show signi�cant accuracy improvement in non-linear domains.
In alternative to partial linear trees, Torgo and Costa [TP00] have investigated

the combination of partial linear regression with a clustering step to obtain sub-set
of training data before learning phase. After this resampling process a di�erent
regression model is �t for each cluster.

TSIR associates a multiple linear model with each leaf of induced model tree.
Nevertheless, TSIR di�ers from other TDIMT systems (e.g. M5, RETIS) since it
performs construction of multiple linear models according to the forward stepwise
procedure [DS82]. This means that partitioning steps are intermixed with regression
steps. The former correspond with splitting a region of D according to a boolean
test on a predictor variable Xi, while the latter computes a single variable linear
regression, Ŷ = β0 + β1Xi, and passes down to its unique child the residuals yj −
(β0 + β1xij ) as new values of the target variable.

It is noteworthy that TDIMT systems associate functional model with leaves
but in general they do not use functional models in splitting tests. This is argued in
[Gam04], where functional trees, which build a function linear model at each node
and use it later in the pruning phase, are presented. Functional trees allow decision
associated with internal nodes in functional form so that they divide training data
into oblique decision surfaces6. Oblique splits are linear inequalities involving two
or more predictor variables.

Finally, all TDIMT systems, here presented, operate on the entire training set,
but incremental learning may be advantageous in many real-world regression ap-
plications such as when input data is a continuous stream data. The incremental
induction of trees has received signi�cant attention in literature for classi�cation
tasks [UBC97] [GRM03], while model tree incremental induction has only recently
been addressed. Potts [Pot04b] has proposed to incrementally induce model trees
according to an incremental evaluation function that is based on the Fisher statistic
already used by Siciliano and Mola [SM94] to grow linear model trees in batch set-
ting. A faster incremental splitting rule that is based on GUIDE evaluation function
is discussed in [Pot04a].

3.5.3 Simpli�cation methods
When building regression or model trees, it is common practice to discard parts of
the tree that describe spurious e�ects in the training data rather than true features
of underlying phenomenon. The application of model tree simpli�cation (pruning)
methods follows the generation (growing) of the tree itself and tries to keep the over-
�tting problem under control. Several simpli�cation methods have been reported
in the literature, most of which are derived from those developed for decision trees
[EMS97].

CART prunes a large regression tree by means of error complexity pruning
[BFOS84]. It consists of two steps:

1. selection of {τ0, τ1, . . . , τL} that is a parametric family containing subtrees of
the tree τmax,

6Oblique partitioning of training data is also supported by GUIDE as well as SECRET.
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2. choice of the best tree τi in the parametric family.

Pruning is based on a measure of the error rate of a tree τ named error-complexity,
which is de�ned as follows:

ECα(τ) = MSE(τ) + α×#NL
τ , (3.38)

where MSE(τ) is the mean square error of τ , #NL
τ is the cardinality of the set NL

τ

containing the leaves of τ , while α is named complexity parameter and de�nes the
cost of each leaf.

As regards the �rst step, the basic idea is that τi+1 is obtained from τi by pruning
those branches that show the lowest increase in apparent error rate per pruned leaf.
Therefore, when a tree τ is pruned in a node ti, its apparent error rate increases by
the amount ECα(ti)−ECα(τti) with τti sub-tree of τ rooted in ti, while its number
of leaves decreases by #NL

τti
− 1 units. Thus, the following ratio:

α =
ECα(ti)− ECα(τti

)
#NL

τti
− 1

, (3.39)

measures the increase in apparent error rate per pruned leaf. Then, τi+1 in the
parametric family is obtained by pruning all nodes in τi with the lowest value of α.
The �rst tree τ0 is obtained by pruning τmax of those branches whose α value is 0,
while the last tree τL is the root tree. Each tree τi is characterized by a distinct
value αi, such that αi < αi+1. Therefore, the set τ0, τ1, . . . , τL is a parametric
family of trees that may be denoted as τmax(α).

In the second step, the best tree in τmax(α) with respect to predictive accuracy
is chosen. Breiman and his colleagues propose two distinct ways of estimating the
accuracy of each tree in the family, one based on cross-validation sets, and the other
on an independent pruning set [BFOS84].

The cost complexity pruning has been also adopted to prune model trees mined
with GUIDE [Loh02].

RETIS bases its pruning algorithm on Niblett and Bratko's method [NB86],
extended later by Cestnik and Bratko [CB91]. Contrarily to CART pruning, this
method proceeds in a single step by running in a bottom-up fashion through all
nodes of τmax [Kar92]. Pruning is based on the idea that for every node an esti-
mation of its prediction error on test cases is made. In each node, the algorithm
makes an estimate of the static error es (i.e. the expected error on unknown cases
if the tree is pruned at this node) and the backed-up error eb (i.e. an estimation
of expected error when the tree is not pruned at that node). If the static error
is less than or equal to the backed-up error the subtree is pruned and the node is
converted to a leaf. Karalic and Cestnik [KC91] have proposed to use the Bayesian
approach (m-estimate) to estimate the errors of the tree nodes on unseen examples.
The m parameter has intuitive meaning, but can also be set by a cross-validation.

M5 uses a pessimistic error pruning-like strategy [Qui92] [Qui93b] since it com-
pares the error estimates obtained by pruning a node or not. The error estimate is
based on training cases and corrected in order to take into account the complexity
of the model in the node.
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Similarly, in M5' the pruning procedure makes use of an estimate, at each node,
of the expected error for the test data. The estimate is the MSE compensated by
a factor that takes into account the number of training examples and the number
of parameters in the linear model associated with the node [WW97].

A method à la error-based-pruning is adopted in HTL [Tor99], where the upper
level of a con�dence interval of the mean square error estimate is taken as the most
pessimistic estimate of the error node [Qui92].

A di�erent solution, based on MDL principle [Ris82] has been proposed by
Robnik-Sikonja and Kononenko [RK98] for the TDIMT system CORE [Rob97].
MDL principle is based on the Occam's statement that it is vain to do with more
what can be done with less. Consequently, its use can be summarized as: an code
the possible solutions (i.e. tree models) to the problem and select the instance with
the shortest code as the result. Encoding determines the binary code length of a
tree-based model, where the binary code of a model tree consists of the code of both
the model and its errors.

3.6 Regression rules methods
Rule induction model �nds solutions to regression problems in disjunctive normal
form such that the model:

if x ∈ Di then y = fi(x) (3.40)

can be applied to it. Each rule in the rule-set represents a single partition of the
training set D (or region Di). However, unlike tree regions, the regions for rules
need not be disjoint.

For partially overlapping regions, several rules may be satis�ed for a single case.
Therefore, some mechanism is needed to resolve the con�icts in predicted target
value when multiple rules, Di regions, are involved. One standard model [WI93a]
is to order the rules. Such ordered rule-sets have been referred to as decision lists.
The �rst rule that is satis�ed is selected as follows:

if i < j ∧ x ∈ Di ∧ x ∈ Dj then f(x) = fi(x) (3.41)

Weiss and Indurkhya [WI93b] have developed a regression rule induction sys-
tem, named SWAP1R, that induces regression rules expressed in a propositional
language by exploiting a covering strategy. This strategy is the analogous of rule
induction procedure for classi�cation tasks [MMHL86] [CN89]. The conditional part
(i.e. antecedent) of the induced rules consists of a conjunction of tests on the in-
put variables while the conclusion part (consequent) contains the target prediction.
Originally these predictions consisted of the average Y value for the cases satis-
fying the conditional part, but later Weiss and Indurkhya [WI95] have extended
the system with the possibility of using k -nearest neighbors in the prediction step.
Indeed, the authors propose to map a regression problem into a classi�cation prob-
lem. This means that the target values of the training cases are pre-processed by
grouping them into a set of user-de�ned bins. These bins act as class labels in
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the subsequent learning phase. Consequently, the algorithm induces a classi�cation
model of the data, where the classes are numbers representing the obtained bins.
These numbers can then be used to make continuous predictions for unseen cases.

This idea of transforming a regression problem into a classi�cation task has
been taken further in the work of Torgo and Gama [TG96], where a system named
RECLA acts as a generic pre-processing tool that allows virtually any classi�cation
system to be used in a regression task.

Torgo [Tor95] has developed a propositional regression rule learner (R2) that
uses an if-then rule format. This algorithm can use several di�erent functional
models in the conclusion of the rules. R2 employs a covering algorithm that builds
new models while there are uncovered cases to �t. The model is chosen from the
model lattice that includes all possible regression models for the conclusion part of
the rules. The result of this �rst step is a rule with empty conditional part and
the built model as conclusion. This rule is then specialized by adding conditions to
restrict the model domain of applicability with the goal of improving its �t. This
restriction is guided by an evaluation function that weighs both the �tting as well
as the degree of coverage of the rule. This means that the system is looking for
rules with good �t but covering as many cases as possible.

CUBIST7 is a commercial data mining system developed by Ross Quinlan, which
learns a set of unordered if-then rules with linear models in the conclusion part. This
system looks like a kind of C4.5rules [Qui93a] for M5. The system is able to deal
with both continuous and discrete variables, and obtains a piecewise linear model
of the data. CUBIST can also combine the predictions of this model with k -nearest
neighbor predictions.

SAFE [Que00] is another machine learning system that induces regression rules
from training cases. It extends the usual way to divide continuous values into inter-
vals to all continuous variables, not only to the target one. The relevant intervals so
found, in addition to discrete data, are then processed to discover the relationships
between these two data types. The result, SAFE, is able to return a small list of
accurate and interpretable production rules whose conclusions are linear functions.

Finally, Saito and Nakano [SN02] have proposed a method for extracting re-
gression rules from neural networks trained with multivariate data containing both
discrete and continuous variables. Each regression rule is expressed as a pair formed
by a logical formula on the conditional part over discrete variables and a polyno-
mial equation on the action part over continuous variables. The proposed extrac-
tion method �rst generates one such regression rule for each training sample, then
utilizes the k -means algorithm [Mac67] to generate a much smaller set of rules hav-
ing more general conditions, where the number of distinct polynomial equations
is determined through cross-validation. Finally, this method invokes decision-tree
induction to form logical formulae of discrete conditions as conditional parts of �nal
regression rules.

7http://www.rulequest.com/cubist-info.html.
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Figure 3.6: Relational data: target examples and relational background knowledge.

3.7 The relational view
All regression methods reported above su�er from an important limitation, that is,
the restriction to propositional representation (i.e. single table assumption) [Wro01].
Consequently, none of these methods is able to directly predict continuous values
from not only target examples but also relational background knowledge (see Figure
3.6), though relational data occurs in many real-world application where data are
naturally stored in multiple tables of a relational database.

Thus far, only few methods have been proposed to face with regression prob-
lems in the context of relational data. One approach is to propositionalize relational
data into a single table format that traditional attribute-value algorithms can han-
dle. This approach has been employed in regression tasks as well. Dºeroski and
his colleagues [DTU95] have proposed to apply DINUS [LD94] algorithm to trans-
form a Datalog representation of a dynamic method into a propositional form (i.e.,
attribute-value pairs), so that the classical model tree induction method RETIS
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based on the single-table assumption can be subsequently applied to the transformed
problem. However, this transformation does not work for background knowledge,
which is a limitation of this approach.

The alternative is to directly induce relational regression models over relational
data without any transformation of the original problem. This idea has received
some attention within the �eld of ILP. The problem of multi-Relational Regression
[D�95] has been formulated in the normal ILP framework8. Nevertheless relational
regression di�ers from other ILP learning tasks in that there are no negative exam-
ples.

As a consequence, some methods, which face with relational regression problems
in their original form, have been investigated within the �eld of ILP.

FORS [Kar95] [KB97] has been proposed to induce �rst-order logic concepts
that incorporate real-valued variables. The system has been designed with the goal
of mining background knowledge expressed in intensional form, modeling dynamic
phenomena (e.g. learning from time series) as well as handling noisy data. More
precisely, FORS receives, as input, samples of the unknown regression function
and background knowledge and uses a separate-and-conquer strategy to partition
training space into sub-regions and build a regression local model for each region
separately.

The model built by FORS is a Prolog program consisting of the background
knowledge and clauses in the form:

f(Y, X1, . . . , Xm) : − literal1, . . . , literalk, !.

During the induction, FORS uses a covering approach named sequential covering
similar to the one employed by FOIL [Qui90]. The algorithm repeatedly constructs a
clause. When a clause is found, all examples covered by the clause are removed from
the training set, and the procedure is repeated, while there are enough examples
left.

Two kinds of clauses can be generated during clauses construction, that is, candi-
date clauses which do not instantiate the target variable (e.g. f(Y,X, Z) : −X <=
Z) and candidate clauses, named complete clauses, which instantiate the target
variable Y (e.g. f(Y,X, Z) : −X <= Z, sqr(Y, X), presuming that background
knowledge contains clause sqr(Y, X) : −Y is X ∗X).

The simplest approach to obtain a complete clause is to add a literal Y is Mean,
where Mean is the mean value of the target variable on the examples covered by the
clause. However, this approach is unable to detect linear dependencies among the
target variable and the continuous predictor variables. To overcome this limitation,
FORS builds a regression plane through the target values of the covered examples.

The clause construction is performed top-down. The algorithm starts with the
most general candidate clause, covering the entire example set (i.e. the clause with
no condition part) and then specializes it by adding literals. Clause construction
uses beam search to guide the algorithm through the space of possible clauses. Dur-
ing a single specialization step for one clause, an attempt is �rst made to specialize

8Normal ILP framework is not part of non-monotonic ILP framework that includes the closed
world assumption.
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a clause with background knowledge literals then with variable-value literals9 and
�nally with recursive literals.

For each candidate clause, the mean square error on training data covered by
the clause, is computed to estimate the clause's error when predicting unlabeled
cases.

Since mean square error on training data is used as error estimate, a method
that simply minimizes the estimated error tends to over�t training data and predict
unrealistic performance on un-labeled new data. To avoid over�tting training data,
several pre-pruning mechanisms for controlling clause generation have been adopted
to limit the amount of clause's adaptation to training data. They are based on the
minimal number of examples that a clause must cover, maximal variable depth, call
depth, minimal improvement of candidate clause with respect to its predecessor,
allowed error of a clause and minimum description length (MDL) principle.

Finally, when FORS is faced with a time series each example represents the state
of variables at one point in time. The time intervals between successive points need
not be equal. FORS can compute time derivatives of any variable with respect to
the time variable. This enables FORS to construct models of dynamical systems
which are typically described with a set of di�erential equations.

FFOIL [Qui96] is another example of ILP system able to deal with relational
regression. It is a derivation of the FOIL system [Qui90] implements a covering
algorithm similar to FORS. It starts with an empty program and keeps adding
clauses until all cases are covered. Each added clause starts with an empty body
and literals are appended as a form of specializing the clause. A function with
k arguments (the input variables) is represented by a k+1-ary relation where one
argument holds the function outcome. The result obtained by FFOIL consists of a
Prolog program with clauses of this relation.

An alternative to the separate-and-conquer strategy adopted by both FORS and
FFOIL is the divide-and-conquer strategy. This leads to a tree-based algorithm
rather than a covering algorithm with all advantages and disadvantages known
from other algorithms of these type (tree-based vs covering). A discussion of both
strategies in the context of top-down induction of logic programs can be found in
[Bos95]. On one hand, the hypothesis space for separate-and-conquer is larger than
for divide-et-conquer, so that more compact hypotheses can be found using separate-
and-conquer. On the other hand, building a tree is computationally cheaper than
searching for rules. In [WI95], a comparison between tree induction and rule induc-
tion in propositional regression basically draws the same conclusions, although the
approach to rule-based regression in [WI95] is di�erent from FORS since it involves
the discretization of continuous variables.

SRT [Kra96], S-CART [Kra99][KW01] and TILDE-RT [Blo98] are some exam-
ples of ILP systems that implement the divide-and-conquer strategy. They perform
top-down induction of multi-relational tree structured regression models and then
translate these models into Prolog programs. Similarly to FORS and FFOIL, all
these systems solve the multi-Relational Regression problem in its original form,

9A variable-value literal is a literal of the form Xi <= α or Xi > α for continuous variable,
Xi = α for discrete variable.
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and do not require any transformation of the problem. Moreover, they can utilize
relational background knowledge.

SRT generates a series of increasingly complex trees containing a literal (an
atomic formulation or its negation) or a conjunction of literals in each node, and
subsequently returns the best tree according to a criterion based on minimum de-
scription length. A numerical constant value is assigned to each leaf.

SCART, that integrates and extends SRT, is a system that learns a theory for
the prediction of either discrete classes (i.e. classi�cation tasks) and continuous
values (i.e. regression tasks) from examples and relational background knowledge.

At the top level, the main stages of S-CART are growing the tree, pruning the
tree and adding linear regression models. An initial binary tree is recursively grown
based on the training set, selecting a possible conjunction of one or more literals
in each node as provided by user-de�ned schemata [SP91] until a stopping crite-
rion is ful�lled. The selection of the best split in regression case corresponds with
minimizing the resulting average MSE within the deriving subsets. The constant
predicted in a node is simply the mean of the target variable values for all training
individuals covered by the node. This tree is usually very complex, therefore it is
cut back to appropriate size in order to avoid over�tting.

In S-CART, pruning consists of estimating the optimal value of the complexity
parameter α on a separate pruning set or cross validation.

Optionally, S-CART may add a linear regression model to leaves of pruned tree.
For each leaf in the pruned tree, multiple linear stepwise regression is applied to the
examples in the respective leaf, with varying values of the signi�cance parameter
that determines whether a variable is included in the regression model or not. Only
when a variable contributes signi�cantly to explain the variation of target variable,
it is e�ectively added to the linear regression model.

S-CART also keeps track of the individuals in each node and the conjunctions of
literals in each path leading to the respective node. This information can be turned
into a clausal theory that is a set of �rst order regression rules.

TILDE-RT is the regression sub-system of TILDE10 [Blo98] [BD98]. Its splitting
criterion is based on minimizing the resulting average variance, while F-test is used
to verify that the split causes a signi�cant reduction of variance for the target
variable Y . Only a constant value (i.e. mean of Y values for training data falling
in the leaf) is associated with each leaf.

3.8 Conclusions
Many real-world applications involve the prediction of continuous values. In par-
ticular, some domains are concerned with the prediction of continuous values from
both examples and relational (mostly non-determinate) background knowledge.

In this chapter, we have provided an overview of existing approach to regres-
sion both in propositional and relational setting. We have analyzed the major
regression paradigms developed in statistic, distinguishing among global paramet-

10TILDE is the upgrade of C4.5 [Qui93a] to multi-relational setting.
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ric approaches, non parametric approaches and additive approaches and discussed
the main advantages and drawbacks of k -nearest neighbor regression, arti�cial neu-
ral networks, regression and model trees as well as regression rules learning. We
have also outlined prospects and challenges for the role of ILP in multi-relational
regression.

With respect to computational e�ciency, it is clear that multi-relational formal-
ism explores a much larger search space than their propositional counterparts. This
fact has two contradictory e�ects. While being able to �nd solutions not available
to propositional systems, this increased expressiveness has a strong impact in the
computational complexity of these systems. This makes them hardly applicable to
extremely large domains that are found in some applications (like in a typical data
mining situation). However, the expressiveness of �rst-order logic is too attractive
a feature for data mining research to ignore. Moreover, computation power grows
at a very fast rate and ILP may well become the major trend in machine learning
and data mining approaches to regression.



Chapter 4

Stepwise Model Tree Induction

Model trees are tree structured regression models which associate leaves with multi-
ple functions. They are used to solve prediction problems (i.e. regression problems)
in which the target variable is continuous. In this chapter, we present SMOTI
(Stepwise Model Trees Induction) that is a method for the data-driven construction
of model trees. Its main characteristic is the construction of trees with two types of
nodes: regression nodes, which perform only straight-line regressions, and splitting
nodes, which partition training data. A multiple linear model is then built step-
wise at each node by combining straight-line regressions reported along the path
from the root to the current node. In this way, internal regression nodes contribute
to the de�nition of multiple models and capture global e�ects, while straight-line
regressions at leaves can only capture local e�ects. This allows SMOTI to poten-
tially solve the problem of modeling phenomena, where some variables have a global
e�ect while others have only a local e�ect and to prevent problems related to two-
staged induction algorithms, which �rst build the tree structure and then associate
leaves with multiple models. On the other hand, this stepwise construction pro-
vides a solution to problems of e�ciency and collinearity by selecting only a subset
of variables.

Experimental results on arti�cially generated datasets show that SMOTI outper-
forms two state of art model tree induction systems, M5' and RETIS, in accuracy.
Results on benchmark datasets used for studies on both regression and model trees
show that SMOTI performs better than RETIS in accuracy, while it is not possible
to draw statistically signi�cant conclusions on the comparison with M5'. Moreover,
model trees induced by SMOTI are generally simple and easily interpretable, and
their analysis often reveals interesting patterns.

However, similarly to other TDIMT approaches, SMOTI may generate model
trees that over�t training data. We have investigated a posteriori simpli�cation (or
pruning) of model trees induced by SMOTI. In particular, we describe a general
framework for simplifying model trees with regression and splitting nodes. This
framework is helpful to de�ne two simpli�cation methods, named Reduced Error
Pruning (REP) and Reduced Error Grafting (REG), and to investigate their the-
oretical properties. They are characterized by the use of an independent pruning
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set.
The e�ect of simpli�cation on model trees induced with SMOTI is empirically

investigated. Results are in favor of simpli�ed trees in most cases.

4.1 Background and motivations
Many problems encountered in common practice involve the prediction of a con-
tinuous attribute associated with a case. Let us consider here the classical (propo-
sitional) setting where observed data are generated independently and identically
distributed from an unknown distribution P on some domain X and are labeled
according to an unknown function g. The domain of g is spanned by m indepen-
dent (or predictor) random variables Xi (both continuous and categorical), that is
X = X1 ×X2 × . . . ×Xm, while Y , the range of g, is a set of real numbers <. A
TDIMT method inputs a training set D = {(x, y) ∈ X × Y |y = g(x)} and mines
a piecewise function f in form of regression or model tree such that f is hopefully
close to g on the domain X. The general approach to inducing regression or model
trees is to start at the root and perform top-down induction 1. At each node,
training cases are recursively partitioned according to a splitting test until some
stopping criterion is ful�lled. If we denote by τ , the tree currently built, a potential
split at a leaf t of τ corresponds with partitioning the training cases in t into two
groups and obtaining a new tree τ ′, where t is an internal node with two children,
say, tL and tR. Obviously, di�erent splits generate distinct trees τ ′. The original
work by Breiman and his colleagues [BFOS84] proposes to choose the split that
minimizes the corresponding mean square error MSE(τ ′) on training cases. Since,
CART associates a constant with each leaf, the MSE(τ ′) is clearly minimized when
this constant is the sample mean of the target variable on cases in the leaf. There-
fore, the minimization of MSE(τ ′) is equivalent to minimizing the contribution
to MSE(τ ′) provided by the split. This contribution is p(tL)s2(tL) + p(tR)s2(tR),
where p(tL) (p(tR)) denotes the estimated probability that a training case reaches
the leaf tL (tR), while s2(tL) (s2(tR)) the sample variance at leaf tL (tR) of Y values.

This heuristic criterion, that has initially conceived for a regression tree, has
also been used for model trees. In HTL the evaluation function is the same as that
reported above, while in M5 and M5' the sample variance s2(t) is substituted by
the sample standard deviation s(t).

The problem with these evaluation functions, when used in model tree induction,
is that they do not take into account the (multiple) models associated with the leaves
of the tree, and the induced tree may fail to capture the underlying model. In
principle, the optimal split should be chosen depending on how well each model �ts
the data. In practice, many model tree induction systems choose the optimal split on
the basis of the spread of observed cases with respect to the sample mean. However,
a model associated with a leaf of a model tree is generally more sophisticated than
the sample mean. Therefore, the evaluation function is incoherent with respect to
the model tree being built.

1An overview of methods for top-down induction of regression and model trees is presented in
Chapter 3.
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Figure 4.1: a) Scatter plot of twenty cases; the values of the only independent variable range
between -1.0 and 2.0. A simple linear regression on the whole data set would give the dashed line.
b) The underlying model tree partitions the training cases into two subgroups: X ≤ 0.4 and X >

0.4.

To illustrate the problem, let us consider the dataset plotted in Figure 4.1.a and
generated according to model tree in Figure 4.1.b. Neither M5 nor its commercial
version CUBIST nor HTL are able to �nd the underlying model tree, because of
net separation of the splitting stage from the predictive one, and in particular due
to the fact that the partitioning of the feature space does not take into account
the regression models that can be associated with the leaves. This seems to be
inherited by regression tree learners, such as CART. In this case, however, the
evaluation functions do take into account the models built in the leaves (the sample
means). On the contrary, when we try to use the same heuristic criteria for model
tree induction we are rating the e�ectiveness of a partition with respect to di�erent
models from the ones chosen in the subsequent predictive stage.

This problem is solved in RETIS, whose heuristic evaluation function used for
a binary split minimizes a function of the mean square error (MSE ) computed
with respect to the regression planes found for both the left and the right child.
In practice, for each possible partitioning, the best regression planes at leaves are
chosen, so that the selection of the optimal partitioning can be based on the result
of the prediction stage. The computational complexity of this evaluation function
is cubic in the number of independent continuous2 variables, m, and quadratic in
the number of training observations, n. Indeed, the selection of the �rst split takes
time O(m×n× lg n) to sort all values of the m variables, plus time required to test
(n−1)×m distinct cut points, at worst. Each test, in turn, requires the computation
of two regression planes on the m independent variables, that is, twice the time
of computing (DX

T DX)−1DX
T DY , where DY is the n(t)-dimensional vector of

values taken by the response variable in node t, while DX is an n(t) × (m + 1)
matrix of observations plus a column with only 1s [DS82]. Solving this least-square
problem by normal equations takes time O(n(t) × (m + 1)2 + (m + 1)3). Since in
general n(t) > m, the time complexity can be approximated to O(n(t)× (m + 1)2).
For at least one of the tests n(t) is proportional to n, thus the choice of the �rst
split takes time O(n× (n− 1)×m× (m + 1)2).

In SUPPORT and SECRET this ine�ciency is solved by transforming a re-
2The complexity for discrete variables cannot be evaluated, since no speci�cation is reported

in the literature on the procedure that RETIS follows to select best subsets of attribute values.
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gression problem into a classi�cation problem. More precisely, Chaudhury and his
colleagues [CHLY94] propose to label the residuals of a linear model at a node as
either positive or negative, and to choose the best partition on the basis of computa-
tionally e�cient statistical tests developed for classi�cation tasks. The justi�cation
of this approach is that if a �tted model is unsatisfactory, the lack of �t would be
re�ected in the distributional pattern of the residuals. Dobra and Gehrke [DG02]
observe that this justi�cation is not theoretically founded, and propose to identify
two normal multivariate distributions in the space X × Y , and then to classify
observed data according to the probability of belonging to these two distributions.
The best partition is selected by means of e�cient techniques developed for decision
trees. In the case of binary splits of continuous attributes, Torgo [Tor02] proposes
a solution based on a recursive least squares algorithm, whose average complexity is
quadratic in the number of di�erent data points between two subsequent cut-points
of the continuous variable.

In addition to high computational complexity, another problem may occur in
RETIS, since the regression planes gL and gR involve all continuous variables. When
some of the independent variables are related to each other, that is, they are (ap-
proximately) collinear, several problems may occur [DS82], such as indeterminacy
of regression coe�cients, unreliability of the estimates of the regression coe�cients,
and impossibility of evaluating the relative importance of the independent variables.
Interestingly, problems due to collinearity do not show in the model's �t. The result-
ing model may have very small residuals, but the regression coe�cients are actually
poorly estimated. A treatment suggested for data that exhibit collinearity is that
of deleting some of the variables from a �tted model. Therefore, variable subset
selection is a desirable part of regression analysis.

Finally, RETIS, as well as many other TDIMT systems, is characterized by
models at leaves that can take into account only local decisions. This depends
on building multiple regression model associated with a leaf on the basis of those
training cases falling in the corresponding partition of the feature space. Therefore,
models in the leaves have only a local validity and do not consider the global e�ects
that some variables might have in the underlying model functions. To explain this
concept, let us consider the case of a region R of a feature space described by
four continuous independent variables X1, X2, X3, and X4. The region R can be
partitioned into two regions R1 and R2, such that cases with X4 ≤ α (X4 > α),
for a constant threshold α, fall in R1 (R2). Two regression models can be built
independently for each region Ri, say:

R1 : Ŷ = β̂′0 + β̂′1X1 + β̂′2X2 (4.1)

R2 : Ŷ = β̂′′0 + β̂′′1X1 + β̂′′3X3. (4.2)

The presence of X1 in both models simply indicates that this variable is relevant
both when X4 ≤ α and when X4 > α, although its in�uence on the dependent
variable Y can be very di�erent for the two regions. In this case, we say that the
e�ect of X1 on Y is local, since it can be properly predicted by considering the test
X4 ≤ α. A global e�ect occurs when the contribution of X1 to Y can be reliably
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predicted on the whole region R. In this case, an initial regression model can be
approximated by regressing on X1 for the whole region R:

R : Ŷ = β̂0 + β̂1X1 (4.3)

and then by adding the e�ect of the variables X2 and X3 locally to the subregions R1

and R2, respectively. This is a case of stepwise construction of regression models. As
explained in [DS82], the correct procedure to follow in order to introduce the e�ect
of another variable in the partially constructed regression model is to eliminate
the e�ect of X1. In practice, this means that we have to compute the following
regression models for the whole region R:

R : X̂2 = β̂20 + β̂21X1 (4.4)

R : X̂3 = β̂30 + β̂31X1 (4.5)

and then to compute the residuals X ′
2 = X2−X̂2, X

′
3 = X3−X̂3 and Y ′ = Y − Ŷ =

Y − (β0 + β1X1). By regressing the residuals Y ′ on X ′
2 and X ′

3 for the regions R1

and R2, respectively, the following two models are built:

R1 : Ŷ = β̂0 + β̂1X1 + β̂2X
′
2 = β̂0 + β̂1X1 + β̂2X2 − β̂2β̂20 − β̂2β̂21X1 (4.6)

R2 : Ŷ = β̂0 + β̂1X1 + β̂3X
′
3 = β̂0 + β̂1X1 + β̂3X3 − β̂3β̂30 − β̂3β̂31X1. (4.7)

They show the global e�ect of X1, since their �rst two common terms do not
depend on the test X4 ≤ α, that is, they are computed on the whole region R.
Moreover, the last term of each model corrects the contribution of X1 due to the
local introduction of either X2 or X3.

In model trees, global e�ects can be represented by variables that are introduced
in the multiple models at higher levels of the tree [MACM02]. This requires a
di�erent tree-structure that supports the stepwise construction of multiple linear
models by intermixing regression steps with partitioning steps, as in TSIR. TSIR has
two types of node: splitting nodes and regression nodes. A splitting node performs a
Boolean test on a variable and has two children. A regression node computes a single
variable regression, Ŷ = a + bX, and passes down to its unique child the residuals
yi−(a+bxi) as new values of the target (response) variable. Thus, descendants of a
regression node will operate on a modi�ed training set. Lubinsky claims that "each
leaf of the TSIR tree corresponds with a di�erent multiple linear regression", and
that "each regression step adds one variable and its coe�cients to an incrementally
growing model". However, this interpretation is not correct from a statistical point
of view, since the incremental construction of a multiple linear regression model
must be made by removing the linear e�ect of the introduced variables each time
a new independent variable is added to the model3 [DS82]. Conversely, TSIR
passes down the residuals of Y alone. Therefore, it is not possible to assert that
the composition of straight-line models found along a path from the root to a leaf

3See Example 3.2 for the correct stepwise construction of multiple linear regression model
through a sequence of straight-line regressions.
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is equivalent to a multiple linear model associated with the leaf itself. Moreover,
collinearity problems are not properly solved, although only a subset of variables
may be involved in the models at leaves.

A summary of some characteristics discussed above is reported in Table 4.1. It
is noteworthy that all systems can build multiple linear regression models at leaves.
In addition, HTL can build kernel regressors, which are simply to implement but do
not capture the structure of the domain as linear models do. Some systems involve
both continuous and discrete variables in the linear models at leaves. The latter
are treated as dichotomous variables in standard linear regression [DS82], however,
their real contribution is unclear in the case of model trees. In some systems, linear
models at leaves can be retrospectively simpli�ed by deleting some variables.

Table 4.1: Systems comparison
System Coherent

evaluation
function

Local
global
e�ects

Variables in
the nodes at
leaves

Type of
model

Simpli�cation
of models at
leaves

Tree
pruning

M5 No No Discrete and
continuous
variables used
in split nodes

Linear
models

Yes Yes

M5' No No Discrete and
continuous
variables used
in split nodes

Linear
model

Yes Yes

HTL No No Continuous
variables

Linear
model
or kernel
regressor
or hybrid

Yes Yes

RETIS Yes No All continuous
variables

Linear
model

No Yes

GUIDE No No Continuous
variables

Linear
model

Yes Yes

SECRET Yes No Continuous
variables

Linear
model

No Yes

TSIR Only for con-
tinuous vari-
ables

Yes Continuous
variables

Linear
model
(not sta-
tistically
inter-
pretable)

No No

SMOTI Yes Yes Continuous
variables

Linear
model

No Yes

In the remaining of this chapter, the TDIMT method SMOTI is presented. It
has four distinguishing features:

1. A selection measure is chosen which is coherent with respect to the (partial)
linear model associated with the leaves.

2. Multiple regression models are constructed stepwise, by intermixing both re-
gression and splitting nodes. Problems observed in TSIR are solved by re-
moving the e�ect of the variable selected in a regression node before passing
down training cases to deeper levels, and by adopting a look-ahead strategy
when regression nodes and splitting nodes are compared for selection.
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3. The multiple linear model associated with each leaf involves all the continuous
variables in the regression nodes and the continuous variable in the straight-
line regression performed at the leaf. In this way, both global and local e�ects
of variables are considered.

4. The simpli�cation strategies apply only to the tree structure, thus the deletion
of some variables in the models at leaves is the result of pruning a regression
node.

4.2 Stepwise construction of model trees
SMOTI induces model trees with both regression and splitting nodes. In this Sec-
tion, we start with the formal de�nition of a SMOTI tree, that is a model tree
with regression and splitting nodes, then we describe details about the stepwise
construction of model trees performed by SMOTI and analyze its computational
complexity. Finally, some practical considerations to improve SMOTI e�ciency are
discussed.

4.2.1 SMOTI tree
A SMOTI tree can be formally de�ned as follows:

De�nition 4.1 Given a set D of n training regression cases, each of which is de-
scribed by both m (continuous and discrete) predictors X1, . . . , Xm and a target
continuous variable Y , it is possible to build a tree-structured model named SMOTI
tree. This is a particular rooted tree τ = (Nτ , Bτ ) in which:

1. each node ti ∈ Nτ is associated with a subset of D, denoted by D(ti), possibly
modi�ed by removing the linear e�ect of the variables added to the model,

2. the root t0 is associated with D itself,

3. each leaf node ti is labeled with a straight-line regression Y = β0 + β1Xk,

4. each edge 〈ti, tj〉 ∈ Bτ is labeled with Lτ (〈ti, tj〉).
LT (〈ti, tj〉) can be:

- a straight-line regression function Y = β0 + β1Xk (regression label),

- a test in the form Xi ≤ α (Xi > α), which involves a continuous predictor
variable Xi (continuous splitting label),

- a test in the form Xi ∈ {xi1 , . . . , xis}(Xi /∈ {xi1 , . . . , xis}), which involves a
discrete predictor variable Xi(discrete splitting label),

¨

An internal node ti ∈ N I
τ is called regression (splitting) node i� there exists

an edge 〈ti, tj〉 ∈ Bτ such that LT (〈ti, tj〉) is a regression (continuous/discrete
splitting) label. The set of regression (splitting) nodes is denoted by N IR

τ (N IS
τ ),

while the set of leaves is denoted by ∈ NL
τ .
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Figure 4.2: An example of model tree by intermixing regression steps and splitting test, removing
residuals of variables introduced in the model and building a multiple linear function at each leaf
by combining straight-line regressions.

4.2.2 The algorithm
In SMOTI [MECA04], the development of a tree structure is not only determined
by a recursive partitioning procedure, but also by some intermediate prediction
functions. This means that there are two types of nodes in the tree: splitting
nodes and regression nodes. They pass down observations to their children in two
di�erent ways. For a splitting node t, only a subgroup of the n(t) observations
in t is passed down to each child, and no change is made on the variables. For a
regression node t, all the observations are passed down to its only child, but both
the values of the dependent variable and the values of the (continuous) independent
variables not included in the model are transformed to remove the linear e�ect
of those variables already included. This is done coherently with the statistical
theory for the incremental construction of a multiple linear regression model, as
explained in Example 3.2. Thus, descendants of a regression node will operate on a
modi�ed dataset. Consequently, the regression model e�ectively built at each leaf
is a multiple function obtained by combining all straight-line regressions along the
path from the root to the current leaf with straight-line regression labeling the leaf
(see Figure 4.2). An extra consequence is that all candidate continuous splits in the
subtree rooted into a regression node are e�ectively oblique splits, since they use
oblique hyperplane to partition the data (see Figure 4.3). More precisely, a splitting
test involving the residual of a continuous variable is a test on a linear combination
of multiple continuous variables [Iye99].

The top-level description of SMOTI is presented in Algorithm 4.1. It points
out that the validity of either a a splitting test or a regression step on a variable
Xi is based on two distinct evaluation measures, σ(t) and ρ(t) respectively. The
variable Xi is of any type in the former case, and of a continuous type in the latter
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Figure 4.3: An oblique hyperplane to partition data.

case. Both σ(t) and ρ(t) are mean square errors,4 therefore they can be actually
compared to choose between three di�erent possibilities:

1. growing the model tree by adding a regression node t;

2. growing the model tree by adding a splitting node t;

3. stopping the tree's growth at node t.

Algorithm 4.1 SMOTI Algorithm
PROCEDURE build-SMOTI-tree(X, Y, R,L, τ)
INPUT:

X: a set of m independent variables Xi;
Y : the dependent variable;
R: a subset of continuous variables in X;
L: a training set {(xj, yj)|j = 1, . . . , n}, where xj= (x1j , . . . , xmj );

OUTPUT:
τ: a model tree with regression and splitting nodes built

on (X, Y );
BEGIN

Best− ρ = ∞;
Best− tr = a node whose model is the estimated mean Y ;
FOR each continuous variable Xi ∈ R DO

Compute the best regression node tr with variable Xi of R ;
4This is di�erent from TSIR, which, in the case of node selection, minimizes the absolute

deviation between a constant value (the median) and the observed values Y . On the contrary,
SMOTI coherently minimizes the square error with respect to the partially constructed regression
model at each node.
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Compute the evaluation measure ρ(tr) for tr;
IF ρ(tr) ≤ Best− ρ THEN Best− ρ = ρ(tr); Best− tr = tr;
END IF;

END FOR;
IF stopping criteria THEN τ = leaf(Best− tr);
ELSE

Best− σ = ∞; Best− ts = nil;
FOR each variable Xi ∈ X DO

Compute the best splitting node ts with variable Xi;
Compute the evaluation measure σ(ts) for ts;
IF σ(ts) ≤ Best− σ THEN

Best− σ = σ(ts); Best− ts = ts;
END IF;

END FOR
IF Best− σ > Best− ρ THEN

build-SMOTI-tree(X, Y,R, {(xj , yj) ∈ L|test in Best− ts

is true}, τL);
build-SMOTI-tree(X, Y,R, {(xj , yj) ∈ L|test in Best− ts

is false}, τR);
τ = tree with root Best−ts and left (right) branch τL (τR);

ELSE
Let Xr be the variable in Best− tr;
FOR EACH case (xj , yj) ∈ L DO

FOR EACH continuous variable Xi ∈ X −Xr DO
x′ij

= residuals of xij after removing the effect of
Xr;

END FOR;
y′j = residuals of yj when the regression in Best-tr is
performed;

END FOR
build-SMOTI-tree(X ′

j ∪Xr, Y
′, X ′

j , {(x′j , y′j)|(xj , yj) ∈ L}, τ ′);
τ = tree with root in Best− tr and child τ ′;

END IF;
END IF;

END PROCEDURE

The evaluation measure σ(t) should be coherently de�ned on the basis of the
multiple linear models at the leaves. In SMOTI, it is su�cient to consider the best
straight-line regression associated with each left (right) leaf tL (tR), since regression
nodes along the path from the root to tL (tR) already partially de�ne a multiple
regression model (see Figures 4.4.a and 4.4.b).

If Xi is continuous and α is a threshold value for Xi, then σ(t), with t the split
Xi ≤ α vs. Xi > α, is de�ned as:

σ(t) =
n(tL)
n(t)

R(tL) +
n(tR)
n(t)

R(tR), (4.8)
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where n(t) is the number of cases reaching t, n(tL) (n(tR)) is the number of cases
passed down to the left (right) child tL(tR), and R(tL) (R(tR)) is the resubstitution
error5 of the left (right) child, computed as follows:

R(tL) =

√√√√ 1
n(tL)

∑

(xj ,yj)∈D(tL)

(yj − ŷj)2 (4.9)

R(tR) =

√√√√ 1
n(tR)

∑

(xj ,yj)∈D(tR)

(yj − ŷj)2. (4.10)

The estimate:

ŷj = β̂0 +
∑

s

β̂sxs, (4.11)

is computed by combining all univariate regression lines associated with regression
nodes along the path from the root to tL (tR). Possible values of α are found by
sorting the distinct values of Xi in the training set associated with t, then identifying
a threshold (e.g. midpoint) between each pair of adjacent values. Therefore, if the
cases in t have k distinct values for Xi, k− 1 thresholds are considered. Obviously,
the lower σ(t), the better the split t: Xi ≤ α vs. Xi > α.

If Xi is discrete, SMOTI partitions attribute values into two sets, so that binary
trees are always built. Some TDIMT systems, such as HTL and M5', use the same
criterion applied in CART [BFOS84](pg. 247). More precisely, if k is the number
of distinct values for Xi and SXi = {xi1 , xi2 , . . . , xik

} is the set of distinct values
of Xi, SXi is sorted according to the sample mean of Y over all cases in t. A
theorem by Breiman et al. [BFOS84](Theorem 4.5, Proposition 8.16) proves that
the best binary split is one of k−1 partitions {xi1 , . . . , xih

} and SXi−{xi1 , . . . , xih
},

thus greatly reducing the search for the best subset of categories from 2k−1 to k-1
partitions. However the theorem is based on the assumption that the models at
leaves are the sample means, which is not the case of SMOTI6. Therefore, SMOTI
relies on a non-optimal greedy strategy as suggested by [MAR96]. It starts with
an empty set LeftXi = φ and a full set RightXi = SXi . It moves one element from
RightXi to LeftXi , such that the move results in a better split. Let t be the split
of Xi ∈ LeftXi

vs. Xi /∈ LeftXi
, then the evaluation measure σ(t) is computed as in

the case of continuous variables, and therefore, a better split decreases σ(t). The
process is iterated until there is no improvement in the splits. The computational
complexity of this heuristic is O(k2). For all possible splits t, the measure σ(t) is
computed as in the case of continuous variables.

The split selection criterion explained above can be improved to consider the
special case of identical regression models associated with both children. When
this occurs, the best straight-line regression associated with t is the same as that
associated with both tL and tR, up to some statistically insigni�cant di�erence. In
other terms, the split is useless and can be �ltered out from the set of alternatives.

5Resubstitution error is here computed as the root mean square error.
6Sample means are used only when all independent variables are discrete.
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Figure 4.4: a) A continuous splitting node t with two straight-line regression models in the leaves.
b) A discrete splitting node t with two straight-line regression models in the leaves. c) Evaluation
of a regression step at node t, based on the best splitting test t′ below.

To check this special case, SMOTI compares the two regression lines associated with
the children according to a statistical test for coincident regression lines [Wei85](pp.
162-167).

The evaluation of a regression step Y = β̂0 + β̂1Xi at node t cannot be naïvely
based on the resubstitution error R(t):

R(t) =

√√√√ 1
n(t)

∑

(xj ,yj)∈D(t)

(yj − ŷj)2, (4.12)

where the estimator ŷj is computed by combining all univariate regression lines
associated with regression nodes along the path from the root to t. This would
result in values of ρ(t) less than or equal to values of σ(s) for some splitting test
s involving Xi. Indeed, the splitting test looks-ahead to the best multiple linear
regressions after the split on Xi is performed, while the regression step does not. A
fairer comparison would be growing the tree at a further level in order to base the
computation of ρ(t) on the best multiple linear regressions after the regression step
on Xi is performed (see Figure 4.4.c).

Let t′ be the child of the regression node t, and let us suppose that it performs
a splitting test. The best splitting test in t′ can be chosen on the basis of σ(t′) for
all possible variables Xj , as indicated above. Then ρ(t) can be de�ned as follows:

ρ(t) = min{(R(t), σ(t′)}. (4.13)

The possibility of statistically identical regression models associated with the
children of t′ may also occur in this case. When this happens, the splitting node
is replaced by another regression node t′ where the straight-line regression model
is the same as that in the children of the splitting node. Therefore, in this special
case, ρ(t) can be de�ned as follows:

ρ(t) = min{R(t), R(t′)}. (4.14)

Having de�ned both ρ(t) and σ(t), the criterion for selecting the best node
is fully characterized as well. At each step of the model tree induction process,



Stepwise Model Tree Induction 71

SMOTI chooses the apparently most promising node, according to a greedy strategy.
A continuous variable selected for a regression step is no longer considered for
regression purposes, so that it can appear only once in a regression node along a
path from the root to a leaf.

In SMOTI, �ve di�erent stopping criteria are implemented. The �rst uses the
partial F -test to evaluate the contribution of a new independent variable to the
model [DS82]. The second requires the number of cases in each node to be greater
than a minimum value. The third stops the induction process when all continuous
variables along the path from the root to the current node are used in regression
steps and there are no discrete variables in the training set. The fourth creates
a leaf if the error in the current node is below a fraction of the error in the root
node, as in [Tor99](pg. 60). Finally, the �fth stops the induction process when
the coe�cient of determination (R2) is greater than a minimum value [Wei85](pp.
18-19). This coe�cient is a scale-free one-number summary of the strength of the
relationship between independent variables in the actual multiple model and the
response variable. It is computed as follows:

R2 =

∑
(xj ,yj)∈D(t)

(ŷj − Ȳ (t))2

∑
(xj ,yj)∈D(t)

(yj − Ȳ (t))2
(4.15)

where ŷj = τ(xj) when t is converted into a leaf node of τ , while Ȳ (t) =

P
(xj ,yj)∈D(t)

yj

n(t) .
In conclusion, SMOTI presents several advantages. First, it de�nes the best

partitioning of the feature space coherently with respect to the model tree being
built. Second, it provides a solution to the problems of collinearity at the same
computational cost of RETIS. Third, the use of both regression and splitting nodes
permits the system to discover both global and local e�ects of variables in the
various regression models. This is evident in the experimental results.

4.2.3 Complexity analysis
The computational complexity of adding a splitting node t into SMOTI tree depends
on the complexity of a splitting test selection in t and the complexity of the best
regression step selection in the children nodes tL and tR. On the contrary, the
computational complexity of adding a regression node t depends on the complexity
of a regression step selection in t and the complexity of the best splitting test in its
child t′.

A splitting test can be either continuous or discrete. In the former case, a
threshold α has to be selected for a continuous variable. Let n be the number of
examples in the training set, then the number of distinct thresholds can be n− 1 at
worst. They can be determined after sorting the set of distinct values. If m is the
number of independent variables, the determination of all possible thresholds has a
complexity O(m× n× lg n) when an optimal algorithm is used to sort the values.
For each of the m×(n−1) thresholds, SMOTI �nds the best straight-line regression
at both children, which has a complexity of m×(n−1) in the worst case. Therefore,
the splitting test has a complexityO(m×n×lg n+m2×(n−1)2), that isO(m2×n2).
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Similarly, for a discrete splitting test, the worst case complexity is O(m×k2) where
k is the maximum number of distinct values of a discrete variable. The selection
of the best discrete splitting test has a complexity O(m2 × k2 × n). Therefore,
�nding the best splitting node (either continuous or discrete) has a complexity
O(m2×n2 + m2× k2×n), and under the reasonable assumption that k2 ≤ n, that
is, the number of distinct values of the a discrete variable is less then the square
root of the number of cases, the worst case complexity is O(m2 × n2).

The selection of the best regression step requires the computation, for each of
the m variables, of m straight-line regressions (one for the regression node plus m−1
to remove the e�ect of the regressed variable) and the updating of the dataset. This
takes time O(m2 × n)), since the complexity of the computation of a straight-line
regression is linear in n. Moreover, for each straight-line regression, a splitting
test is required, which has a worst case complexity of O(m2 × n2). Therefore, the
selection of the best regression step has a complexity O(m2 × n + m3 × n2), that
is, O(m3 × n2).

The above results lead to an O(m3 × n2) worst case complexity for the se-
lection of any node (splitting or regression). This means that, relative to node
selection, SMOTI has the same complexity as RETIS but is less e�cient than TSIR
which adopts a v-fold cross-validation strategy without look-ahead for regression
and splitting nodes. In TSIR the complexity is O(m× v × n) for regression nodes
and O(m× v×n2) for splitting nodes. However, the model that TSIR considers at
the children of a discrete splitting node during its evaluation is the sample mean and
not a linear regression, which means that it su�ers from the problems of adopting a
heuristic evaluation function which is not coherent with the models associated with
the leaves.

4.2.4 Some practical considerations
The analysis of SMOTI computational complexity indicates that the key computa-
tional issue is evaluating a candidate split or regression.

The selection of the best split on a continuous variable Xa for a node t starts
with ordering the training threshold values for Xa. After obtaining this order-
ing (say {α1, . . . , αk}), SMOTI has to evaluate each possible test that leads to
a di�erent splitting on the cases through the left and right branches. In partic-
ular, when the candidate split Xa ≤ αh is evaluated: for each continuous vari-
able Xi (or residual X ′

i) not yet included in the regression model stepwise built,
two straight-line regression are obtained: one �tting with the cases satisfying this
test (let slope and intercept be β̂0L(αh, Xi) and β̂1L(αh, Xi), respectively) and
the other with ones not satisfying this test (β̂0R

(αh, Xi) and β̂1R
(αh, Xi)). For

each side, the best straight-line regression (i.e. straight-line regression which min-
imizes the corresponding resubstitution error) is returned and then used in eval-
uating the test according to σ(t). When the candidate split Xa ≤ αh+1 where
αh+1 > αh is then evaluated, this corresponds with moving some cases from the
right to the left branch and computing new values for each β̂0L

(αh+1, Xi) and
β̂1L

(αh+1, Xi) as well as β̂0R
(αh+1, Xi) and β̂1R

(αh+1, Xi). Regression coe�cients
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β̂0L(αh+1, Xi) and β̂1L(αh+1, Xi) are estimated with the cases used to estimate
β̂0L(αh, Xi) and β̂1L(αh, Xi) plus some other cases, namely the cases de�ned by the
set J(αh, αh+1) = {(xj , yj) ∈ D(t)|xaj

> αh ∧ xaj
≤ αh+1}. Similarly, regression

coe�cients β̂0R
(αh+1, Xi) and β̂1R

(αh+1, Xi) are estimated according to cases used
to estimate β̂0R(αh, Xi) and β̂1R(αh, Xi) less the set of J observed cases.

Following a suggestion given by Torgo [Tor02], SMOTI bases the estimation
of each regression coe�cient β̂iL

(αh+1, Xi) (β̂iR
(αh+1, Xi)) on the corresponding

β̂iL
(αh, Xi) (β̂iR

(αh, Xi)).
Let us consider the straight-line regression between Y and the continuous (resid-

ual) variable Xi, namely Y = β̂0L(αh, Xi)+β̂1L(αh, Xi)Xi, �tting with nL(αh) cases
observed in t, which satisfy the test Xa ≤ αh. The intercept β̂1L

(αh, Xi) is:

β̂1L
(αh, Xi) =

∑
j=1...nL(αh)

(xij −Xi)(yj − Y )

∑
j=1...nL(αh)

(xij
−Xi)2

(4.16)

=

∑
j=1...nL(αh)

(xij
yj −Xiyj − xij

Y + XiY )

∑
j=1...nL(αh)

(x2
ij

+ Xi
2 − 2xij Xi)

(4.17)

=

∑
j=1...nL(αh)

xij yj −Xi

∑
j=1...nL(αh)

yj − Y
∑

j=1...nL(αh)

xij + nLXiY

∑
j=1...nL(αh)

x2
ij

+ nL(αh)Xi
2 − 2Xi

∑
j=1...nL(αh)

xij

(4.18)

=

∑
j=1...nL(αh)

xij yj − 1
nL(αh)

∑
j=1...nL(αh)

xij

∑
j=1...nL(αh)

yj

∑
j=1...nL(αh)

x2
ij
− 1

nL(αh
(

∑
j=1...nL(αh)

xij )2
, (4.19)

while the slope β̂0L
(αh, Xi) is:

β̂0L
(αh, Xi) = Y − β̂0L

(αh, Xi)Xi, (4.20)

where Xi = 1
nL(αh)

∑
1...nL(αh)

xij and Y = 1
nL(vh)

∑
1...nL(αh)

yi.

By denoting with SL(Xi, Y, αh) =
∑

j=1...nL(αh)

xij yj ; SL(Xi, αh) =
∑

j=1...nL(αh)

xij ;

SL(Y, αh) =
∑

j=1...nL(αh)

yj and SL(Xi, Xi, αh) =
∑

j=1...nL(αh)

x2
ij
, then β̂1L

(αh, Xi)

and β̂0L(αh, Xi) can be written as:

β̂1L
(αh, Xi) =

SL(Xi, Y, αh)− 1
nL(αh)SL(Xi, αh)SL(Y, αh)

SL(Xi, Xi, αh)− 1
nL(αh)SL(Xi, αh)2

(4.21)

β̂0L
(αh, Xi) =

SL(Y, αh)
nL(αh)

− β̂0L

SL(Xi, αh)
nL(αh)

. (4.22)

Both β̂0L
(αh+1, Xi) and β̂1L

(αh+1, Xi) can be computed starting from SXiY (αh),
SXi(αh), SY (αh) and SXiY (αh) and updating them on the basis of only cases ob-
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served in J(αh, αh+1):

SL(Xi, Y, αh+1) = SL(Xi, Y, αh) +
∑

(xj ,yj)∈J(αh,αh+1)

xij yj , (4.23)

SL(Xi, αh+1) = SL(Xi, αk) +
∑

(xij
,yj)∈J(αh,αh+1)

xij , (4.24)

SL(Y, αh+1) = SL(Y, αh) +
∑

(xij
,yj)∈J(αh,αh+1)

yj , (4.25)

SL(Xi, Xi, αh+1) = SL(Xi, Xi, αh) +
∑

(xij
,yj)∈J(αh,αh+1)

x2
ij

, (4.26)

such that:

β̂1L
(αh+1, Xi) =

SL(Xi, Y, αh+1)− 1
nL(αh+1)

SL(Xi, Y, αh+1)

SL(Xi, Xi, αh+1)− 1
nL(αh+1)

SL(Xi, αh+1)2
, (4.27)

β̂0L
(αh+1, Xi) =

SL(Y, αh+1)
nL(αh+1)

− β̂0L

SL(Xi, αh+1)
nL(αh+1)

. (4.28)

Similarly, on right side, we denote by Y = β̂0R(αh, Xi)+β̂1R(αh, Xi) the straight-
line regression between Y and Xi �tting with nR(αh) cases observed in t and sat-
isfying the test Xa > αh. Starting from SR(Xi, Y, αh), SR(Xi, αh), SR(Y, αh) and
SR(Xi, Xi, αh), SMOTI computes:

SR(Xi, Y, αh+1) = SR(Xi, Y, αh)−
∑

(xj ,yj)∈J(αh,αh+1)

xij yj , (4.29)

SR(Xi, αh+1) = SR(Xi, αh)−
∑

(xij
,yj)∈J(αh,αh+1)

xij , (4.30)

SR(Y, αh+1) = SR(Y, αk)−
∑

(xij
,yj)∈J(αh,αh+1)

yj , (4.31)

SR(Xi, Xi, αh+1) = SR(Xi, Xi, αh)−
∑

(xij
,yj)∈J(αh,αh+1)

x2
ij

, (4.32)

and obtains:

β̂1R(αh+1, Xi) =
SR(Xi, Y, αh+1)− 1

nR(αh+1)
SR(Xi, Y, αh+1)

SR(Xi, Xi, αh+1)− 1
nR(αh+1)

SR(Xi, αh+1)2
, (4.33)

β̂0R(αh+1, Xi) =
SR(Y, αh+1)
nR(αh+1)

− β̂0R

SR(Xi, αh+1)
nR(vαh+1)

. (4.34)

Similar considerations can be adopted in selecting of best splitting test on a
discrete variable Xa having domain SXa . SMOTI, starts (step 0) with an empty
set LeftXa(0) = φ and a full set RightXa(0) = SXa . It moves one element from
RightXa to LeftXa , such that the move results in a better split. This means that
at step h, SMOTI is determining the best split having h values in LeftXa

(h) such
that LeftXa

(h) = {α1, . . . , αh} and RightXi
(h) = SXa − {α1, . . . , αh}. Then, at

step h + 1, SMOTI is evaluating all possible splits by moving one element from
RightXi

(h) to LeftXi
(h). This means that, for each candidate split, we de�ne

J(LeftXa
(h),LeftXa

(h+1)) = {(xj , yj) ∈ D(t)|xaj ∈ LeftXi
(h)∪{vh+1} with vh+1 ∈

RightXi
(h)}. Both intercept and slope of candidate straight-line regressions on left
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and right side of a candidate split at step h + 1 are then computed as in the case of
continuous split by updating the partial sums obtained for the best split at step h.

Finally, when SMOTI is evaluating a regression step on a continuous (residual)
variable Xa, this corresponds with looking-ahead to the best split after the regression
is performed. This suggests that when, SMOTI is introducing a regression node t

in τ , it may also store the best split t′ obtained in the look-ahead evaluation of t.
Therefore, when SMOTI procedure is recursively applied to D(t), the best candidate
split is properly t′, that must not be recomputed it again by improving e�ciency.

4.3 Over�tting avoidance in SMOTI tree
Similarly to other TDIMTmethods, SMOTI may generate model trees, which over�t
training data. This means that the tree is capturing regularities of the training
sample and not of the domain from which the sample is obtained.

Over�tting avoidance within tree models is usually achieved by growing an overly
large tree and then simplifying the tree by discarding parts of the tree that describe
spurious e�ects in the training sample rather than true features of the underlying
phenomenon. However, as Scha�er [Sch93] pointed out, simplifying a tree cannot be
only regarded as a statistical means to improve the true prediction accuracy. At this
aim, Torgo [Tor99] enlightens that it is easy to �nd real world domains where simpli-
�cation is actually harmful with respect to predictive accuracy on independent and
large test samples. On the contrary, as suggested by Scha�er [Sch93], simpli�cation
should be regarded as a preference bias over simpler models. In this sense, simpli-
�cation is coherent with Occam's razor principle7 which is generally interpreted as
counseling the use of simpler models rather than complex ones. Domingo [Dom99]
underlines that this is the only useful interpretation of Occam's razor as a univer-
sal principle (as opposed to a domain-speci�c heuristic) and argues that simpler
models should be preferred since they are more comprehensible to people. Never-
theless, simplicity is only an imperfect measure of comprehensibility, and precisely
quantifying the latter does not seem possible.

In model trees, simplicity can be eventually quanti�ed in terms of complexity
of either the tree structure (e.g. number of leaves, depth of the tree, etc.) or
the model at leaves (e.g. number of variables included in the model). In this
perspective, simpli�cation is regarded as a search problem aiming at looking for the
best simpli�ed tree. The �nal e�ect is that the intelligibility of the regression model
is improved, without really a�ecting its predictive accuracy.

Simpli�cation methods are computationally ine�cient in the sense that it is not
unusual to �nd domains where an extremely large tree with thousands of nodes is
simpli�ed into few hundred nodes. This clearly seems a waste of computation. An
alternative consists of stopping the tree growth procedure as soon as further splitting
is considered unreliable. However, this method incurs the danger of selecting a sub-
optimal tree [BFOS84] by stopping too soon.

7The Occam's razor principle "entities should not be multiplied more than necessary" (entia
non sunt multiplicanda praeter necessitatem) has been attributed the medieval English philosopher
and Franciscan monk William of Ockham (1285-1349).
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Several simpli�cation methods have been reported in literature to simplify model
trees whose internal nodes are only splitting tests. On the other hand, no simpli�-
cation method has been proposed in TSIR, the only other system that induces trees
with two types of nodes. In this Section, we describe two methods, named Reduced
Error Pruning (REP) and Reduced Error Grafting (REG), to adequately simplify
model trees with regression nodes and splitting nodes. They are both based on the
use of an independent pruning set, but they adopt two distinct simpli�cation oper-
ators, namely: pruning operator and grafting operator. Some theoretical properties
of these simpli�cation methods are also reported.

4.3.1 A framework for SMOTI simpli�cation methods
Simpli�cation (pruning) methods have been initially proposed to solve the over�t-
ting problem of induced decision trees. A unifying framework for their descriptions
is reported in [EMS97]. We have followed the same idea and developed two meth-
ods, namely Reduced Error Pruning and Reduced Error grafting, to simplify model
trees with both regression nodes and splitting nodes [CAM03a]. The �rst method
uses the classical pruning operator extended to regression nodes as well. The second
method is based on a new grafting operator that replaces a splitting node with a
subtree.

To formally de�ne both these simpli�cation methods, some notations are intro-
duced. We start with the de�nition of pruning and grafting relations on SMOTI
trees, then we de�ne the search spaces, and �nally the operators.

Let T denote the set of all possible model trees that SMOTI can build from a
training set D. It is possible to de�ne two distinct partial order relations on T,
denoted ≤P and ≤G, which satisfy the properties of re�exivity, antisymmetry and
transitivity. Let τ and τ ′ be two model trees in T. Then τ ′ ≤P τ i� for each path p′

from the root of τ ′ to a leaf in τ ′, there exists a path p from the root of τ to a leaf
of τ such that the label associated with p′, LT ′(p′), is a pre�x of LT (p). Moreover,
τ ′ ≤G τ , i� for each path p′ from the root of τ ′ to a leaf in τ ′, there exists a path
p from the root of τ to a leaf of τ , such that LT ′(p′) is obtained from LT (p) by
dropping some continuous/discrete split labels in the sequence.

With reference to Figure 4.5, τ ′ ≤P τ and τ ′′ ≤G τ , while the relations τ ′′ ≤P τ

and τ ′ ≤G τ do not hold. Hence, given a SMOTI tree τ , it is possible to de�ne two
sets of trees, namely:

SP (τ) = {τ ′ ∈ T|τ ′ ≤P τ}, (4.35)
SG(τ) = {τ ′ ∈ T|τ ′ ≤G τ}. (4.36)

We observe that SP (τ) * SG(τ) and SG(τ) * SP (τ), since τ ′ ≤P τ does not
imply τ ′ ≤G τ and viceversa.

The pruning operator is de�ned as the function:

πτ : N I
τ → T (4.37)

The operator πτ associates each internal node t ∈ N I
τ with the tree πτ (t), which

has all the nodes of τ except the descendants of t.
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Figure 4.5: The model tree τ ′ is obtained by pruning τ in node 2, while τ ′′ is obtained by grafting
the subtree rooted in node 4 onto the place of node 2.

Analogously, the grafting operator is de�ned as the function:

γτ : N IS
τ ×N I

τ → T, (4.38)

that associates each couple of internal nodes 〈t, t′〉 ∈ N IS
τ × N I

τ , with the tree
γτ (〈t, t′〉), which has all nodes of τ except those in the branch between t and t′.

Intuitively, the pruning operator applied to a node of a tree τ returns a tree
τ ′ ≤P τ while the grafting operator returns a tree τ ′ ≤G τ (see Figure 4.5).

The problem of simplifying a model tree can be cast as a search in a state space,
where states are trees in either SP (τ) or SG(τ), and pruning and grafting are the
only operators that can be applied to move from one state to another.

In order to give a precise de�nition of a simpli�cation method the goal of the
search in the state space has to be de�ned. For this reason, a function f that
estimates the goodness of a tree is introduced. It associates each tree in the space
S(τ) with a continuous value, namely:

f : S(τ) → <, (4.39)

where < is the set of real values. The goal of the search is to �nd the state in
S(τ) with the highest f value, so that pruning can be cast as a problem of function
optimization.

Finally, the way in which the state space is explored also characterizes di�erent
simpli�cation methods, which can be formally described by a 4-tuple:

(Space, Operators, Evaluation function, Search strategy), (4.40)

where Space represents the search space of pruning methods, Operators is a set of
simpli�cation (pruning or grafting) operators, the Evaluation function associates
each tree in the search space with a continuous value and the Search strategy is the
way in which the state space is explored in order to �nd the optimal state.

This framework [CAM03c] is used to explain the two simpli�cation methods we
have proposed to simplify SMOTI trees.
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Figure 4.6: The original dataset can be split into two subsets: the growing set and the pruning
set. The union of the growing and pruning set is called the training set. Trees learned from the
growing/training set are called grown/trained trees, respectively. Pruning trees can be obtained
by pruning either grown trees or trained trees. In the former case, a pruning set is used.

4.3.2 Reduced Error Pruning
This method is based on the Reduced Error Pruning (REP) proposed by Quinlan for
decision trees [Qui87]. It uses a pruning set to evaluate the goodness of the subtrees
of a model tree τ . This pruning set is independent of the set of observations used
to build the tree τ , therefore, the training set must be partitioned into a growing
set used to build the tree and a pruning set used to simplify τ (Figure 4.6).

The top-level description of REP (see Algorithm 4.2) shows that REP search is
accomplished in the pruning state space, (SP (τ), {πτ}) by means of the �rst-better
strategy, according to which we move from one state τ to a state τ ′ just generated
if τ ′ is better than τ with respect to the evaluation function f . Di�erently from the
hill-climbing search, there is no generation of all states directly reachable from τ in
order to select the best one. Moreover, the �rst better strategy di�ers from the well-
known best �rst strategy in the storing of only one generated state. Obviously, in
this search strategy, the order in which states are generated is of crucial importance.
It depends on:

1. the traversal order: pre-order or post-order,

2. the direction of pruning: bottom-up or top-down.

In REP, the traversal is post-order and the direction is bottom-up. The evalua-
tion function f is de�ned as follows:

f(τ) =
∑

t∈NL
τ

MSE(t), (4.41)

where MSE(t) is the mean square error at leaf t computed on the pruning set.
Consequently, the search in the space moves from a state τ1 to a state τ2 ∈ πτ1(N

I
τ1

)
i� f(τ1) ≥ (τ2). More precisely, REP algorithm analyzes the complete tree τ and,
for each internal node t, it compares the MSE made on the pruning set when the
subtree τt rooted in t is kept, with the MSE made when τt is pruned and the
best regression function is associated with the leaf t. If the simpli�ed tree has a
better performance than the original one, it is advisable to prune τt. This pruning
operation is repeated on the simpli�ed tree until further pruning increases the value
of f .
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Algorithm 4.2 Reduced Error Pruning Algorithm
PROCEDURE REP(τ, DP , τP , fP ):
INPUT:

τ: model tree built by SMOTI on the growing set DG;
DP : pruning set independent from the growing set DG;

OUTPUT:
τP : pruned tree;
fP : value returned by f(τP );

BEGIN
IF DP is empty THEN τP = τ; fP = 0;
ELSE

IF the tree τ is a leaf THEN τP = τ; fP = f(τ,DP );
ELSE

IF the root t0 of τ is a splitting node with τL (τR) left
(right) branch of t0 in τ THEN

partition DP into {DPL
, DPR

} according to the split t0;
REP(τL, DPL

, τPL
, fPL

); REP(τR, DPR
, τPR

, fPR
);

fP = f({t′0}, DP ) where πτ (t0) = {t′0};
IF fP ≤ fPL + fPR THEN τP = {t′0};
ELSE

τP = tree(t0,τPL
,τPR

); fP = fPL
+ fPR

;
END IF;

ELSE;
IF the root t0 is a regression node with τR the unique

branch of t0 in τ THEN
remove the effect of the regression from DP into D1

P ;
REP(τR, D1

P , τPR
, fPR

);
fP = f({t′0}, DP ) where πτ (t0) = {t′0};
IF fP ≤ fPR THEN τP = {t′0};
ELSE

τP = tree(t0,τPR
); fP = fPR

;
END IF;

END IF;
END IF;

END IF;
END IF;

END PROCEDURE;

As already observed in [EK01], Quinlan's description of REP for decision trees
does not specify how to choose the class associated with the pruned nodes. Following
the majority class criterion, three alternatives are possible: the class is determined
on the basis of the growing set, the pruning set or the training set. Analogously, in
the case of model trees, the straight-line regression to be associated with a pruned
node can be determined on the basis of one of the three sets: growing, pruning or
training.
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The following optimality theorem can be proven:

Theorem 4.1 Given a model tree τ constructed on a set of growing observations
DG and a pruning set DP , the REP version that determines the regression model
on DG returns the smallest tree in SP (τ) with the lowest error with respect to DP .

The speci�cation "the REP version that determines the regression model on DG"
refers to the fact that once a node t has been pruned, the model associated with t

is determined on the basis of the same growing set DG. Alternatively, it could be
determined on the basis of either the pruning set or the whole training set.

Proof 4.1 We prove the theorem by induction on the depth of τ .
Base case. Let τ be a root tree {t0}. Then τ is the only tree in SP (τ) and REP

returns τ , since no pruning operation is possible.
Inductive Step. The proof is based on the additive property of the MSE for

model trees, according to which a local optimization on each branch τti
of t0 leads

to a global optimization on τ .
We assume the inductive hypothesis to be true for all model trees τ ′ of depth d

and we prove the theorem for the tree τ of depth d + 1, d ≥ 0. Since τ has a depth
greater than 0, there are two possibilities:

1. τ is the tree rooted in t0 that is a regression node with a child t1 such that
the subtree τt1 has depth d,

2. τ is the tree rooted in t0 that is a splitting node with two children t1 and t2

such that both subtrees τt1 and τt2 have maximum depth d.

Case 1. REP, which follows the bottom-up direction when pruning, �rst prunes
τt1 and then checks whether τ should be pruned in t0. For the inductive hypothesis,
REP �nds the optimally pruned tree τ∗t1 for the tree rooted in t1. Let τ ′ be the
tree rooted in t0, whose subtree is τ∗t1 . Then according to the de�nition of f ,
f(τ ′) = f(τ∗t1), since τ ′ and τ∗t1 have the same leaves. Moreover, for any tree
τ ′′ ∈ SP (τ) of depth greater than 0 we have: f(τ ′) ≤ f(τ ′′), since

f(τ ′) =
∑

t∈NL
τ∗t1

MSE(t) ≤ ∑
t∈NL

τ′′t1

MSE(t) = f(τ ′′).

Therefore, if f({t0}) ≤ f(τ ′) then REP prunes τ in t0, and the returned tree is
the best subtree of τ , since

MSE({t0}) = f({t0}) ≤ f(τ ′) ≤ f(τ ′′),

for any tree τ ′′ ∈ SP (τ) of depth greater than 0.
On the contrary, if f({t0}) > f(τ ′) then REP does not prune τ in t0 and the

returned tree is τ ′, which is the smallest tree in SP (τ) with the lowest error with
respect to DP .

Case 2. Analogously, in the case of the splitting node, REP follows the bottom-
up direction so that it �rst prunes τt1 and τt2 and then checks whether τ should be
pruned in t0. For the inductive hypothesis REP �nds the optimally pruned tree τ∗t1
for the tree rooted in t1 and τ∗t2 for the tree rooted in t2.

Let τ ′ be the tree rooted in t0, whose subtrees are τ∗t1 and τ∗t2 . Then:
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f(τ ′) = f(τ∗t1) + f(τ∗t2),

since the leaves of τ ′ are leaves of either τ∗t1 or τ∗t2 . Moreover, for any tree τ ′′ ∈ SP (τ)
of depth greater than 0, we have f(τ ′) ≤ f(τ ′′) since

f(τ ′) =
∑

t∈NL
τ∗t1

MSE(t) +
∑

t∈NL
τ∗t2

MSE(t) ≤

∑
t∈NL

τ′′t1

MSE(t) +
∑

t∈NL
τ′′t2

MSE(t) = f(τ ′′)

Therefore, if f({t0}) ≤ f(τ ′) then REP prunes τ in t0, and the returned tree is
the best subtree of τ , since

MSE({t0}) = f({t0}) ≤ f(τ ′) ≤ f(τ ′′),

for any tree τ ′′ ∈ SP (τ) of depth greater than 0.
On the contrary, if f(t0) > f(τ ′) then REP does not prune τ in t0 and the

returned tree is τ ′, which is the smallest tree in SP (τ) with the lowest error with
respect to DP .

¥

Finally, the computational complexity of REP is linear in the number of internal
nodes, since each node is visited only once to evaluate the opportunity of pruning
it.

4.3.3 Reduced Error Grafting
The Reduced Error Grafting (REG) is conceptually similar to REP and uses a
pruning set to evaluate the goodness of τ ′, a subtree of τ . However, the search
is performed in the grafting state space, (SG(τ), {γτ}), according to a �rst-better
strategy with bottom-up post-order traversal. The evaluation function is the same
de�ned for REP.

The search in SG(τ) moves from a state τ1 to a state τ2 ∈ γτ1(N
IS
τ , N I

τ ) if the
inequality f(τ1) ≥ f(τ2) holds. More precisely, REG algorithm operates recursively.
It analyzes the complete tree τ and, for each splitting node t, it compares the mean
square error made on the pruning set when the subtree τt is kept, with the mean
square error error made on the pruning set when τt is turned into REG(τt1) or
REG(τt2), where t1 and t2 are children of t. Sometimes, the simpli�ed tree has a
better performance than the original one. In this case, it appears convenient to
replace t with its best simpli�ed subtree (left or right). This grafting operation is
repeated on the simpli�ed tree until the MSE increases.

This method (see Algorithm 4.3) is theoretically favored with respect to REP,
since it allows the replacement of a subtree by one of its branches. In this way, it
is possible to overcome a limit of those simpli�cation strategies that make use of
the pruning operator alone. If t is a node that should be pruned according to some
criterion, while t′ is a child of t that should not be pruned according to the same
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criterion, such simpli�cation strategy either prunes and loses the accurate branch
or does not prune at all and keeps the inaccurate branch τt. On the contrary, REG
acts by grafting τt′ onto the place of t, so saving the good sub-branch and deleting
the useless node t.

Algorithm 4.3 Reduced Error Grafting Algorithm
PROCEDURE REG(τ, DP , τG, fG):
INPUT:

τ: model tree built by SMOTI on the growing set DG;
DP : pruning set independent from the growing set DG;

OUTPUT:
τG: pruned tree;
fG: value returned by f(τG);

BEGIN
IF DP is empty THEN τG = τ; fG = 0;
ELSE

IF the tree τ is a leaf THEN τG = τ; fG = f(τ, DP );
ELSE

IF the root t0 is a splitting node with τL (τR) left
(right) branch of t0 in τ THEN

partition DP into {DPL , DPR} according to the split t0;
τ1
L = τL; τ1

R = τR;
REG(τL, DPL

, τGL
, fGL

); REG(τR, DPR
, τGR

, fGR
);

REG(τ1
L, DP , τ1

GL
, f1

GL
); REG(τ1

R, DP , τ1
GR

, f1
GR

);
IF fGL + fGR < f1

GL
and fGL + fGR < f1

GR
THEN

τG = tree(t0,τGL,τGR); fG = fGL + fGR;
ELSE

IF f1
GL

> f1
GR

THEN τG = τ1
GR

; fG = f1
GR

;
ELSE τG = τ1

GL
; fG = f1

GL
;

END IF;
END IF;

ELSE
IF the root t0 is a regression node THEN

remove the effect of the regression from DP

into D1
P ;

REG(τt0, D1
P , τGR

, fG); τG = tree(t0,τGR
);

END IF
END IF;

END IF;
END IF;

END PROCEDURE;

Similarly to REP, a theorem on the optimality of the tree returned by REG can
be proven.
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Theorem 4.2 Given a model tree τ constructed on a set of growing observations
DG and a pruning set DP , the REG version that determines the regression model
on DG returns the smallest tree in SG(τ) with the lowest error with respect to DP .

Proof 4.2 We prove the theorem by induction on the depth of τ .
Base case. Let τ be a root tree {t0}. Then τ is the only tree in SG(τ) and REG

returns τ since no grafting operation is possible.
Inductive Step. We assume the inductive hypothesis to be true for all model

trees τ ′ of depth d and we prove the theorem for the tree τ of depth d + 1, d ≥ 0.
Since τ has a depth greater than 0, there are two possibilities:

1. τ is the tree rooted in t0 that is a regression node with a child t1, such that
the subtree τt1 has depth d,

2. τ is the tree rooted in t0 that is a splitting node with two children, t1 and t2

such that both subtrees τt1 and τt2 have maximum depth d.

Case 1. REG, which follows the bottom-up direction �rst simpli�es τt1 . For the
inductive hypothesis REG �nds the optimally simpli�ed tree τ∗

t1
for the tree τt1

8.
Let τ ′ be the tree rooted in t0, whose subtree is τ∗

t1
. Then, according to the

de�nition of f , f(τ ′) = f(τ∗
t1

), since τ ′ and τ∗
t1

have the same leaves. Moreover, for
any tree τ ′′ ∈ SG(τ) of depth greater than 0 and rooted in t0 with child t′′, we have:
f(τ ′) ≤ f(τ ′′), since

f(τ ′) =
∑

t∈NL
τ∗

t1

MSE(t) ≤ ∑
t∈NL

τ′′
t′1

MSE(t) ≤ f(T”).

Therefore, REG returns τ ′, which is the smallest tree in SG(τ) with the lowest
error with respect to DP .

Case 2. In the case of a splitting node, REG follows the bottom-up direction,
simpli�es τt1 and τt2 with respect to DP and then checks whether one of the sim-
pli�ed subtrees should be grafted in t0. We denote the set of examples which fall
in τt1 (τt2) as DP1 (DP2). Let τ∗

t1
(τ∗

t2
) be the subtree rooted in t1 (t2), returned

by REG when pruned with respect to DP1 (DP2). For the inductive hypothesis, τ∗
t1

(τ∗
t2
) is the optimally grafted subtree rooted in t1 (t2) with respect to DP1 (DP2),

respectively, since the depth of τ∗
t1

(τ∗
t2
) is not greater than d. Analogously, let τ∗bt1

(τ∗bt2) be the subtree rooted in t1 (t2), returned by REG when pruned with respect to
DP . For the inductive hypothesis, τ∗bt1 (τ∗bt2) is the optimally grafted subtree rooted
in t1 (t2) with respect to DP .

Let τ ′ be the tree rooted in t0 whose subtrees are τ∗
t1

and τ∗
t2
. Then, for any

tree τ ′′ ∈ SG(τ) of depth greater than 0 and rooted in t0 with children t′1 and t′2,
we have f(τ ′) ≤ f(τ ′′), since

f(τ ′) =
∑

t∈NL
tau∗

t1

MSE(t) +
∑

t∈NL
tau∗

t2

MSE(t) ≤.

8Note that the grafting operation applied to the tree τt1 may not produce a tree rooted in t1,
so we denote it as τ∗

t1
.
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∑
t∈NL

tau′′
t′′1

MSE(t) +
∑

t∈NL
tau′′

t′′2

MSE(t) = f(τ ′′).

Therefore, if f(τ∗bt1) ≤ f(τ ′) and f(τ∗bt1) ≤ f(τ∗bt2), where f(τ∗bt1) and f(τ∗bt2) are
computed with respect to DP , then REG replaces τ with τ∗bt1 , which is the best
subtree of T, since

- MSE(τ∗bt1) = f(τ∗bt1) ≤ f(τ ′) ≤ f(τ ′′) for any tree τ ′′ ∈ SG(τ) rooted in t0 with
depth greater than 0,

- MSE(τ∗bt1) = f(τ∗bt1) ≤ f(τ ′′) for any tree τ ′′ ∈ SG(τ) not rooted in t0 (both
τ∗bt1 and τ ′′ have maximum depth d and the inductive hypothesis holds on D′).

Otherwise, if f(τ∗bt2) ≤ f(τ ′) and f(τ∗bt2) ≤ f(τ∗bt1), REG replaces τ ′ with τ∗bt2 , which
is the best subtree of τ , since

- MSE(τ∗bt2) = f(τ∗bt2) ≤ f(τ ′) ≤ f(τ ′′) for any tree τ ′′ ∈ SG(τ) rooted in t0 with
depth greater than 0,

- MSE(τ∗bt2) = f(τ∗bt2) ≤ f(τ ′′) for any tree τ ′′ ∈ SGτ not rooted in t0 (both τ∗bt1
and τ ′′ have maximum depth d and the inductive hypothesis holds on DP ).

Finally, if both f(τ∗bt1) > f(τ ′) and τ∗bt2 > f(τ ′) then REG does not simplify τ

in t0 and the returned tree is τ ′. Obviously, τ ′ is better than any tree τ ′′ ∈ SG(τ)
rooted in t0. Moreover, τ ′ is better than any tree τ ′′ ∈ SG(τ) not rooted in t0,
since either τ ′′ ∈ SG(τt1) and f(τ ′′) ≥ f(τ∗bt1) > f(τ ′) or τ ′′ ∈ SG(τt2) and f(τ ′′) ≥
f(τ∗bt2) > f(τ ′). Therefore, the returned tree τ ′ is the smallest tree in SG(τ) with
the lowest error with respect to DP .

¥

The complexity of REG is O(#Nτ × lg2 #Nτ ), where #Nτ is the number of
nodes in τ .

4.4 Experimental results
SMOTI has been implemented as a module of the knowledge discovery system
KDB2000[ACM02] (http://www.di.uniba.it/∼malerba/software/kdb2000/) and has
been empirically evaluated both on arti�cially generated data and on datasets typi-
cally used in the evaluation of regression and model trees. Each dataset is analyzed
by means of a 10-fold cross-validation. The system performance is evaluated on the
basis of the average root mean square error (Avg.RMSE ) computed as follows:

Avg.RMSE =
1
k

∑

v∈V

√
1

n(v̄)

∑

j∈v

(yj − ŷj(v̄))2, (4.42)

where V = {v1, . . . , vk} is a cross-validation partition, each vi is a set of indices
of training cases, k is the number of folds (i.e., 10), n(v̄) is the number of cases in
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V − v, and ŷj(v̄) is the value predicted for the j-th training case by the model tree
built from V − v.

For pairwise comparison of methods, the non-parametric Wilcoxon two-sample
paired signed rank test is used [OD90], since the number of folds (or �indepen-
dent� trials) is relatively low and does not justify the application of parametric
tests, such as the t-test. To perform the test, we assume that the experimen-
tal results of the two methods compared are independent pairs of sample data
{(u1, v1), (u2, v2), . . . , (un, vn)}. We then rank the absolute value of the di�erences
ui − vi. The Wilcoxon test statistics W+ and W− are the sum of the ranks from
the positive and negative di�erences, respectively. We test the null hypothesis H0:
�no di�erence in distributions� against the two-sided alternative H1: �there is a
di�erence in distributions�. More formally, the hypotheses are: H0: �µu = µv�
against H1: �µu 6= µv�. Intuitively, when W+ À W− and vice-versa, H0 is re-
jected. Whether W+ should be considered "much greater than" W− depends on
the signi�cance level α. The basic assumption of the statistical test is that the two
populations have the same continuous distribution (and no ties occur). Since, in
our experiments, ui and vi are root mean square error RMSE, W+ À W− implies
that the second method (V ) is better than the �rst (U). In all experiments reported
in this empirical study, the signi�cance level α used in the test is set at 0.05.

SMOTI has been compared to both M5', which is considered the state-of-the-art
model tree induction system, and RETIS, which has an evaluation function coherent
with the models at the leaves9. The empirical comparison with TSIR, which is the
only other system with regression and splitting nodes, was not possible since the
system is not publicly available.

Moreover, both REP and REG simpli�cation performances (i.e. accuracy and
tree size) have been evaluated on some benchmark datasets. SMOTI trees built
on training/growing set are compared with the corresponding trees simpli�ed with
REP and REG as well as the un-pruned/pruned model trees induced with M5'.

4.4.1 Evaluating SMOTI on arti�cial datasets
SMOTI was initially tested on arti�cial data sets randomly generated for model trees
with both regression and splitting nodes. These model trees were automatically
built for learning problems with nine independent variables (�ve continuous and
four discrete) where discrete variables take values in the set {A,B, C, D, E, F, G}.
The model tree building procedure is recursively de�ned on the maximum depth
of the tree to be generated. The choice of adding a regression or a splitting node
is random and depends on a parameter θ ∈ [0, 1]: the probability of selecting
a splitting node is θ; conversely, the probability of selecting a regression node is
(1− θ). In the experiments reported in this paper, θ is �xed at 0.5, while the depth
varies from four to nine. Fifteen model trees are generated for each depth value, for
a total of ninety trees.

9When running M5'in empirically evaluating un-pruned trees, the pruning factor (parameter
−F ) is set to 0, in order to evaluate un-pruned trees. For the same reason, the pruning function
is not invoked in RETIS. All remaining parameters are set to default values.



Stepwise Model Tree Induction 86

Figure 4.7: Average root mean square error (Y axis) in log scale for �fteen induced model trees (X
axis) of di�erent depth. The comparison concerns three systems: M5' (yellow triangles), RETIS
(purple squares) and SMOTI (blue diamonds).

Sixty data points are randomly generated for each leaf, so that the size of the
dataset associated with a model tree depends on the number of leaves in the tree
itself. Data points are generated by considering the various constraints associated
with both splitting nodes and regression nodes. In the case of a splitting node,
the only constraint is that the distribution of cases between left and right children
should take into account the number of leaves in each subtree. In the case of a
regression node, the constraints are the (partial) multiple linear model associated
with the node, as well as the linear models de�ned for the residuals of the variables
passed down. The noise e�ect is introduced by adding a normally distributed error
∼ N(0, 1) to the linear models relating independent variables and ∼ N(0, .001) to
the linear models at the leaves involving the dependent variable. In all experiments,
the thresholds for stopping criteria are �xed as follows: the signi�cance level α used
in the F-test is set to 0.075, the minimum number of cases falling in each internal
node must be greater than the square root of the number of cases in the entire
training set, the error in each internal node must be greater than the 0.01% of the
error in the root node, the coe�cient of determination in each internal node must
be below 0.99.

In Figure 4.7, the Avg.RMSE is reported for each dataset generated by a theo-
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Table 4.2: SMOTI vs RETIS: results of the Wilcoxon signed rank test on the accuracy of the
induced model trees. The statistically signi�cant values (p − value ≤ α/2) are in boldface. The
symbol '-' means that SMOTI performs worse than RETIS. All statistically signi�cant values are
favorable to SMOTI.

Depth 4 Depth 5 Depth 6 Depth 7 Depth 8 Depth 9
D1 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953
D2 0.001953 0.005859 0.001953 0.001953 0.001953 0.001953
D3 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953
D4 (-) 0.1602 0.001953 0.2754 (-) 0.0839 0.001953 0.001953
D5 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953
D6 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953
D7 0.003906 (-) 0.8457 0.001953 0.001953 0.001953 0.001953
D8 0.009766 (-) 0.0839 0.001953 0.001953 0.001953 0.001953
D9 0.1309 0.001953 0.001953 0.08398 0.001953 0.001953
D10 (-) 0.0488 0.001953 0.001953 0.001953 0.001953 0.001953
D11 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953
D11 0.003906 0.003906 0.001953 0.001953 0.375 0.001953
D12 0.001953 0.001953 0.001953 0.001953 0.001953 0.001953
D14 0.007812 0.005859 0.001953 0.001953 0.001953 0.001953
D15 (-) 1 0.007812 0.009766 0.001953 0.001953 0.001953

Table 4.3: SMOTI vs M5': results of the Wilcoxon signed rank test on the accuracy of the induced
model trees. The statistically signi�cant values (p− value ≤ α/2) are in boldface. The symbol '-'
means that SMOTI performs worse than M5'. All statistically signi�cant values are favorable to
SMOTI.

Depth 4 Depth 5 Depth 6 Depth 7 Depth 8 Depth 9
D1 0.0019 (-) 0.375 0.275 0.0019 0.0039 0.0097
D2 0.0019 0.019 0.0839 0.0019 0.0019 0.0019
D3 0.0645 0.0019 0.0644 0.0019 0.0019 0.0019
D4 0.0019 0.0058 (-)0.769 (-)0.375 0.0136 0.0019
D5 0.0019 0.7695 0.4316 0.0019 0.0019 0.0644
D6 0.0019 0.12 0.0019 0.0058 0.0839 0.0019
D7 0.8457 (-)0.2754 0.0136 0.4922 0.0839 0.0019
D8 0.0234 0.375 0.0039 0.2324 0.0019 0.0019
D9 0.0644 0.0019 0.0019 0.0019 0.0019 0.0019
D10 (-) 0.2754 0.1934 0.0019 0.0097 0.0019 0.0039
D11 0.0136 0.2969 0.0097 0.0839 0.6953 0.0195
D12 0.0273 0.0019 0.0019 0.0019 0.4316 0.0019
D13 0.0019 0.0019 0.0195 0.0019 0.1309 0.0039
D14 0.0019 0.0019 0.0039 0.0019 0.0019 0.0019
D15 (-)0.375 0.1934 0.0039 0.1934 0.0058 0.0039
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Figure 4.8: a) A theoretical model tree of depth 4 used in the experiments; b) the model tree
induced by SMOTI from one of the cross-validated training sets; c) the corresponding model tree
built by M5' for the same data.

retical model tree, while in Tables 4.2 and 4.3 the results of Wilcoxon test on the
accuracy of trees induced by SMOTI, M5' and RETIS are reported. Three main
conclusions can be drawn from these experimental results: �rst, SMOTI performs
generally better than M5' and RETIS on data generated from model trees where
both local and global e�ects can be represented; second, by increasing the depth
of the tree, SMOTI tends to be more accurate than M5' and RETIS; third, when
SMOTI performs worse than M5' and RETIS, this is due to relatively few hold-out
blocks in the cross validation, so that the di�erence is never statistically signi�cant
in favor of M5' or RETIS.

An example of di�erent results provided by SMOTI and M5' is reported in
Figure 4.8. The underlying model tree, according to which a dataset of 180 cases
is generated, is reported in 4.8a. It �rstly partitions the feature space into two
subregions:
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Figure 4.9: Running time on arti�cial data sets. Experiments are performed on a Pentium III
PC - 366MHz running Windows 98.

R1 : {(X, Y )|X5 ∈ {0}}; R2 : {(X, Y )|X5 ∈ {1, 2, 3, 4, 5, 6, 7}}.
The subregion R1 is in turn partitioned into two subregions:
R11 : {(X′, Y ')|X6 ∈ {0, 1, 2, 3, 4}}; R12 : {(X′, Y ′)|X6 ∈ {5, 6, 7}}.
The variable X1, which contributes to the regression models associated with

both R11 and R12 has a global e�ect on the response variable Y since its coe�cient
can be reliably estimated on the region R1. On the contrary, the variables X0 and
X2 have a local e�ect, since their contributions to the regression models at the
leaves can be estimated on the basis of the cases falling in the subregions R11, R12

and R2 associated with the leaves. Actually, straight-line regressions at the leaves
involve variables X ′

0, X ′
2 and X ′′

0 , which are obtained by removing the e�ect of other
variables already introduced in the model. It is noteworthy that the intercepts of
straight-line regressions associated with nodes below a regression node are all equal
to zero, since we are using sets of residuals whose sums are zero, and thus the lines
must pass through the origin.

The tree built by SMOTI on a cross-validated training set of 162 cases is shown in
Figure 4.8.b. It well approximates the underlying model by discovering both global
and local e�ects. The tree found by M5' (see Figure 4.8.c) is less accurate on the
validation set of the remaining 18 cases and is not easily interpretable, especially
because of the smoothing process adopted by the system to compensate for the
sharp discontinuities that occur between linear models at adjacent regions [WW97].

The clear superiority of SMOTI on these datasets should not be surprising,
since neither M5' nor RETIS have been designed to discover both global and local
e�ects of variables in the underlying data model. However, this has a computational
cost. Figure 4.9 plots the computation time of the three systems for the ninety
arti�cial data sets. Naturally, M5' is the most e�cient because of its evaluation
function, which is incoherent with respect to the model tree being built. RETIS
has time performance comparable to SMOTI for small datasets (about 650 cases),
while it becomes surprisingly faster than SMOTI for larger datasets. Coherently
with our theoretical analysis, SMOTI shows a quadratic behavior while RETIS
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does not. There are two possible explanations of RETIS e�ciency. First, our
theoretical analysis of RETIS computational complexity refers only to continuous
variables, since the case of discrete variables is undocumented. If RETIS uses the
same criterion applied in CART and M5', then it would be more e�cient than
SMOTI, but its evaluation function could no longer be considered coherent with
the models at the leaves. Second, an undocumented stopping criterion prevented
the system from generating large model trees in the experiments10.

4.4.2 Evaluating SMOTI on benchmark datasets
SMOTI was also tested on fourteen datasets (see Table 4.4) taken from either the
UCI Machine Learning Repository (URL: http://www.ics.uci.edu/∼mlearn/ ML-
Repository.html) or the site of the system HTL (URL: http://www.niaad.liacc.up.pt
/∼ltorgo/Regression/DataSets.html) or the site of WEKA (URL: http://www.cs.
waikato.ac.nz/ml/weka/). They have a continuous variable to be predicted and have
been used as benchmarks in related studies on regression trees and model trees.

In all experimental results reported in this section, the thresholds for the stop-
ping criteria are set at the same values used in the experiments on arti�cial datasets,
except for the coe�cient of determination which is set at 0.9. Experimental results
are reported in Table 4.5, where SMOTI is compared to M5' and RETIS on the
basis of the Avg.RMSE. For RETIS, not all values are available, since the system
limits the number of attributes to 30 and the maximum number of distinct values
for discrete attribute to 26. As in the previous experimentation, di�erences are
considered statistically signi�cant when the p-value is less than or equal to α/2.

The comparison with RETIS is clearly in favor of SMOTI. Unfortunately, not
all experimental results could be collected for RETIS, because of two limitations of
the system on the maximum number of attributes and on the maximum number of
distinct values for discrete attributes.

Di�erently from arti�cially generated data, SMOTI does not exhibit an ir-
refutable superiority with respect to M5', although results are still good. A deeper
analysis of the experimental results evidenced that for some training sets, the thresh-
olds de�ned for the stopping criteria prevented SMOTI from growing model trees
more accurate than those built by M5'. This problem cannot be straightforwardly
solved by de�ning higher thresholds, since that would lead to data over�tting prob-
lems. SMOTI can actually apply some post-pruning strategy to reduce data over-
�tting, however this aspect is beyond the scope of this paper.

The interesting aspect of this experimentation is that for some datasets, SMOTI
detected the presence of global e�ects that no previous study on model trees has
revealed. In the following, we account for some of them, thus proving another
desirable characteristic of the system, that of easy interpretability of the induced
trees. The comparison is made with M5' which outperforms RETIS.

Abalone. Abalones are marine crustaceans, whose age can be determined by
counting under the microscope the rings in the cross section of the shell. Other
measurements, which are easier to obtain, can be used to predict the age. For all

10The system often outputs the message "Too many nodes. Making a leaf".
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Table 4.4: Datasets used in the empirical evaluation of SMOTI.
Dataset Cases Attr. Continuous Discrete Goal
Abalone 4177 10 9 1 Predicting the age of

abalone from physical
measurements

AutoMpg 392 8 5 3 Predicting the city-cycle
fuel consumption

AutoPrice 159 27 17 10 Predicting auto price
Bank8FM 4499 9 9 0 Predicting the fraction

of bank customers who
leave the bank because
of full queues

Cleveland 297 14 7 7 Predicting the heart dis-
ease in a patient.

Delta
Ailerons

7129 6 6 0 Predicting the variation
in the control action on
aircraft ailerons.

Delta El-
evators

9517 7 7 0 Predicting the variation
in the action taken on
aircraft elevators.

Housing 506 14 14 0 Predicting housing val-
ues in areas of Boston

Kinema-
tics

8192 9 9 0 Predicting the distance
of the end-e�ector from
a target in an 8 link all-
revolute robot arm.

Machine
CPU

209 7 7 0 Predicting CPU relative
performance.

Pyrimidi-
nes

74 28 28 0 Predicting QSARs
activity from the de-
scriptive structural
attributes

Stock 950 10 10 0 Predicting the daily
stock price of an
aerospace company
from daily stock prices
of other nine aerospace
companies

Triazines 74 61 61 0 Predicting QSARs
structure from the
descriptive structural
attributes

Wisconsin
Cancer

186 33 33 0 Predicting the time to
recur for a breast cancer
case
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Table 4.5: SMOTI vs M5' and RETIS: results of the Wilcoxon signed rank test on the accuracy
of the induced models. The best Avg.RMSE is in italics. The statistically signi�cant values (p-
value≤ α/2) are in boldface. The symbol '+' ('-') means that SMOTI performs better (worse)
than M5' or RETIS. NA denotes not available. Most of statistically signi�cant values are favorable
to SMOTI.

Avg.MSE SMOTI
vs M5'

SMOTI vs
RETIS

Dataset SMOTI M5' RETIS
Abalone 2.53637 2.77242 6.03224 (+)0.1934 (+)0.001953
AutoMpg 3.14938 3.20106 NA (+)0.5566
AutoPrice 2246.038 2358.818 NA (+)0.6953
Bank8FM 0.03833 0.04099 0.46629 (+)0.064 (+)0.001953
Cleveland 1.31603 1.24963 2.97914 (-)0.2324 (+)0.009766
Delta Ailerons 0.000232 0.0002 0.00129 (-)0.6404 (+)0.02734
Delta Elevators 0.00476 0.00163 0.00579 (-)0.1934 (+)0.1309
Housing 3.58 4.27927 36.3662 (+)0.048 (+)0.001953
Kinematics 0.1581 0.194737 1.98614 (+)0.0039 (+)0.001953
MachineCPU 55.31482 57.35276 305.609 (+)0.5566 (+)0.003906
Pyrimidines 0.10566 0.09279 0.07813 (-)0.8457 (-)0.4316
Stock 1.8225 1.10932 1.59318 (-)0.03711 (-)0.4375
Triazines 0.2017 0.15503 NA (-)0.02
Wisconsin Cancer 51.41376 45.40644 NA (-)0.625

ten cross-validated training sets, SMOTI builds a model tree with a regression node
in the root. The straight-line regression selected at the root is almost invariant
for all model trees and expresses a linear dependence between the number of rings
(dependent variable) and the shucked weight (independent variable). This is a clear
example of a global e�ect, which cannot be grasped by examining the nearly 350
leaves of the un-pruned model tree induced by M5' on the same data. Interestingly,
the child of the root is always a splitting test on the whole weight, or, more precisely,
on the residuals of the whole weight once the e�ect of the shucked weight has been
removed. As for the root, the threshold selected for this continuous split is almost
the same for all ten induced model trees. Unfortunately, this stability of the tree
structure occurs only at the root and its child.

Auto-Mpg. The data concerns city-fuel consumption in miles per gallon. For
all ten cross-validated training sets, SMOTI builds a model tree with a discrete
split test in the root. The split partitions the training cases in two subgroups,
one whose model year is between 70 and 77 and the other whose model year is
between 78 and 82. That can be easily explained with the measures for energy
conservation prompted by the 1973 OPEC oil embargo. Indeed, in 1975 the U.S.
Government set new standards on fuel consumption for all vehicles. These values,
known as C.A.F.E. (Company Average Fuel Economy) standards, required that by
1985 automakers doubled average new car �eet fuel e�ciency. These standards came
into force only in 1978 and model trees induced by SMOTI capture this temporal
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watershed. Moreover, in the case model year between 70 and 77, SMOTI performs
another discrete splitting test on the number of cylinders, while in the case model
year between 78 and 82 SMOTI introduces a regression step generally involving the
variable weight. Also this di�erence seems reasonable, since it captures the di�erent
technologies (e.g., lightweight materials) adopted by automakers before and after the
introduction of C.A.F.E. standards. Di�erently from SMOTI, model trees induced
by M5' perform a �rst continuous splitting on the variable displacement (≤ 191 vs.
> 191) and a second splitting on the variable horsepower for both left and right
child. A test on the variable model year appears only at lower levels.

Auto-Price. This dataset consists of three types of entities: a) the speci�cation
of an auto in terms of various characteristics; b) its assigned insurance risk rating;
c) its normalized depreciation as compared to other cars. Almost all induced trees
have a regression node in the root, which expresses a linear dependence between
the price (dependent variable) and the normalized losses (independent variable).
Interestingly, one of the �ndings of a recent study (February 2000) from the Highway
Loss Data Institute (HLDI) is that �sports cars and luxury cars continue to have the
worst claims losses among passenger cars for crash damage repairs under insurance
collision coverages. Passenger vans have the best loss result�. Therefore, the global
e�ect of normalized losses is con�rmed by independent studies. On the contrary,
the continuous splitting test on the variable curb weight generally performed by
M5' at the root of the induced model trees seems less intuitive.

Bank8FM. This dataset is synthetically generated from a simulation of how
bank-customers choose their banks. The goal is predicting the fraction of bank
customers who leave the bank because of long queues. The models induced by
SMOTI from all ten cross-validation sets are quite simple and are characterized by
a chaining on six regression nodes starting from the root. In most of the trials
the model tree is actually a chaining of only regression nodes, thus revealing the
multiple linear regression nature of the problem. As shown in Table 2.3, M5' also
�nds good predictive model trees, although they have about 400 leaves with as
many regression models associated with them.

Cleveland. The domain is heart disease diagnosis, and the data was collected
from the Cleveland Clinic Foundation. The dependent variable refers to the presence
of heart disease in a patient. It is an integer valued from 0 (no presence) to 4. The
high Avg.RMSE measured for both SMOTI and M5' (> 1.2) shows the complexity
of this prediction task. The tree models induced by SMOTI in almost all trials have
a chaining of regression nodes involving the variables ca (number of major vessels
(0-3) colored by �ourosopy), thalach (maximum heart rate achieved), age (age in
years) and chol (serum cholestoral in mg/dl). We actually do not know the criteria
adopted by specialists to de�ne the presence of heart disease in a patient, but it is
likely that the �nal score was synthesized as a weighted linear combination of several
factors with a global e�ect. Di�erently from SMOTI, M5' partitions by performing
a test on the variable thal∈{�xed defect; reversable defect} vs. thal∈{normal} or
on the variable cp (chest pain type): asymptomatic vs. {typical angina, atypical
angina, non-anginal pain}. The error found by M5' on some leaves is null, since
M5' approximates the dependent variable with one of the admissible values (e.g.,
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constants 0 or 1).
Delta Ailerons. The problem is that of grafting the skills of �ying a F16 aircraft

in a �ight simulator from behavioral traces of a human expert. In this control
problem, the independent variables describe the status of the airplane, while the
goal is to predict the control action on the ailerons of the aircraft. It is not obvious
which independent variables the human pilot uses; he may build more complex
variables out of simple ones or may extract them from the landscape image. What
we observe is that in eight model trees induced through cross-validation, SMOTI
selects regression nodes at the top four levels. Variables used in these nodes are the
roll-rate, di�-roll-rate, curr-roll and pitch-rate. This means that the only variable
that seems to have a local e�ect is curr-pitch. Model trees induced by M5' are more
complex and therefore more di�cult to interpret.

Delta Elevators. This dataset is also obtained from the task of controlling an
F16 aircraft. The goal variable is related to an action taken on the elevators of the
aircraft. As in the previous domain, for eight model trees induced through cross-
validation, SMOTI selects regression nodes at the top �ve levels. Variables used in
these nodes are the di�clb, altitude, climb-rate, roll-rate and di�-di�clb. This means
that the only variable that seems to have a local e�ect is curr-roll. Once again, the
model trees induced by M5' are more complex (generally more than 350 leaves).

Housing. This dataset concerns housing values in the suburbs of Boston. The
goal is that of predicting the median value of owner-occupied homes in $1000's.
By treating the independent variable chas (an indicator variable equal to 1 if tract
bounds the Charles River, 0 otherwise) as continuous, SMOTI generally creates a
model tree with the regression step

medv = 22.09 + 5.6 chas
in the root. Surprisingly, model trees induced by M5' almost totally neglect this
indicator variable.

Kinematics. This dataset is synthetically generated from a realistic simulation
of the forward kinematics of an 8 link all-revolute robot arm. The goal is predicting
the distance of the end-e�ector from a target, given the angular position of the
joints [GWJ96]. Despite the claimed high nonlinearity of the data, SMOTI �nds a
model tree whose top seven nodes are all regression nodes involving the independent
variables theta3, theta5, theta6, theta1, theta8, theta2, and theta4. After the intro-
duction of the seven nodes, the algorithm starts partitioning the dataset in many
sub-regions, where linear dependencies on the remaining independent variable are
considered. The simplicity of the model trees induced by SMOTI does not penal-
ize their predictive accuracy, since M5' generates less accurate model trees with a
thousand leaves.

Machine CPU. The problem concerns of relative CPU performance data. The
estimated relative performance values have already be estimated [EF84] using a
linear regression method and obtain 34% average deviation from actual values. The
tree induced by SMOTI from nine trials has a chaining of four regression nodes
as top of the tree. Attributes involved in these nodes are MMIN (minimum main
memory in kilobytes), CACH (cache memory in kilobytes), CHMIN (minimum
channels in units) and MYCT (machine cycle time in nanoseconds). This means
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that the only attributes which seem to have a local e�ect are CHMAX (maximum
channels in units) and MMAX (maximum main memory in kilobytes). Conversely,
M5' with an accuracy almost equivalent to SMOTI is not able to detect the presence
or absence of global/local e�ects.

Pyrimidines. The task consists of learning the Quantitative Structure Activity
Relationships, in particular, the inhibition of dihydrofolate reductase by pyrimidines
[KMLS92]. For this dataset, both M5' and SMOTI learns very simple model trees
with few leaves. The model trees have almost the same predictive accuracy. Their
main di�erence is that SMOTI detects the global e�ect of some variables. How-
ever, the limited training set size does not allow us to draw meaningful conclusions
because of the instability of the tree structure built from the ten cross-validated
training sets.

Stock. The data are daily stock prices from January 1988 through October
1991, for ten aerospace companies. The goal is to predict the daily stock price
of a company with respect to daily stock price of other nine companies. Since
no information is available about the e�ective relationship (e.g. temporal, spatial,
social or economical relationship) among these companies, it is quite di�cult to
signi�cantly interpret the quality of discovered regression models. Moreover, we
observe that typically a di�erent tree is built for each trial: one or more regression
nodes occur in the top of the tree, but they involve di�erent continuous variable.
This does not lead to any signi�cant conclusion about the global e�ect detected with
a regression node in the top level of SMOTI trees. On the other hand, M5' builds
model trees which are signi�cantly more accurate than corresponding trees built
by SMOTI, but they are also signi�cantly more complex trees (average number of
leaves in M5' trees equal to 120.8 against average number of leaves in SMOTI trees
equal to 5).

Triazines. As for the Pyrimidines dataset, the problem is to learn a model tree
which predicts the activity from the descriptive structural attributes. The data and
methodology is described in detail in [HKS94] [KHS94]. M5' �nds smaller and
more accurate trees than those induced by SMOTI. Once again, the main di�erence
is that SMOTI detects the global e�ect of some variables, but the limited training
set size does not allow us to draw some conclusions on the tree structure.

Wisconsin Cancer. Data concerns consecutive patients seen by Dr. Wolberg
since 1984, and include only those cases exhibiting invasive breast cancer and no
evidence of distant metastases at the time of diagnosis. Model trees built by SMOTI
are quite di�erent for each trial. A regression node involving the mean fractal di-
mension occurs as root in the tree built from four di�erent trials. However, di�erent
results obtained from di�erent trials do not lead to any general conclusion on the
tree structure. Conversely, M5' seems to well capture regression model underlying
this data. On the other hand, model trees built by M5' are signi�cantly more com-
plex (i.e. average number of leaves equal to 32) than corresponding trees built by
SMOTI (i.e. average number of leaves equal to 20.7).
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4.4.3 Evaluating simplifying methods
Reduced Error Pruning and Reduced Error Grafting have been both implemented
in KDB2000 and they have been empirically evaluated on 10 datasets, namely
Abalone, Auto-mpg, Auto-price, Bank8FM, Cleveland, Housing, Machine CPU,
Pyrimidines, Triazines and Wisconsin Cancer. All these datasets have been already
used as benchmarks in the empirical evaluation of un-pruned model trees built with
SMOTI.

Each dataset is analyzed by means of the same 10-fold cross-validation adopted
in evaluating un-pruned trees. For each trial, the training set is, in turn, partitioned
into growing (70%) and pruning set (30%). SMOTI is trained on the growing set,
pruned on the pruning set and tested on the test set. Comparison is based on both
average root mean square error (Avg.RMSE ) made on the test sets and average
number of leaves (Avg.Leaves). The stopping criteria used in the experimentation
are �xed as follows: the signi�cance level a used in the F -test is set to 0.075, the
minimum number of cases falling in each internal node must be greater than the
square root of the number of cases in the entire training set, the error in each internal
node must be greater than the 0.01% of the error in the root node, the coe�cient
of determination in each internal node must be below 0.90 for model trees induced
on the entire training set and 0.99 for model trees induced on the growing set and
after simpli�ed by means of REP or REG method.

Table 4.6: SMOTI (REP vs. REG) and M5' (PEP): results on accuracy (Avg.RMSE) of the
induced/simpli�ed model trees.

Dataset SMOTI un-
pruned trees

SMOTI
pruned
trees

M5'

Tree on
training
set

Tree on
growing
set

REP REG Un-
pruned
trees
(F=0)

Pru-
ned
trees
(F=1)

Pru-
ned
trees
(F=2)

Abalone 2.5364 6.724 2.185 2.179 2.7724 2.180 2.126
AutoMpg 3.1493 4.4866 3.5633 3.7436 3.2010 2.969 2.835
AutoPrice 2246.0 2481.7 2746.3 2890.4 2358.8 2279.2 2390.1
Bank8FM 0.0383 0.0427 0.035 0.034 0.0409 0.0332 0.0319
Cleveland 1.3160 1.521 0.914 0.934 1.2496 0.9498 0.9028
Housing 3.58 5.717 4.080 3.912 4.2792 3.953 3.815
Machine-
CPU

55.314 71.699 70.953 69.145 57.352 56.039 58.341

Pyrimidi-
nes

0.1056 0.1872 0.1034 0.1352 0.0927 0.0883 0.0864

Triazines 0.2017 0.1820 0.155 0.229 0.155 0.130 0.131
Wisconsin
Cancer

51.413 72.376 33.464 37.455 45.406 37.062 34.397
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Table 4.7: SMOTI (REP vs. REG) and M5' (PEP): results on size (Avg.Leaves) of the in-
duced/simpli�ed model trees.

Dataset SMOTI un-
pruned trees

SMOTI
pruned
trees

M5'

Tree on
training
set

Tree on
growing
set

REP REG Un-
pruned
trees
(F=0)

Pru-
ned
trees
(F=1)

Pru-
ned
trees
(F=2)

Abalone 143 95.6 5.4 25.4 281.4 24.9 11
AutoMpg 13.7 19.2 3.1 8.5 22.6 7.6 4.6
AutoPrice 4.3 8 1.6 4.1 12.4 3.1 1.6
Bank8FM 2.2 68.8 5.6 30.2 417.7 63.4 27
Cleveland 21.7 17.3 2.3 5.2 28.1 3.4 1.6
Housing 8.8 19.6 3.1 7.6 50.7 23.5 14.5
MachineCPU 4.0 6 2.7 2.4 12 6.4 3.8
Pyrimidines 3.8 6.4 1.8 1.8 3.4 3.2 3
Triazines 16.6 13.3 1.2 3.8 9.1 5.3 3.5
Wisconsin
Cancer

18.4 11.5 1.2 1.9 32.1 8 2.7

Experimental results are listed in Tables 4.6 and 4.7 which report Avg.RMSE
and Avg.Leaves respectively of (un-pruned/pruned) SMOTI trees built on train-
ing/growing set. For comparison purposes, results obtained by M5'11 are reported
as well. They show that simplifying SMOTI trees is generally bene�cial since REP
and REG decrease the Avg.RMSE of SMOTI trees built on the growing set. The
two methods drastically reduce the size of the induced trees, often of an order of
magnitude, although REG tends to be more conservative than REP. The pruning
method implemented in M5' outperforms both REP and REG in most data sets.
However, the worst performance of REP and REG can be justi�ed if we consider
that M5' pruned a model tree which was originally more accurate than that pruned
by REP and REG because of the full use of the cases in the training set.

This result is similar to that reported in [EMS97] for decision trees. Even in
that case, it was observed that methods requiring an independent pruning set are
at a disadvantage. This is due to the fact that the set of pre-classi�ed cases is
limited and, if part of the set is put aside for pruning, it cannot be used to grow
a more accurate tree. A clear example is represented by the Auto-Price dataset,
where the average number of leaves of REP and M5'(F=2) is the same (1.6) while
the accuracy is di�erent.

11M5' pruning [Qui92] [Qui93b] is based on a pessimistic error pruning-like strategy that com-
pares the error estimates obtained by pruning a node or not. The error estimate is based on same
cases used in training step and corrected in order to take into account the complexity of the model
in the node. The compensation factor F = 0 when pruning is disabled. Conversely, either F = 1

or F = 2 in case of pruning.
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A di�erent view of results is o�ered in Table 4.8, which reports a percentage of
the Avg.RMSE made by pruned trees on the test sets with respect to the Avg.RMSE
made by un-pruned trees on the same testing sets. The table emphasizes the gain
of the use of pruning. In particular, pruning is bene�cial when the value is less
than 100%, while it is not when the value is greater than 100%. Results reported
con�rm that pruning is bene�cial for nine out of ten datasets. Moreover, the ab-
solute di�erence of Avg.RMSE for REP and REG is below 5% in seven datasets.
Finally, it is worthwhile to notice that the gain of REP and REG is better than
the corresponding gain of M5' pruning method (F=2) in six datasets. This induces
to hypothesize that the better absolute performances of M5' are mainly due to the
fact that the tree to be pruned is more accurate because of the full use of training
cases.

Table 4.8: Percentage of the Avg.RMSE for pruned trees w.r.t. the Avg.RMSE of un-pruned
trees. Avg.RMSE is computed on the testing sets. Best values are in bold.
Dataset REP/un-

pruned
SMOTI

REG/un-
pruned
SMOTI

Pruned
M5'(F=1)/
un-pruned
M5'

Pruned
M5'(F=2)/
un-pruned
M5'

Abalone 32.49554% 32.40631% 78.66124% 76.684461%
AutoMpg 79.42094% 83.43958% 92.75802% 88.566073%
AutoPrice 110.662% 116.4685% 96.62473% 101.326946%
Bank8FM 81.96721% 79.62529% 81.21493% 77.995110%
Cleveland 60.09204% 61.40697% 76.0129% 72.247119%
Housing 71.3661% 68.4275% 92.38422% 89.152178%
MachineCPU 98.95954% 96.43789% 97.71071% 101.724439%
Pyrimidines 55.23504% 72.22222% 95.19345% 93.203883%
Triazines 85.16484% 125.8242% 84.33206% 84.516129%
Wisconsin Cancer 46.23632% 51.75058% 81.62292% 75.754306%

4.5 Conclusions
TDIMT methods generally grow a tree structure in two phases. In the �rst splitting
phase, leaf nodes are expanded and associated with split tests. In the second pre-
dictive phase, leaf nodes are labeled with a multiple (linear) model. One drawback
with this tree-building strategy is that the choice of the split tests is often made
independently of the type of model associated with the leaves. This could result in
a model tree that does not capture the underlying data model, even in very simple
cases that can be perfectly represented by a model tree. To overcome this problem,
one of the TDIMT methods reported in the literature merges the two phases and
chooses the best split test on the basis of the best multiple linear regression model
associable to the leaves. Although correct, this approach considers only full regres-
sion models, while in statistics it is well known that models based on subsets may
give more precise results than will models based on more variables. This is due to
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the problem of collinearity. On the other hand, �nding the best subset of variables
while choosing the best split becomes too costly when applied to large data sets,
since it may require the computation of a high number of multiple linear regression
models.

In this chapter, we have presented a new TDIMT method, SMOTI, which in-
tegrates the splitting phase and the predictive phase. Speci�cally, model trees
generated by SMOTI include two types of nodes: regression nodes and splitting
nodes. The former are associated with straight-line regression, while the latter are
associated with split tests. Both types of nodes are considered at the same level
during the tree construction process. This allows SMOTI to build the model tree
stepwise and to overcome the computational problem of testing a large number of
multiple linear regression models, while choosing the best split test with respect to
the best multiple linear regression model at the leaves. In addition, this approach
potentially solves the problem of modeling phenomena, where some variables have a
global e�ect while others have only a local e�ect. Indeed, variables of the regression
nodes selected at higher levels in the tree have a �global� e�ect, since they a�ect
several multiple models associated with the leaves.

A comparison with two TDMTI systems, namely M5' and RETIS, has been
reported for laboratory-sized data sets. It proves that SMOTI can induce more
accurate model trees, when both global and local behaviors are mixed in the under-
lying model. However, computation time of SMOTI is quadratic in the training set
size, while is it linear for both M5' and RETIS. The low computation time of M5'
can be explained by the more e�cient TDIMT strategy (i.e., the split tests is chosen
independently of the linear model associated with the leaves). Unfortunately, no
clear justi�cation can be given for RETIS e�ciency, which is at variance with our
computational complexity analysis.

The comparison has been extended to fourteen benchmark datasets typically
used to test regression tree induction algorithms. In this second experimentation,
SMOTI clearly outperforms RETIS in accuracy, while it is not possible to draw sta-
tistically signi�cant conclusions on the comparison with M5'. Model trees induced
by SMOTI are generally simpler and can more easily be interpreted than those
generated by M5'. The interesting aspect of this second experimentation is that
for some datasets, SMOTI detected the presence of global e�ects that no previous
study on model trees has ever revealed.

The experimental results reported in this work are necessarily limited and do
not include some important research tendencies. First, how model trees induced by
SMOTI compare to other approaches, such as neural networks. Obviously, model
trees o�er some advantages over neural networks, both computationally (no repet-
itive data feeding to converge toward a solution) and with respect to usability (the
user is not forced to make guesses about the structure of the network to obtain
accurate results). However, the neural networks can partition the feature space into
irregular regions (e.g., ellipsoids), while model trees perform axis-parallel partition-
ing (and oblique partitioning when continuous splitting nodes are descendants of
regression nodes). The hierarchical mixture-of-experts architecture presents some
interesting similarities with SMOTI [JJ94]. The comparison can also be extended
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to support vector machines, which can be used for regression problems as well
[MM00].

The second important research direction is the application of model trees induced
by SMOTI to classi�cation problems, as suggested by Frank et al. [FWI+98].
In this case, SMOTI can be used to predict class probabilities, and by learning
multiple regression models instead of multiple linear models for each node, it would
be possible to overcome the problem of building a separate tree for each class.

Similar to many decision tree induction algorithms, SMOTI may generate model
trees that over�t training data. Therefore, a third research direction is the a poste-
riori simpli�cation of model trees with both regression nodes and splitting nodes.
Two simpli�cation methods, named REP and REG, have been de�ned to simplify
SMOTI trees. They are based on both pruning and grafting operators which re-
quire an independent pruning set. Some experimental results have been reported
on the pruning methods and show that pruning is generally bene�cial. Moreover,
the comparison with another well-known TDIMT method, namely M5', which uses
the training data both for growing and for pruning the tree, has shown that putting
aside some data for pruning can lead to worse results. As future work, an extension
of the MDL-based pruning strategies developed for regression trees [RK98] to the
case of model trees with splitting and regression nodes could be also an interesting
research direction, since MDL-based pruning algorithms do not use an independent
pruning set, which can be a problem when the dataset is small.



Chapter 5

Upgrading SMOTI to
multi-relational setting

Model trees are among the most popular typology of regression models and many
algorithms to mine them have been developed in the past twenty years in statistics,
machine learning as well as data mining. The popularity and success of these
methods is not surprising, as model trees are known to be well accepted by data
miners. Indeed, they are easily understood and can be easily interpreted by domain
experts due to the symbolic representation of the regression surface. Moreover,
sophisticated simpli�cation techniques have been developed for dealing with noise
in data.

Nevertheless, model trees family generally su�ers from some limitations due to
the restrictive attribute-value data representation language. Indeed, according to
single table assumption, training data must be represented as �xed-length vectors
of variable values where each variable has only a single, primitive value. As a
consequence, aspects of internal data structure cannot be described and the induced
trees cannot refer to such structural properties. This seriously compromises the
application of model trees in real-world domains such as biology, chemistry or geo-
referenced data analysis, where the structure of the subjects of study (i.e. units of
analysis) is of central importance.

This problem also occurs with SMOTI. Therefore, in the remainder of this
chapter, we present a multi-relational TDIMT method, named Mr-SMOTI (Multi-
Relational Stepwise Model Tree Induction), which removes single-table limitation
by enhancing the representational capabilities of SMOTI model trees mining and
extending it to multi-relational representation. Mr-SMOTI is able to mine multi-
relational model trees from a tightly-coupled relational database by exploring not
only intra-tuple relationships among attributes but also inter-table relationships
among tuples. In this case, tight-coupling guarantees a direct and uniform access
to both data and patterns stored in databases without any pre-processing step as
well as a proper exploitation of information embedded in the database schema to
drive the mining process.

The induced model tree is a multi-relational pattern graphically represented by

101
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means of a set of regression selection graphs, which can be translated into SQL
statements (or equivalently �rst order expressions) and stored in XML format.

Mr-SMOTI algorithm is designed according to an upgrading strategy that starts
from the propositional method SMOTI and turns it into a relational miner by
devising suitable extensions of both the representation language and the associated
algorithm.

Upgrading is conservative, therefore Mr-SMOTI has peculiarities similar to those
already observed in the propositional version SMOTI. Mr-SMOTI model trees are
characterized by two types of internal nodes that is regression nodes and splitting
nodes. Hence, both local and global e�ect of a variable can be adequately captured
in the regression model that is being stepwise built. The evaluation function is co-
herently de�ned with respect to the model tree being built and collinearity problems
are eventually solved without any additional e�ort due to the stepwise construction.

Variables involved in both types of nodes may correspond with attributes of
several tables in the relational database. The joining of these tables is dynamically
determined on the basis of a foreign key path in database schema and aims at mining
a predictive model for a target continuous �eld, which eventually involves multiple
attributes from several tables. Search proceeds by alternating structural pattern
generation and its attribute-value transformation to generate features which are
evaluated for possible inclusion in the multi-relational regression model.

5.1 Background and motivations
In propositional setting regression data is stored in a single table (relation), where
each row (tuple) corresponds to a unit of analysis (i.e. individual to be mined), while
each column corresponds to either a predictor variable or the target numerical vari-
able. Generally, only intra-tuple relationships between variables are found, while
inter-tuple relationships are not considered and inter-table relationships between
several tuples of distinct tables are not even explorable. Disregarding inter-table
relationships can be a severe limitation in real-world application involving the pre-
diction of continuous values from data that are naturally organized in a relational
model involving several tables (multi-relational data model).

Multi-relational regression ful�lls the need of adequately representing and treat-
ing the structure of units of analysis when they are composed by several units of
observation that is a single target object, zero, one or more target relevant objects
as well as the relationships among them.

From a database perspective, both target objects and target relevant objects are
naturally stored in multiple tables T1, . . . , Tv of a training relational database D.
Relationships among tables are implicitly modeled by foreign key paths. The target
table contains the target attribute corresponding to the continuous property to be
predicted taking the relational structure of training units of analysis into account.
This means that mined prediction models (e.g. model trees or regression rules) are
typically multi-relational patterns since they may involve multiple tables from D.

An example of multi-relational regression rule is given in Table 5.1. The rule
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Table 5.1: A relational regression rule expressed as SQL query (top) and Prolog program (down)

SELECT t1.Id, 12.7 as CreditLine
FROM Customer t1, Order t2

WHERE t1.Id = t2.Client AND t1. Sale ≤ 3

creditLine(Id, Y) :-
customer(IdCustomer,Sale,_,_), Sale≤3, order(_,_,IdCustomer), Y is 12.7, !.

involves two tables from the CustomerDB database1, namely �Customer� (target
table) and �Order� and predicts the credit line (target attribute) of a customer
with number of sales greater than three, which have performed at least one order.
Obviously, this rule supposes the existence of a foreign key path between Customer
and Order in CustomerDB relational data model.

The multi-relational regression problem can be formally de�ned as follows:
Given:

- a training set O stored into v relations S = {T0, T1, . . . , Tv} of a relational
dataset D,

- a set of v primary key constraints PK on relations in S,

- a set of w foreign key constraints FK on relations in S,

- a target relation T (X1, . . . , Xn, Y ) ∈ S,

- a target continuous attribute Y in T , di�erent from the primary key or foreign
key in T .

Finds: a multi-relational regression model which predicts the value of Y for a
structured individual that is described by means of a single tuple in T (with possibly
UNKNOWN value for Y ) and zero, one or more related tuples in S according to
foreign key paths.

The problem of mining multi-relational regression models over data residing
in multiple relations is not novel. It has been tackled in [D�95], where the multi-
relational Regression problem has been formalized in the normal ILP setting.

Thus far, two approaches have been proposed in ILP to directly solve multi-
relational Regression problems in their original forms . The former uses a separate-
and-conquer (or sequential covering) strategy to build a set of Prolog clauses (e.g.
FORS and FFOIL). The latter uses a divide-and-conquer strategy to induce tree-
based models and then translate these models into Prolog programs (e.g. SRT,
S-CART and TILDE-RT)2.

1The schema of the CustomerDB relational database is reported in Figure 2.3.
2An overview on multi-relational regression methods is presented in Section 3.7.
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All these methods reserve little attention to data stored in relational database
and to how knowledge of a data model can help to guide the search process [KBSV99].
They are based on main-memory data stored as Prolog facts, but in real-world ap-
plications these facts really correspond to tuples stored in tables of a relational
database. Therefore, some pre-processing is required to transform tuples in facts.
On the other hand, main-memory data processing guarantees in high performance
for computationally intensive processes when enough memory is available to store
all necessary data, but most data mining algorithms are characterized by frequent
access to data that satis�es some selection conditions. This suggests that for data
intensive processes it may be useful to exploit powerful mechanisms for accessing,
�ltering and indexing data, such as those available in database management systems
(DBMS).

To provide functionalities to directly navigate a relational data structure and
generate potentially new forms of evidence not readily available in a �attened sin-
gle table representation, we follow the suggestion given in [KBSV99] of combining
achievements of KDD �eld on the integration of data mining with database systems,
with some results reported in the ILP �eld on how to correctly upgrade propositional
data mining algorithms toward multi-relational representations. We propose Mr-
SMOTI that is a prototypical multi-relational data mining method that upgrades
SMOTI algorithm toward multi-relational representations and takes advantage from
a tight integration with database systems i.e., Oracler 9i.

From an inductive database perspective, this tight-coupling also aims at sup-
porting a direct and uniform access to both data and patterns stored in databases.
It guarantees the applicability of data mining algorithms to large datasets and the
possibility to directly specify which data stored in a database have to be mined
without any pre-processing. In this way, data model knowledge (e.g. foreign key
path) is available from database schema free of charge.

Furthermore, Mr-SMOTI, similarly to the propositional SMOTI, induces model
trees that contain both regression nodes which perform only straight-line regression
and splitting nodes which partition the feature space. The model associated with
each leaf is then the composition of the straight-line regressions reported along the
path from the root to the leaf. Internal regression nodes contribute to the de�nition
of multiple models and capture global e�ects, while straight-line regressions at leaves
can only capture local e�ects.

5.2 Multi-relational regression framework
A multi-relational regression framework is based on the search for interesting pre-
dicting patterns in a relational database, where multi-relational patterns are pieces
of substructures encountered in the structure of the units of analysis [KBSV99] such
that not only attribute-value descriptions are considered, but also the structural in-
formation which is available through the associations between tables.

De�nition 5.1 A unit of analysis is covered by a multi-relational pattern i� the
substructure described by a multi-relational pattern, in terms of both attribute-value
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conditions and structural conditions, occurs at least once in the unit of analysis
[KBSV99].
¨

Multi-relational patterns can be viewed as subsets of units of analysis (multi-
relational individuals to be mined) from database having some property. The most
interesting subsets are chosen according to some measure (e.g. MSE for regression
tasks or information gain for classi�cation tasks), that guides the search in the space
of all patterns.

In this section, we sketch the main idea of multi-relational model trees where
each node is properly associated with a multi-relational pattern and discuss the
special case of multi-relational patterns representing both splitting and regression
nodes. We introduce the multi-relational pattern language of regression selection
graphs that is an extension to regression tasks of the graphical language of selec-
tion graphs already proposed for classi�cation purposes [KSV99] [Lei02] [ALH03].
Finally, we de�ne a set of splitting and regression re�nement operators for the re-
gression selection graphs such that each pattern associated with either splitting or
regression node of a multi-relational model tree can be expressed by means of re-
gression selection graph and top-down induction of interesting regression patterns
proceeds recursively applying such re�nement operators to the best patterns.

5.2.1 Multi-relational model trees
Multi-relational model trees can be formally de�ned as follows:

De�nition 5.2 Given the multi-relational training data O stored into a set S =
{T1, . . . , Tv} of v relations of a relational dataset D, each unit of analysis o ∈ O
is described by both a single tuple stored into a target table T ∈ D and zero, one or
more tuples in the target relevant tables Ti ∈ S (Ti 6= T ) which are foreign key path
associated with T in S. A binary multi-relational model tree τ can be built from D

to predict the continuous target attribute Y in T such that τ is a binary model tree
in which:

1. each node corresponds with a subset of individuals in O and it is associated
with a portion of D intensionally described by a multi-relational pattern,

2. each variable that is eventually introduced in left branch of a node must not
occur in the right branch of that node,

3. each leaf is associated with a (multiple) regression function which may involve
variables representing attributes from several tables in D.

¨

The root node is associated with the target table T . Hence, it contains the entire
O , but for each individual o ∈ O , only the attribute-value information in the target
table is considered. Consequently, a splitting node t may either introduce a new
test on a variable already included in the current description of individuals falling in
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customer(I_C, Sale, Credit, I_A)

t0 ¬ customer(I_C, Sale, Credit, I_A)

order(I_O, Date, I_C)

t1 ¬ t0, order(I_O, Date, I_C)

t1 ¬ t0, not (t0, order(I_O, Date, I_C)

SELECT * FROM Customer

SELECT *

FROM Customer n1, Order n2

WHERE n1.Id = n2.Client

SELECT *  FROM Customer n1

WHERE T1.Id NOT IN

(SELECT n1.Id FROM

Customer n1, Order n2

WHERE n1.Id = n2.Client)

a)

b)

Figure 5.1: An example of multi-relational splitting node and queries added in a) a �rst order
language and b) SQL.

O(t) or decide to test the existence or absence of tuples stored in Ti (Ti ∈ S) which
are foreign key path associated with the target tuple in T according to a foreign key
path of D between T and Ti. In both cases, a splitting node t passes down to each
child only a sub-group of individuals falling in O(t). However, in the latter case the
description of each individual o ∈ O(t) that is passed down to the left child tL is
enriched with associated tuples in the new table involved in the test. In contrast,
no structural modi�cation occurs for each individual o ∈ O(t) passed down to the
right child tR.

The subset O(t) can be intensionally described with a multi-relational pattern
expressed as a conjunction of literals or an SQL query. More precisely, in the case
D is represented as a Prolog program and each individual o ∈ O is a set of facts (or
interpretation), then a test at a splitting node t corresponds with checking whether
the query �← QtL � to be associated with the left child tL of t succeeds for any o
∈ O(t), or not. The queries are de�ned in a way such that if the query associated
with a leaf succeeds for o, then the leaf contains the regression model to predict
o(Y ).
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An important point is that the queries on the left and right child should be
complementary. Let tL and tR be the left and right child respectively of t: for
each individual o ∈ O(t), exactly one of both queries (i.e. �← QtL

� and �← QtR
�)

should succeed. Now, if testt is the conjunction expressing the current test then
�← Qt, testt� and �← Qt, not (Qt, testt)� are complementary, but �← Qt, testt�
and �← Qt, not(testt)�, are not, when testt shares variables with Qt (see Figure
5.1.a). This justi�es the restriction in the second point of De�nition 5.2 that directly
follows from [Blo98], where the semantics of a multi-relational tree is extensively
explained for classi�cation tasks. A variable X that is introduced with a splitting
test is existentially quanti�ed within the conjunction at the node. The right sub-
tree is only relevant when the conjunction fails (i.e. there is no such X), in which
case further reference to X is meaningless.

If no recursive association among relations is expressed in the data model, then
the query associated with each splitting node can be equivalently formulated in
standard SQL [BD96] (see Figure 5.1.b).

When t is a leaf node (t ∈ NL
τ ), the query Qt also describes the regression

function ft to predict the (unknown) value of target attribute Y for an individual
o such that Qt succeeds for o. In the simplest case, this regression function is a
constant value simply computed as the mean (or median) of the Y values for all
training individuals falling in O(t) [Blo98] [Kra96] [KW01].

The situation is more complex when a multiple regression function is associated
with a leaf node t ∈ NL

τ . Indeed, ft can be determined by considering not only
the continuous variables corresponding with an attribute of the target table T but
also continuous variables from the target relevant tables Ti ∈ S (Ti 6= T ) involved
in left branches of a split along the path from the root to the current leaf. Since
zero, one or more tuples belonging to a �xed target relevant table may be foreign
key path associated with the same target tuple in T , this implies that a continuous
variable, not included in the target table T , may assume multiple values for the
same individual o ∈ O(t).

A solution discussed in [ACM03] is to transform O(t) into an attribute-value
set Op(t) described by the m + 1 single-value variables X1, . . . , Xm, Y , and then
mine Op(t) to build the prediction function Ft : X1 × . . . ×Xm → Y (e.g Ft may
be a multiple linear regression function whose regression coe�cients are estimated
according to least-square regression on Op(t)). The transformation from O(t) to
Op(t) can be actually performed by joining all tables involved in describing indi-
viduals O(t) with respect to tests along the path from the root to the current node.
Since for each o ∈ O(t), one or more attribute-values individuals op1 , . . . , oph

can be built according to this joining operation (pt), the multi-relational regression
function ft, �nally associated with the leaf node t, averages the prediction returned
by Ft on the set of attribute-value individuals built by pt.

Finally, in the case of multi-relational SMOTI trees, the de�nition of a multi-
relational model tree must be further extended in order to support the stepwise
construction of the multiple multi-relational regression function ft associated with
each leaf t ∈ NL

τ . Similarly to the propositional setting, a regression step corre-
sponds with a regression node that performs straight-line regression on a numerical
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…

SELECT * FROM Customer

SELECT *

FROM Customer n1, Order n2

WHERE n1.Id = n2.Client

…

SELECT *

FROM Customer n1, Order n2, Detail n3

WHERE n1.Id = n2.Client AND

n2.Order = n3.Order

…

SELECT n1.Id,

n1.Sale-(12.7+7.5n3.Quantiy) as newSale,

n1.CreditLine-(117.1-2.4 n3.Quantity) as newQuantity,

n2.Id, n2.Date, n3.Id, n3.Quantity, n3.Article

FROM Customer n1, Order n2, Detail n3

WHERE n1.Id = n2.Client AND n2.Order = n3.Order

Figure 5.2: An example of a multi-relational regression node (i.e. n1.CreditLine = 12.7 + 7.5
n3.Quantity) and corresponding SQL query. All continuous variables not yet included in regression
step are replaced with their residuals.

variable not yet included in the regression model. However, according to the multi-
relational structure of O , each variable involved into a regression step at t level,
may belong either to the target table T or to a target relevant table Ti foreign
key path associated with T , which appears in the left branch of a splitting node
along the path from the root to t. Similarly to propositional case, a multi-relational
regression node passes down to its unique child the entire set O(t), where each
numerical variable involved in the description of O(t) not yet introduced in the
regression model, is replaced with the corresponding residual computed according
to attribute-value representation of individuals falling in O(t) (see Figure 5.2).

5.2.2 Regression selection graphs
The multi-relational pattern associated with each node t of a multi-relational model
tree τ can be expressed in the graphical language of regression selection graphs. The
classical de�nition of a selection graph is reported in [KBSV99] [KSV99] for the case
of multi-relational decision trees. Nevertheless, we present here an extension of this
de�nition in order to make the selection graphs more suitable for regression tasks.

De�nition 5.3 A regression selection graph G is a directed graph (N, A), such that:

1. N is a set of 4-tuples (T, C,R, s), namely regression selection nodes, where:
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a)

Date in

{‘02/09/02’, ‘04/09/02’}

Customer

n0 n1

Order

b) c)

Customer

Order

object(‘C124’) ¬

customer(‘C124’,828.55,1000,’A3’),

order(‘O12489’,’02/09/02’,C124,2),

order(‘O12495’,’04/09/02’,C124,1).

object(‘C311’) ¬

customer(‘C311’,825.25,1200,’A2’),

order(‘O12491’,’02/09/02’,C311,0).

Figure 5.3: a) An example of regression selection graph describing the set of customers, which
have performed almost one order on either the 2nd September 2002 or the 4th September 2004,
and a set of customers satisfying this regression selection graph described in terms of either (b)
tuples stored in foreign key path associated tables of a relational database or (c) conjunction of
�rst order ground atoms.

- T is a table of a relational database D with both continuous and discrete
attributes A1, . . . , Am,

- R is the set {X1, X2, . . . , Xm} such that each Xi is either a residual of
Ai

3 computed according to regression steps already performed or Ai itself,
- C is a set of conditions in the form �T.Xi OP c�, where Xi corresponds
with the residual of Ai computed when the condition has been added. OP

is one of the usual comparison operators (<, ≥, in, not in), while c is
either a constant continuous value or a set of discrete values,

- s is a �ag with possible values �open� or �closed�;

2. A is a set of 4-tuples (p, q, fk, e), where:

- p and q are regression selection nodes,
- fk is a foreign key association between p.T and q.T (or vice-versa) in D,
- e is a �ag with possible values �present� or �absent�.

¨

Regression selection graphs can be graphically represented as directed labeled
graphs (see Figure 5.3.a), which contain at least one regression selection node,

3Xi is properly the residual of Ai when Ai corresponds with either the dependent attribute or a
continuous independent attribute of the table T , not yet included in already performed regression
steps. Note that Ai is neither a primary key nor a foreign key of T in D.
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namely the target node, that represents the target table T in D. The value of s is
expressed by the absence or presence of a cross in the node, representing the open
and close value, respectively. The value of e, in turn, is indicated by the presence
(absent value) or absence (present value) of a cross on the corresponding arrow
representing the labeled arc. The direction of the arrow (left-to-right and right-to-
left) expresses the multiplicity of the association fk (one-to-many and many-to-one,
respectively). Every arc between the nodes p and q imposes some constraints on
how one or more tuples in the table q.T are related to each tuple in the table p.T ,
according to the list of conditions in q.C. Indeed, the association between p.T and
q.T induces some grouping (see Figure 5.3.b and 5.3.c) in the tuples of q.T , and thus
selects some tuples of p.T . A present arc a from p to q selects those tuples which
both belong to the join between p.T and q.T according to the foreign key constraint
a.fk and match the involved list of conditions (p.C ∧ q.C). Conversely, an absent
arc a from p to q selects those tuples of p.T which both satisfy the conditions in
p.C and have no joined tuples in q.T that satisfy conditions in q.C. This suggests
that the target objects explained (covered) by a regression selection graph G are
those tuples ti ∈ n0.T such that ti satis�es the conjunction of conditions stored in
n0.C and for each present (absent) arc aj ∈ G.A outgoing from the target node
(aj .p = n0) there exists (or does not exist) some tuple si ∈ aj .q.T such that si is
foreign key associated to ti according to foreign key association instantiated by aj

and si covers the sub-graph rooted in aj .q .
Regression selection graphs are typically considered more intuitive than expres-

sions in SQL or Prolog [KBSV99], since they graphically re�ect the structure of
database schema (i.e. relational data model). Furthermore, whenever they are em-
ployed to represent multi-relational patterns associated with each node of a multi-
relational SMOTI tree, re�nement operators to perform either a splitting test or a
regression test can be simply de�ned in terms of adding or updating arcs and/or
nodes of the regression selection graph G in question. Finally, in the case no recur-
sive relationships is modeled by G, it can be straightforwardly translated into an
SQL query Q(G).

The top-level description of the translation of a regression selection graph into
an SQL query is reported in Algorithm 5.1 that extends the procedure presented
in [KBSV99] in order to translate regression steps too. The procedure TranlateIn-
toSQL produces a list of tables (tablesList), attributes (attributeList), join condi-
tions (joinList) and conditions (conditionList), and combine these to produce an
SQL query. More precisely, the translation procedure produces a join for all tables
connected in a present arc path that does not involve any regression selection node
belonging to some sub-graph of G that is the root in a closed regression selection
node and pointed by an absent arc

By adopting this procedure, the regression selection graph in Figure 5.4 can be
translated into an SQL query, where each sub-graph rooted in a closed node and
pointed by an absent arc is translated into a negated inner sub-query.

Algorithm 5.1 Translation of a regression selection graph into an SQL query
PROCEDURE TranslateIntoSQL(G,Q)
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Order

Date in {02/09/02}

Customer

n0

n1

Order

n0.R = (Id, Credit

Line, Sale, Agent)

SELECT n0.ID N0_Id, n0.Sale N0_Sale, n0.CreditLine N0_CreditLine,

n0Agent N0_Agent, n1.ID n1_ID, n1.Date N1_Date, n1.Client N1_Client,

n1.Pieces N1_Pieces
FROM Customer n0, Order n1
WHERE n0.ID=n1.Client and g0.ID not  in

(SELECT g2.Client FROM Order g2 WHERE g2.Date in {02/09/02}));

n2

a)

¬ customer(N0_Id, N0_Sale, N0_CreditLine, N0_Agent),

order(N1_ID, N1_Date, N0_ID, N1_Pieces),

Ø (order(N2_ID, N2_Date, N0_ID, N2_Pieces), N2_Date = ‘02/09/02’).

b)

c)

n1.R= (Id, Date Line,

Client, Pieces)

n2.R= (Id, Date Line,

Client, Pieces)

Figure 5.4: The regression selection graph corresponding with the set of customers which have
performed no order on the 2nd September 2002 and its translation into both a) an SQL statement
and b) a �rst order logic expression.

INPUT:
G: regression selection graph;

OUTPUT:
Q: SQL query;

BEGIN
tableList = ®; attributeList = ®; joinList = ®; conditionList = ®;
FOR each arc a in G.A DO

IF (a.e = �present� and not_in_closed_subgraph(a.p,G)) THEN
IF (a.right_node().s = �open�) THEN joinList.add(a.fk);
ELSE joinList.add(a.fk.left_join_attribute()+ � not in � +

TranslateSubGraph(subgraph(G, a.right_node()),
a.fk.right_join_attribute());

END IF;
END IF;

END FOR;
FOR each node n in G.N DO

IF (n.s = �open� and not_in_closed_subgraph(n,G)) THEN
tableList.add(n.T + alias(n.T));
FOR each condition c in n.C DO

conditionList.add(c);
END FOR;
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FOR each attribute X in n.R DO
attributeList.add(X + alias(n.R.X));

END FOR;
END IF;

END FOR;
Q = �SELECT � + attributeList + � FROM � + tableList + � WHERE � +

joinList + � AND � + condList;
END PROCEDURE;

PROCEDURE TranslateSubGraph(G, K)
INPUT:

G: regression selection graph;
K: attribute;

OUTPUT:
Q: SQL query;

BEGIN
tableList = ®; joinList = ®; conditionList = ®;
FOR each node n in G.N DO

tableList.add (n.T + alias(g.T));
FOR each condition c in n.C DO

conditionList.add(c);
END FOR;

END FOR;
FOR each arc a in G.A DO

joinList.add (a.fk);
END FOR;
Q = �SELECT � + K + � FROM � + tableList + � WHERE � + joinList +

� AND � + condList;
END PROCEDURE;

5.2.3 Re�nements of regression selection graphs
When regression selection graphs are adopted to represent multi-relational patterns
associated with each (splitting, regression or leaf) node of a multi-relational model
tree τ , growing τ corresponds with re�ning the regression selection graph associated
with the current node t. This means that when a split is introduced in τ , we are
in fact re�ning the regression selection graph associated with t in two ways (i.e. by
introducing both a left child tL and a right child tR) in order to partition the current
set of individuals falling in t according to a binary test condition. Conversely, if a
regression step is performed, we are re�ning the current regression selection graph
in order to remove the e�ect of performed regression according to the stepwise
procedure.

In the case of multi-relational splitting tests, two splitting re�nement operators
of a regression selection graph G can be de�ned, namely �add condition� re�nement
and �add present arc and open node� re�nement. Both these re�nements can involve
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only open regression selection nodes of G which do not belong to any sub-graph of
G that is rooted into a closed regression selection node and pointed by an absent
arc. We denote by G.NO the set of these regression selection nodes in G.

The add condition re�nement of G adds a condition c to a regression selection
node ni ∈ G.NO without actually changing the structure of G. The condition c

is a boolean test which involves a variable (or residual) X ∈ ni.R that does not
correspond to neither a primary key nor a foreign key of the table ni.T in D. In
continuous case, c is in the form X ≤ α, while in discrete case c is in the form
X ∈ {x1, . . . , xs}.

Since the add condition re�nement is a splitting re�nement, it has to be in-
troduced together with its complementary re�nement. We denote by GL and GR

the re�nement and complementary re�nement respectively of a regression selection
graph G corresponding with testing a binary condition c. The re�nement GR is the
complement of GL in the sense that it covers those individuals covered by the orig-
inal regression selection graph G which are not covered by GL: for each individual
covered by G, (i.e. the query Q(G) associated with G succeeds), it is covered by
exactly one of both graphs GL and GR (i.e. exactly one of both queries G(QL) and
G(QR) succeeds).

Knobbe and his colleagues [KSV99] have proposed a complementary re�nement
named add negative condition that should solve the problem of mutual exclusion
between an add condition re�nement and its complement. When the node to be
re�ned is the target node n0 ∈ G.N , the add negative condition re�nement simply
re�nes the regression selection graph G by adding the negated condition ¬c to the
condition list n0.C. Conversely, when the regression selection node ni ∈ G.NO to
be re�ned is not the target node (ni 6= n0), the add negative condition re�nement
GR is built from G by introducing an absent arc from the parent of ni to the clone
of the entire sub-graph of G that is rooted in ni. The introduced sub-graph has a
root (a clone of the node to be re�ned) which is a closed node updated with the
re�nement condition that is not negated. In this way, the complementary operation
builds a regression selection graph that negates an entire inner sub-query and not
simply a condition. This is an important di�erence compared with the propositional
case in which a test condition and its simple negation generate a partitioning of the
training data.

However, this complementary re�nement may fail when the node to be re�ned
by adding the condition c is not directly connected with target node.

Example 5.1 Let us consider the regression selection graph G in Figure 5.5.a that
can be easily translated into the SQL query Q(G) as shown in Figure 5.5.b. G is
covered by all customers which have performed almost one order with one or more
details (�object('C124')� and �object('C501')� in Figure 5.5c). We may decide to
re�ne G by adding the condition �Quantity ≤ 22� on the list of conditions of the
open node n2, where n2.T = �Detail�. Note that n2 is not directly connected with
target node n0 in G.

The resulting add condition re�ned regression selection graph GL (see Figure 5.6)
covers all customers which have performed almost one order with one or more de-
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a)

n0

n1 n2

Customer

Order

Detail

Id = Client

Id = Order

G

SELECT *
FROM Customer  n0, Order  n1, Detail  n2
WHERE n0.ID=n1.Client AND

n1.ID=n2.Order AND n1.ID

object(‘C124’) ¬

customer(‘C124’, 828.55, 1000, ‘A3’),

order(‘012489’,’02/09/02’,’C124’,2),

order(‘012495’,’04/09/02’,’C124’,1),

order(‘012500’,’05/09/02’,’C124’1),

detail(‘D123’, 80, ‘012489’, ‘AR1’),

detail(‘D124’, 22, ‘012489’, ‘AR2’),

detail(‘D125’, 25, ‘012500’, ‘AR3’) ,

detail(‘D126’, 50, ‘012495’, ‘AR3’).

object(‘C501’) ¬

customer(‘C501’, 35.7, 800, ‘A3’),

order(‘012600’,’05/10/02’,’C501’, 1),

detail(‘D127’, 25, ‘012600’, ‘AR3’).

Customer

Order Detail

b) c)

Figure 5.5: An example of (a) a regression section graph G, (b) its translation into SQL and (c)
the set of objects covered by G.

tails having quantity greater than twenty-two (only �object('C124')� in Figure 5.6).
Intuitively, the complementary regression selection graph GR should cover all cus-
tomers which have performed almost one order with one or more details, but no one
of these orders has some detail with quantity less than twenty-two (�object('C501')�).
Anyway, this does not occur if GR is properly built by following the procedure pro-
posed by Knobbe and his colleagues that suggest to complement GL by introducing
in G an absent arc from the parent (n1) of the regression selection node in question
(n2) to a new closed node n3 that is the clone of n2. The condition list of n2 is
then copied into n3 and extended by the new condition �Quantity ≤ 22�. Adopting
this construction, the complementary re�nement GR is covered by some individuals
already covered by GL (in Figure 5.7 GR is covered by �object('C501')� but also by
�object('C124')�).
¨

The Example 5.1 con�rms the intuition of Leiva [Lei02] by proving that the add
negative condition mechanism proposed by Knobbe and his colleagues may lead to
a regression selection graph GL and a complementary regression selection graph
GR which are not mutually exclusive. To guarantee the mutual exclusion also when
GL is obtained by adding the condition c to a regression selection node of G that
is not directly connected with target node, GR must be actually built from G by
adding an absent arc from the target regression selection node n0 to the clone of
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n0 n1 n2

Customer Detail

Id = Client Id = Order

GL

Order

SELECT *

FROM Customer n0, Order  n1,  Detail  n2

WHERE n0.ID = n1.Client AND n1.ID =

n2.Order AND n2.Quantity £ 22

object(‘C124’) ¬

customer(‘C124’, 828.55, 1000, ‘A3’),

order(‘012489’,’02/09/02’,’C124’,2),

detail(‘D124’, 22, ‘012489’, ‘AR2’).

SQL(GL)

O(GL)Quantity £ 22

Figure 5.6: An example of add condition re�nement for the regression selection graph G described
in Figure 5.5.a.

n0 n1 n2

Customer Detail
Id = Client Id = Order

GR

Order

Detail n3

Quantity £ 22

Id = Order

SELECT *
FROM Customer  n0, Order  n1, Detail  n2
WHERE n0.ID=n1.Client AND n1.ID=n2.Order
AND n1.ID not in (select n3. Order from Order

n3 where n3.Quantity £ 22)

object(‘C124’) ¬

customer(‘C124’, 828.55, 1000, ‘A3’),

order(‘012495’,’04/09/02’,’C124’,1),

order(‘012500’,’05/09/02’,’C124’1),

detail(‘D126’, 50, ‘012495’, ‘AR3’),

detail(‘D125’, 25, ‘012500’, ‘AR3’) .

object(‘C501’) ¬

customer(‘C501’, 35.7, 800, ‘A3’),

order(‘012600’,’05/10/02’,’C501’, 1),

detail(‘D127’, 25, ‘012600’, ‘AR3’).

SQL(GR)

O(GR)

Figure 5.7: The add negative condition re�nement for the regression selection graph G described
in Figure 5.5.a. GR is here built following the procedure proposed by Knobbe and his colleagues
that could not satisfy the mutual exclusion requirement in the case the regression selection node
in question is not directly connected with target node.

the minimal sub-graph in G containing the foreign key path from the target node to
the node to be re�ned. This is coherent with the semantics of a �rst-order splitting
test formalized by [Blo98] [BD98] for �rst-order decision trees. The introduced
sub-graph has a root (a clone of n0) that is a closed node and it is updated with
the re�nement condition that is not negated. A new absent arc is also introduced
between the target node and its closed clone. This arc is an instance of the implicit
relationship between the primary key of the target table and the own itself (see
Figure 5.8).

The add present arc and open node re�nement instantiates a foreign key associ-
ation in form of a present arc and then add it to G together with its corresponding
table in a new open regression selection node. The complementary re�nement in-
troduces an absent arc together with its corresponding table. This is the add absent
arc and closed node re�nement proposed in [KBSV99]. However, also for this re-
�nement we have to deal with the special case of a node to be added that is not
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n0 n1 n2

Customer Detail

Id = Client Id = Order

GR

Order

SELECT *

FROM Customer  n0, Order  n1, Detail n2

WHERE n0.ID=n1.Client AND

n1.ID=g2.Order AND

n0.ID not in ( select n3.ID

from Customer n3, Order n4, Detail n5

where n3.ID=n4.Client and

n4.ID=n5.Order and n5.Quantity £ 22)

object(‘C501’) ¬

customer(‘C501’, 35.7, 800, ‘A3’),

order(‘012600’,’05/10/02’,’C501’, 1),

detail(‘D127’, 25, ‘012600’, ‘AR3’).

SQL(GR)

O(GR)

Quantity £ 22

n4 n5

Customer Detail

Id = Client Id = Order

Order

n3

Figure 5.8: The correct add negative condition re�nement for the regression selection graph G

described in Figure 5.5.a. This complementary re�nement satis�es the mutual exclusion require-
ment.

directly connected with the target node. Similar considerations to those we have
drawn above for complementing the add condition re�nement are valid here. This
means that when nj , the node to be added in forming GL, has to be directly con-
nected with a node ni ∈ G.NO (i.e. there will exist an arc a ∈ GL.A such that
a.p = ni and a.q = nj ) such that ni is not target node in G (ni 6= n0), the comple-
mentary re�nement GR is obtained from G by adding an absent arc from the target
node n0 to a new sub-graph rooted in a closed node that is the clone of the minimal
sub-graph in GL connecting the target node with the added node (see Figure 5.9).

In addition to splitting re�nements, we de�ne a regression re�nement of a re-
gression selection graph G that corresponds with performing a regression step on
the tuples generated by running the SQL query Q(G) associated with G. Let us
consider a generic regression step that is a straight-line regression in the form:

Ŷ = β̂0 + β̂1X,

where Y is the residual target attribute as it appears in n0.R of G, while X is
the residual of a continuous attribute (neither primary key nor foreign key in data
model) not yet included in previous regression re�nement to obtain G (i.e. it is
not involved in forming the current Y residual). The residual X belongs to the list
of residuals R of a regression selection node ni ∈ G.NO. Since the stepwise con-
struction of a multiple regression model imposes that, for each regression selection
node nj ∈ G.NO, the regression step removes the e�ect of performed regression on
X from all residual Xi ∈ nj .R (Xi 6= X), we consider a further set of straight-line
regressions in the form:

X̂i = β̂ij0 + β̂ij1X,
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n0 n1

Customer

Id = Client

GR

Order

n3

n4

Customer

Detail

Id = Client

Id = Order

Order

n2

n0 n1

n2

Customer

Detail

Id = Client

Id = Order

GL

Order

n0 n1

Customer

Id = Client

G

Order

Id = Id

a)

b) c)

Figure 5.9: An example of a) a regression selection graph G, b) an add present arc and open
node re�nement GL of G and c) its complementary re�nement GR.

where Xi corresponds with a continuous attribute (neither primary key nor foreign
key in data model) of nj .T not yet involved in a regression re�nement to obtain G.

The regression re�nement of G corresponding with a regression step on a con-
tinuous residual X returns a regression selection graph GR obtained by cloning G

and updating the list of residuals for each node nj ∈ G.NO by substituting Xi with
Xi − βij0

− βij1
X. This means that the residual Y ∈ n0.R of the target attribute

n0.T.Y is replaced with Y − β̂0 + β̂1X, while the residual of discrete attributes, pri-
mary/foreign keys as well as continuous attributes involved in regression re�nement
already applied to obtain G, are simply replaced with the own itself (see Figure
5.10).

5.3 Mr-SMOTI
Mr-SMOTI stepwise mines multi-relational model trees with both splitting and
regression nodes over data that resides in multiple tables of a tightly-coupled re-
lational database. It represents the upgrade of the propositional miner SMOTI
toward multi-relational according to a methodology similar to the one described
in [VD01] to upgrade propositional miners toward �rst-order logic. This is coher-
ent with the idea of developing multi-relational miners having approximately the
existing propositional system as special case.

The �rst-order upgrading methodology represents the most important lesson
learned during the development of some well known ILP systems such as TILDE
[Blo98] to induce �rst-order decision trees, ICL [DW95] to learn �rst-order rules,
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n0

n1

G

Id = Client

n0.R = (Id, Sale, CreditLine, Agent)
n0.C = Æ

n0.T = Customer

n1.T = Order
n1.R = (Id, Date, Client, Pieces)
n1.C = Pieces £ 1

n0

n1

SELECT n0.Id, Id, n0.Sale, n0.CreditLine,

n0.Agent, n1.Id, n1.Date, n1.Client,

n1.Pieces

FROM Customer n0, Order n1

WHERE n0.Id=n1.Client AND n1.Pieces £ 1

GR

Id = Client

n0.R = (Id, Sale, CreditLine-7.5-

2.7Sale, Agent)
n0.C = Æ

n0.T = Customer

n1.T = Order
n1.R = (Id, Date, Client, Pieces-

2.5-0.1 n0.Sale)
n1.C = Pieces £ 1

SELECT n0.Id, Id, n0.Sale, n0.CreditLine - 7.5

- 2.7*n0.Sale, n0.Agent, n1.Id,

n1.Date, n1.Client,

n1.Pieces - 2.5 - 0.1 * n0.Sale

FROM Customer n0, Order n1

WHERE n0.Id=n1.Client AND n1.Pieces £ 1

Figure 5.10: An example of a regression re�nement GR of a regression selection graph G corre-
sponding with the regression step on Credit line = 7.5 + 2.7Sale and Pieces = 2.5 + 0.1Sale.

CLAUDIEN [DD97] for clausal discovery and WARMR [De 97] to mine association
rules in multiple relations. In all these cases, the �rst-order upgrading starts from
an existing propositional miner and provides a recipe for upgrading it toward the
use of �rst-order logic. This recipe involves the mining from units of analysis which
are complex training individuals (examples) corresponding to sets of ground facts
(interpretations), the adaptation of the representation of the hypotheses toward
Prolog, the employment of a search operator (e.g. θ-substitution) to structure and
explore the space of hypotheses as well as the introduction of a declarative bias.
Moreover, it recycles as much as possible from the propositional system.

Starting from this methodology, we have extended it in order to take into account
units of analysis which are described with tuples scattered over several tables of a
relational database rather than ground atoms stored in a Prolog program. This
suggests that multi-relational no recursive hypotheses can be naturally expressed
as SQL statements rather than Prolog programs. The search operators to explore
the space of hypotheses should correspond to specialization or generalization of SQL
statement.

In the remaining of this Section, we present Mr-SMOTI algorithm describing
details about the computation of the set of both multi-relational splitting and re-
gression steps at each node as well as stopping criteria. Finally, the complexity
analysis of Mr-SMOTI algorithm is evaluated.

5.3.1 The algorithm
Mr-SMOTI mining algorithm is based on a divide-and-conquer strategy starting
with a root node t0 that contains the entire set of O individuals stored in a relational
database D. At root level t0, each individual o ∈ O(t0) is simply described by the
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corresponding tuple in the target table T . This means that in the graphical language
of regression selection graphs, t0 is associated with the regression selection graph G0

that contains only the target node. The relational structure of D is then adequately
exploited to choose from three di�erent possibilities:

- growing τ by performing a splitting test on the current node t and introducing
the nodes tL (left child of t) and tR (right child of t),

- growing τ by performing a regression step on the current node t and intro-
ducing its unique child tR,

- stopping the tree's growth at the current node t.

Similarly to SMOTI, the validity of either a splitting test or a regression step at
node t is based on two di�erent heuristic functions σ(t) and ρ(t), respectively.

If tL and tR are the left and right child of a splitting node t, then:

σ(t) =
n(tL)

n(tL) + n(tR)
R(tL) +

n(tR)
n(tL) + n(tR)

R(tR), (5.1)

where n(tL) (n(tR)) is the number of tuples obtained by molding the (multi-)relational
description of training individuals falling in O(tL) (O(tR)) in a single table repre-
sentation OP (tL) (OP (tR)) derived by joining the portion of D actually involved
in describing O(tL) (O(tR)). R(tL) (R(tR)) is the resubstitution error on the left
(right) child, computed as follows:

R(tL) =

√√√√ 1
n(tL)

∑

i=1...n(tL)

(yi − ŷi)
2(R(tR) =

√√√√ 1
n(tR)

∑

i=1...n(tR)

(yi − ŷi)
2), (5.2)

such that Ŷ is the (multi-)relational regression model built by combining the best
straight-line regression associated to tL (tR), with all straight-line regressions intro-
duced along the path from the root to tL (tR).

Example 5.2 Let D in �gure 5.11 be an instance of the relational database �Cus-
tomerDB�, which represents a collection O of six customers. Each customer is
described by properties (e.g. �Sale� and �Credit Line�) which are stored in the target
table �Customer� as well as properties stored in the target relevant tables �Agent�,
�Order�, �Detail� and �Article�. Relationships between each target object and corre-
sponding target relevant objects are implicitly modeled by foreign key path associa-
tions in CustomerDB.

We consider the case of a splitting node t at root level of a multi-relational tree
τ such that t partitions customers according to the existence (or not) of any tuple in
Order that is foreign key path associated with the target object stored in Customer
(see Figure 5.12.a). Training individuals that satisfy the test (i.e. customers which
have performed almost one order) are passed down to the left child tL and they are
described by considering tuples in both Customer table and Order table. Training
individuals that do not satisfy the test (i.e. customers which have not performed
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Customer Agent

Order Detail

Article

object(‘C124’) ¬ customer(‘C124’, 828.55, 1000, ‘A3’), agent(‘A3’, 27.1),

order(‘012489’,’02/09/02’,’C124’,2),order(‘012495’,’04/09/02’,’C124’,1),

order(‘012500’,’05/09/02’,’C124’1), detail(‘D123’, 80, ‘012489’, ‘AR1’),

detail(‘D124’, 22, ‘012489’, ‘AR2’), detail(‘D125’, 25, ‘012500’, ‘AR3’) ,

detail(‘D126’, 50, ‘012495’, ‘AR3’), article(‘AR1’, 12.5),

article(‘AR2’, 3.1), article(‘AR3’, 1.5).

object(‘C255’) ¬ customer(‘C255’, 21.5, 1500, ‘A5’), agent(‘A5’, 31.5).

object(‘C311’) ¬ customer(‘C311’, 825.25, 1200, ‘A2’), agent(‘A2’, 15),

order(‘012491’,’02/09/02’,’C311’, 0).

object(‘C412’) ¬ customer(‘C412’, 27.9 1700, ‘A5’), agent(‘A5’, 31.5).

object(‘C501’) ¬ customer(‘C501’, 35.7, 800, ‘A3’), agent(‘A3’, 27.1),

order(‘012600’,’05/10/02’,’C501’, 1), detail(‘D127’, 25, ‘012600’, ‘AR3’) ,

article(‘AR3’, 1.5).

object(‘C502’) ¬ customer(‘C502’, 250.7 2500, ‘A2’), agent(‘A2’, 15).

Figure 5.11: An instance of CustomerDB database containing six complex individuals (units of
analysis) forming the training set in a multi-relational regression problem of predicting the Credit
Line for a customer. Customer represents the target table, while Order, Detail, Article and Agent
represent the target relevant tables.

any order) are passed down to the right child tR and they continue to be described
only with respect to attributes in Customer table.

To evaluate this split test, we transform the (relational) description of training
individuals as they fall in tL and tR respectively into attribute-value format, and
then compute the best straight-line regression on each side according to transformed
attribute-value individuals (see Figure 5.12.b). The transformation is performed by
joining tuples from the portion of tables involved in relationally describing individu-
als at current node. This join operation takes into account the foreign key constraint
conditions involved along the path from the root to the current node.

When each tree node is associated to a regression selection graph, this trans-
formation of relational individuals falling in tL (tR) corresponds with the set of
attribute-value tuples returned by running on D the SQL query Q(GtL

) (Q(GtR
))

translating the regression selection graph GtL(GtR)
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In this case, three customers (O(tL)) are passed down to tL and they are trans-
formed into �ve attribute-value tuples (OP (tL)), while remaining three customers
(O(tR)) are passed down to tR and they are transformed in three attribute-value tu-
ples (OP (tR)). The best straight-line regression on left (right) side is then computed
on the basis of OP (tL) (OP (tR)) attribute-value tuples: for each candidate regres-
sion attribute, intercept and slope are computed according to least square methodol-
ogy and resulting straight-line regression is evaluated according to resubstitution er-
ror. In this way, we obtain R(tL) = 77.86 when Credit Line = 0.314 Sale+789.39,
while R(tL) = 109.54 when Credit Line = −1004 Pieces + 1100, and then return
Credit Line = 0.314 Sale+789.39 as best straight-line regression on tL. Similarly,
we can identify Credit Line = 3.99 Sale + 1500.899 as best straight-line regression
on tR with R(tR) = 70.50. Finally, by applying Equation 5.1, we obtain:

σ(t) = 5
5+377.86 + 3

5+370.50 = 75.09.

¨

The evaluation of a regression step Ŷ = β̂0 + β̂1Xi at node t requires to grow
the (multi-)relational model tree at a further level in order to base the computation
of ρ(t) on the best splitting test, after that the current regression step has been
performed. This look-ahead in evaluating regression steps aims at emulating the
foresight of the splitting test evaluation measure σ which is actually based on re-
substitution error in the best multiple linear regressions after the split is performed.
Therefore, ρ(t) is de�ned as follows:

ρ(t) = min{R(t), σ(t′)}. (5.3)

where t′ is the best multi-relational splitting node following the regression step in
t.

In this way the criterion for selecting the optimal node is fully characterized
coherently with the propositional case, but it also takes into account the relational
structure of training data. Indeed, both splitting and regression nodes may in-
volve single-valued attributes in the target table as well as eventually multi-valued
attributes in target relevant tables. Consequently, both σ and ρ are based on a re-
substitution error measure that is computed on the attribute-value transformation
of the current relational description of the portion of training individuals falling in
the partitions to be examined. The attribute-value transformation is performed by
joining tables according to the multi-relational pattern currently generated.

The top-level algorithmic description of Mr-SMOTI is shown in Algorithm 5.2.
Each node (splitting, regression or leaf) of the output tree is associated with a multi-
relational pattern expressed as a regression selection graph and then translated into
an SQL query. This permits representing the tree-based regression model as a set
of SQL queries stored in XML format that can, in turn, be the object of a query. In
particular, SQL queries associated with each leaf can be applied to new individuals
stored in the relational database in order to predict an estimate of the corresponding
(unknown) target attribute.
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Figure 5.12: Computing the evaluation function according to an attribute-value transformation
of the relational training individuals described in Figure 5.11 passed down to the left (right) child
of a node t.

Algorithm 5.2 Mr-SMOTI Algorithm
PROCEDURE build-Mr-SMOTI-tree(D, T, Y, Q, R, F, τ)
INPUT:

D: a relational database;
T: the target table in D;
Y : the target attribute in T;
Q: the SQL query describing a subset of individuals in D;
R: a subset of variables associated with attributes included in

the SELECT clause of Q (QSELECT ) not yet included in
the regression model currently built;

F: a subset of foreign key constraints in D concerning at least
one table included in the FROM clause of Q but not yet involved
into a join condition of Q;

OUTPUT:
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τ: a (multi-)relational model tree with regression and splitting
nodes built on (D,Y );

BEGIN
Best− ρ = ∞;
Best− tR = a node whose model is the estimated mean Y ;
FOR each continuous attribute Xi ∈ R DO

Compute the best regression node tR with attribute Xi of R;
IF ρ(tR) ≤ Best− ρ THEN

Best− ρ = ρ(tR); Best− tR = tR;
END IF;

END FOR;
IF stopping criteria THEN τ = leaf(Best− tR);
ELSE

Best− σ = ∞; Best− tS = nil;
FOR each attribute Xi ∈ QSELECT /{Y } and Xi is not a foreign

key or primary key in D DO
Compute the best splitting node tS with attribute Xi;
Compute the evaluation measure σ(tS) for tS;
IF σ(tS) ≤ Best− σ THEN

Best− σ = σ(tS); Best− tS = tS;
END IF;

END FOR
FOR each foreign key constraint FKi ∈ F DO

Compute the best splitting node tS involving the foreign key
constraint FKi;
Compute the evaluation measure σ(tS);
IF σ(tS) ≤ Best− σ THEN

Best− σ = σ(tS); Best− tS = tS;
END IF;

END FOR;
IF Best− σ > Best− ρ THEN

IF Best−tS is a splitting node involving a foreign key THEN
Best− FKS is the foreign key involved in Best− tS;

ELSE
Best− FKS = ®;

END IF;
QL = the query describing individuals passed down to the
left child of Best− tS;
QR = the query describing individuals passed down to the
right child of Best− tR;
build-Mr-SMOTI-tree(D, T, Y,QL, R, F/Best− FKS , τL);
build-Mr-SMOTI-tree(D, T, Y,QR, R, F, τR);
τ = tree with root Best−tS and left (right) branch τL (τR);

ELSE
Let Best−X the regression attribute in Best− tR;
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Residual −R = ®;
FOR each Xi ∈ R/Best−X DO

Residual −R = Residual −R ∪ {Xi − β0i
− β1i

Best−X};
END FOR;
QR = the query describing individuals passed down to the
unique child of Best− tR where each Xi ∈ R/Best−X is
replaced with the corresponding residuals from residual−R;
build-SMOTI-tree(D, T, Y, QR, residual −R, F, τR);
τ = tree with root in Best− tR and child τR;

END IF;
END IF;

END PROCEDURE

5.3.2 Computing the set of splitting tests for a node
One of the main di�erences between Mr-SMOTI and the propositional SMOTI tree
miner is the computation of the set of splitting tests to be considered at a node t.
While SMOTI partitions a training space described by the m+1-dimensional fea-
ture vector X1, . . . , Xm, Y according to binary tests on either a continuous variable
(i.e. Xk ≤ α) or a discrete variable (Xk ∈ {xk1 , . . . , xks}), Mr-SMOTI exploits the
relational structure of data stored in D also checking the conditions which involve
tuples not stored in the target table. By adopting the graphical language of re-
gression selection graphs, this means that Mr-SMOTI starts with a root node t0

that is associated with the regression selection graph G0 containing only the target
node and at each step, whenever a splitting node t is introduced into the model
tree, Mr-SMOTI is in fact re�ning the regression selection graph Gt associated with
the current tree node t, by applying either an add condition re�nement or an add
present arc and open node re�nement. The set of candidate splitting test to be
evaluated at t node according to the evaluation measure σ(t) includes all possible
splits involving a regression selection node nj ∈ Gt.NO.

More precisely, for each nj ∈ Gt.NO, Mr-SMOTI evaluates the candidate add
condition re�nements of Gt which are obtained for each residual X ∈ nj .R, where
X does not correspond to neither the target attribute nor a primary/foreign key
attribute in D data model. When X corresponds with a continuous attribute in
nj .T , the condition c to be added to nj .C is in the form X ≤ α with α one of
the cut points found by an equal-frequency discretization [Cat91] of the ordered
values of nj .R.X obtained by running QX(Gt) (i.e., the projection on X of the
SQL query Q(Gt) associated with Gt) on D. The number of bins to be returned
is �xed to the square root of the number of training tuples returned by running
QX(Gt). Conversely, when X corresponds with a discrete attribute in nj .T , the
condition c is in the form X ∈ U , with U a subset of the range of nj .R.X in the
result set obtained by running QX(Gt) on D. As in propositional SMOTI, the
greedy strategy suggested in [MAR96] is employed to identify U . Initially, U = ∅ is
considered, the possible re�nement is then obtained by moving one discrete value
from the range set computed for X to U , such that the move results in a better
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splitting according to the heuristic measure σ.
Similarly, for each nj ∈ Gt.NO, Mr-SMOTI evaluates the best add present arc

and open node re�nement of the regression selection graph Gt, which is obtained
by instantiating a new foreign key constraint of D data model involving nj .T as
source table or destination table. Knowledge about the nature and multiplicity
is used to guide and optimize the search. Since the investigated associations are
foreign key constraints not already included in Gt, the proposed re�nement can
have two directions: backward or forward. The former express many-to-one asso-
ciations, while the latter describe one-to-many associations in the data model. It
is noteworthy that a many-to-one foreign key association leads to an add present
arc and open node re�nement whose complement cannot cover any training indi-
viduals. Therefore, a backward re�nement of the regression selection graph Gt does
not actually partition the set of individuals covered by Gt, but simply extends their
descriptions by also considering the joined tuples in the table introduced with a
new regression selection node foreign key associated with some regression selection
node of Gt.NO. Whenever the table in the added regression selection node contains
continuous attributes which are not primary keys or foreign keys, the residuals of
these variables are computed according to the regression steps already performed in
τ along the path from the root to the tree node t associated with Gt. In this case,
regression coe�cients are estimated with the least square regression methodology
on attribute-value set of joined tuples of D that satisfy the re�nement (i.e. the set
of tuples obtained by running the SQL query Q(Gt) on D). Conversely, when no
regression step has been performed, the list R associated with the added regression
selection node contains exactly the list of attributes, without any modi�cation, as
they appear in the corresponding table of D.

It is important to note that only through the �add arc� re�nements the explo-
ration of all the relations in D is carried out. Indeed, it is possible to consider the
�add condition� on some attribute (or residual) from some table only after the arc
to this table has been added into the current regression selection graph.

5.3.3 Computing the set of regression steps for a node
Mr-SMOTI, evaluates all candidate regression steps associated with the current
node t by considering each straight-line regression:

Ŷ = β̂0 + β̂1X. (5.4)

between the target (residual) attribute Y (Y ∈ n0.R) and the candidate regression
(residual) continuous attribute X (X ∈ ni.R and ni ∈ Gt.NO) that is neither
primary/foreign key in data model of D nor a regression attribute already involved
in any regression step along the path from the root to the current node. Both
slope (β̂0) and intercept (β̂1) are estimated according to least square regression
methodology on the attribute-value tuples obtained by running QXY (Gt) (i.e. the
projection on X and Y of the SQL query Q(Gt)) on the training relational data in
D. A similar approach is followed in determining the pairs of slope and intercept
(βij0

, βij1
) to remove the e�ect of performed regression on X from all remaining
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(residual) attribute Xi ∈ nj .R (Xi 6= X and nj ∈ Gt.NO), where Xi does not
correspond with any continuous attribute of nj .T that is either a primary/foreign
key in D data model or a regression attribute already involved in a regression step
along the path from the root to t.

Since the best regression at the node t is evaluated on the basis of the evalu-
ation measure ρ(t) that looks-ahead the best split after the current regression is
performed, look-ahead re�nements, which are sequence of several re�nement, are
used for dealing with this situation. More precisely, when a regression re�nement
is evaluated the best split re�nement among the set of next candidate splits is also
considered as re�nements of Gt.

5.3.4 Stopping criteria
In Mr-SMOTI, three di�erent stopping criteria are implemented. The �rst requires
that the number of units of analysis covered by the regression selection graph as-
sociated with each node be greater than a minimum user-de�ned threshold. The
second stops the induction process at the current node t and transforms it into a
leaf node when all continuous attributes describing O(t) (i.e. continuous attributes
of tables associated with each regression selection node ni ∈ Gt.NO) are involved
in regression steps along the path from the root t0 of the tree τ to t and there is
no add open node and present arc re�nement of Gt that extends the description of
O(t) by including new continuous attributes. This is due to the fact that a con-
tinuous attribute chosen for a regression step is no longer considered for regression
purposes, so that it can appear only once in a regression node along a path from the
root to a leaf. Finally, the third stops the induction process when the coe�cient of
determination R24 is greater than a minimum user-de�ned threshold.

It is noteworthy that a leaf node t that is introduced in τ typically corresponds
with a regression step (without any look-ahead). The regression function associated
with the leaf node t combines all straight-line regressions along the path from the
root t0 of τ to t with the best straight-line regression computed for the corresponding
residual of the target attribute Y on the training subsetO(t) as it appears described
by the corresponding regression selection graph Gt. When all continuous attributes
have been already involved in the regression model, the straight-line regression
for the residual of Y to be associated to t is the function of constant zero value.
Conversely, when no regression step has been performed and O(n) is only described
by discrete variables, then the regression model corresponds properly to a constant
function that is the mean of Y values for all tuples of D covered by the regression
selection graph Gt.

Finally, the regression model ft : D → < built at leaf node is expressed as
an SQL query that predicts Y by grouping together all the (joined) tuples which
describe a same multi-relational individual o according to the regression selection
graph Gt and then averaging the returned prediction for Y (see Figure 5.13).

4R2 is computed on the attribute-value tuples obtained by running Q(Gt) on D
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5.3.5 Complexity analysis
The computational complexity of adding a splitting node t into Mr-SMOTI tree
depends on the complexity of performing a splitting re�nement of the regression
selection graph Gt associated with t and the complexity of the best regression step
selection in the children regression selection graphs GtL

and GtR
respectively. On

the contrary, the computational complexity of adding a regression node t depends
on the complexity of performing a regression re�nement of Gt and the complexity
of the best splitting re�nement in its re�ned regression selection graph GtR

.
A splitting re�nement of Gt can be either an �add condition� re�nement or an

�add present arc and open node� re�nement. In the former case, the condition c to be
added into a regression selection node ni ∈ Gt.NO involves some residual X ∈ ni.R

that represents either a continuous attribute or a discrete attribute of ni.T . In
continuous case, a threshold α has to be selected. Let D the training database, which
consists of a set S of v tables T1, . . . , Tv and a set FK of w foreign key associations
FK1, . . . , FKw. Each table Ti ∈ S contains Ni tuples which are described according
to Mi attributes, while each foreign key association fki ∈ FK involves a pair of
tables (Ti, Tj) from S. We denote by N the maximum number of tuples stored in
a table Ti ∈ S (N = max

i=1,...,v
Ni) and GMAX a regression selection graph obtained

starting from G0 (i.e. the regression selection graph which contains only the target
node) and applying h ≤ w �add present arc and open node� re�nements such that
each foreign key path of D that connects the target table T with a table relevant
table Ti ∈ S (Ti 6= T ) is included in the sub-graph of GMAX corresponding with
GMAX .NO. Hence, we may denote with M the total number of residuals in each
regression selection node ni ∈ GMAX .NO. In worst case, Gt includes exactly M

continuous residuals and running Q(Gt) on D returns N attribute-value tuples.
Thresholds for X are determined by extracting X in D according to the projection
on X of Q(Gt) that is the query:

SELECT X FROM TableList WHERE ConditionList ORDER BY X.

where TableList and ConditionList translate Gt, and then equal-frequency dis-
cretizing these values and returning at worst

√
N−1 cut-points as candidate thresh-

olds. It is noteworthy that the cost complexity of extracting X values strongly
depends on performing the list of joins on TableList as well as the lists of joins in-
volved in d (d ≥ 0) sub-queries eventually included in the ConditionList. In worst
case, each join list concerns all foreign key association in FK leading to a cost
complexity O(Nw+1). Moreover, the ordering of these values requires O(N lg N)
when an optimal algorithm is used to sort the values. Finally, the equal-frequency
discretization requires a O(N) cost complexity. Since M is the maximum number
of residuals occurring in Gt, for each of the M × (

√
N − 1) thresholds, Mr-SMOTI

�nds the best straight-line regression at both children, which has a complexity of
M ×Nw+1 in the worst case. Hence, the add continuous condition re�nement has a
complexity O(M × (Nw+1 +N log N +N)+M × (

√
N −1)(M ×Nw+1)). Similarly,

for discrete case, the worst case complexity is O(M × (Nw+1 + k2)) where k is the
maximum number of distinct values of a discrete variable. The selection of the best
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discrete splitting test has a complexity O(M × (Nw+1) + M × k2 × (M ×Nw+1)).
Therefore, �nding the best add condition re�nement (either continuous or discrete)
has a cost complexity O(M×(Nw+1 +N log N +N)+M×(

√
N−1)(M×Nw+1)+

M × (Nw+1) + M × k2 × (M ×Nw+1)), and under the reasonable assumption that
k2 ≤ N (i.e. the number of distinct values of the a discrete variable is less then the
number of cases) and

√
N ≤ N , the worst case complexity is O(M2×Nw+2). Con-

versely, an �add present arc and open node� re�nement of Gt instantiates a foreign
key association in FK that is not yet included in an arc of Gt already connecting
a pair of nodes of Gt.NO. In worst case, the selection of best �add present arc and
open node� re�nement has a cost complexity O(w ×M ×Nw+1) Therefore, under
the reasonable assumption that w ≤ M × N , �nding the best splitting node (by
either �add condition� re�nement or �add present arc and open node� re�nement)
has a worst case complexity O(M2 ×Nw+2).

The selection of the best regression re�nement GtR requires the computation,
for each of the M residuals (worst case), of M straight-line regressions (one for
the regression node plus M − 1 to remove the e�ect of the regressed variable) and
the updating of residuals in each ni.R for ni ∈ Gt.NO. This takes time O(M2 ×
(NW+1 + N)), since the complexity of the computation of a generic straight-line
regression between X1 and X2 depends on extracting X1 and X2 values that is linear
in NW+1 and computing both intercept and slope that is linear in N . Moreover,
for each straight-line regression, a splitting test is required, which has a worst case
complexity of O(M2 ×Nw+2). Therefore, the selection of the best regression step
has a complexity O(M2 ×NW+1 + M3 ×Nw+2), that is, O(M3 ×Nw+2).

The above results lead to an O(M3 × Nw+2) worst case complexity for the
selection of any node (splitting or regression).

5.4 Conclusions
In this chapter we have presented a novel multi-relational TDIMT method, namely
Mr-SMOTI, that upgrades SMOTI algorithm to multi-relational representations.
Mr-SMOTI has been implemented as a module of the system MURENA (MUlti-
RElatioanl ANAlizer)) that tightly couples an Oracler 9i relational database. Con-
sequently, it is able to exploit information about relational data model embedded in
the database schema (relational data model) in order to both guide the tree growing
and reduce the search space of multi-relational patterns.

Mr-SMOTI mines multi-relational model trees by integrating both the predictive
step and splitting partitioning from data stored in multiple tables of a relational
database. This means that, similarly to the propositional SMOTI, Mr-SMOTI is
able to mine model trees with two types of internal nodes: regression nodes and
splitting nodes. The regression model at each leaf t is e�ectively built stepwise
by combining the best straight-line regression computed on t with all straight-line
regressions along the path from the root to the current node. This potentially solves
the problem of modeling multi-relational phenomena, where some attributes have
a global e�ect while others have only a local e�ect. Moreover, di�erently from the
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propositional case, patterns associated with each tree node are e�ectively multi-
relational patterns in the sense they may involve multiple attributes from several
tables of the relational data schema.

These multi-relational patterns are expressed in the graphical language of re-
gression selection graphs which are extensions of the classical selection graphs
already proposed to represent the multi-relational patterns associated with both
splitting nodes and leaves of a multi-relational decision trees. Both splitting and
regression re�nements of regression selection graphs have been formally introduced
such that Mr-SMOTI tree growing can be equivalently expressed in terms of split-
ting/regression re�ning the regression selection graph associated with the current
node under analysis. Each regression selection graph is easily translated into SQL,
or equivalently into �rst order logic expressions such that the entire tree-based re-
gression model can be expressed as a set of SQL queries stored in XML format.
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SELECT n0.Id, AVG (5*n0.Sale-0.5+0.1*(n1.Pieces+2.5*n0.Sale+3.2)-2)

FROM Customer n0, Order  n1

WHERE n0.Id=n1.Client AND n1.Pieces+2.5*n0.Sale+3.2£2071

GROUP BY n0.Id
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Figure 5.13: Representation in form of SQL query of the (multi-)relational multiple regression
function at leaf node of an hypothetical model tree stepwise built by Mr-SMOTI on an instance
of CustomerDB.



Chapter 6

Applications

Multi-relational regression has several applications in social sciences, physical and
biological sciences, business and technologies as well as humanities. In this chapter,
we present three real-world applications of multi-relational regression. The �rst one
involves the analysis of geo-referenced census data provided by United Kingdom
(UK) 1991 census to investigate the migration phenomenon in Stockport enumer-
ation districts (EDs). The last two applications are related to bioinformatics and
concern the quantitative interpretation of structure-activity relationships of chemi-
cal compounds (QSARs) in two multi-relational datasets, namely Mutagenesis and
Biodegradability. Mutagenesis concerns the prediction of molecule mutagenic activ-
ity while Biodegradability involves the prediction of biodegradability in an aqueous
environment under aerobic conditions.

For each application, units of analysis O are �nally stored in multiple tables of a
relational database D that is analyzed by means of a 10-fold cross-validation. This
means that D is �rstly divided into ten blocks {D1, . . . , D10} that is, the target
table in D is �rst divided into ten blocks of near-equal size and distribution of target
values, and then, for every block, a subset of target relevant tuples in tables of D

foreign key path associated with tuples in the target table block are extracted. In
this way, ten databases are created. Mr-SMOTI is trained on nine databases and
tested on the hold-out database.

The predictive accuracy of the method is evaluated on the basis of the average
square radix mean square error (Avg.RMSE ) computed as follows:

Avg.RMSE =
1
10

∑

Di∈10−CV (D)

√
1

#Di

∑

j=1,...,#Di

(yj − ŷj)
2 (6.1)

where #Di is the number of units of analysis (multi-relational individuals) in Di (i.e.
number of target units of observation stored as single-tuples in the corresponding
target table T in Di), and ŷj is the value predicted for the j-th testing individual of
Di by the regression model built on D\Di . Obviously, for each fold Di, a testing
individual oj ∈ Di is described according to the same relational data model of D

(i.e. a single tuple in the target table of Di, and zero, one or more tuples in foreign
key path associated target relevant tables).
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The complexity of learned regression models is evaluated according to both the
average number leaves and the average number of regression nodes.

For each application, we analyze results obtained with the use of both Mr-
SMOTI and TILDE-RT on the multi-relational representation of data and compare
these methods with some propositional TDIMT methods that is SMOTI and M5'.
The empirical comparison with S-CART that is the other multi-relational TDIMT
system able to label leaves with multiple functions was not possible since the system
is not publicly available.

Propositional regression methods are applied to two di�erent attribute-value
data representation derived by transforming each problem from a multi-relational
setting to a propositional one. The �rst transformation (P1) creates a single table
by performing some left outer join operations1 that include all attributes forming
the schema of the target table and derive remaining attributes from the target rel-
evant tables which are foreign key path associated with the target table. This data
transformation may cause a natural change of the units of analysis since a single
multi-relational individual is transformed into one or more attribute-value individu-
als in presence of one-to-many associations between tables in question. Conversely,
the second attribute-value representation (P2) is derived by properly proposition-
alizing the multi-relational dataset. The propositionalization is here intended as
the process of transforming a multi-relational dataset, containing relational indi-
viduals, into a propositional dataset with derived attribute-value features, describ-
ing the structural properties of individuals. The process can thus be thought as
summarizing data stored in multiple table containing one tuple for each individ-
ual [KHS01]. The traditional way to summarize each relationship in statistics and
OLAP is through aggregates which are based on histograms (e.g. count, sum, min,
max and avg). In this context, we extend the schema of target table with aggregated
information found in the target relevant tables which are foreign key path associated
with target table. Continuous attributes are aggregated by average while discrete
attributes are aggregated by mode.

For pairwise comparison of methods, the non-parametric Wilcoxon two-sample
paired signed rank test is used, since the number of folds (or independent trials)
is relatively low and does not justify the application of parametric tests, such as
the t-test. In all experiments reported in this empirical study, the signi�cance level
used in the test is set at 0.05.

The thresholds for stopping criteria are �xed as follows: the minimum number of
individuals falling in each internal node must be greater than the square root of the
number of individuals in the entire training set, while the coe�cient of determination
R in each internal node must be below 0.80.

6.1 Applications to geo-referenced census data
One of the application domain that bene�ts from multi-relational setting for regres-
sion is regression in spatial databases where the unit of representation is spatial

1Left outer join operation includes all of the tuples from the �rst (left) of two tables, even if
there are no matching values for tuples in the second (right) table.
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object, i.e. an entity having an associated value (attribute) of a spatial data type
(point, line or polygon in 2D), a-spatial properties as well as space-depending at-
tribute characteristics [Mar99]. Both spatial objects and space-depending attributes
are associated with location in space in which they exist or have constant values
respectively. It is worthwhile to emphasize that space-depending attributes are char-
acteristics of the embedding space and indirectly become properties of the spatial
objects via their location in space.

Example 6.1 A land parcel has the vegetation rate (i.e. percentage of soil covered
by vegetation) as attribute. While space-depending attribute such as vegetation rate
exists over the space, spatial objects such as land parcels exist in certain locations
and inherit those values of attributes referring to their exact location. So, although
some applications may view the vegetation rate as a property of the land parcel, it
is clear that (i) the attribute vegetation is de�ned whether or not the land parcel
boundary exists at that location space, and (ii) when the land parcel changes shape,
the attribute vegetation rate inherits new values from the new location.
¨

The location of spatial objects in a space de�nes implicitly spatial relationships
of di�erent nature, such as geometrical (e.g. distance), directional (e.g. north of)
and topological (e.g. adjacent, inside or disjoint) relationships.

In the last two decades spatial data have attracted a great deal of attention.
This is due to the rapidly expanding amount of spatial data gathered by collec-
tion tools, such as satellite systems or remote sensing systems which have paved
the way for advances in spatial data structures [Güt94], spatial reasoning [Ege91]
and computational geometry [PS85] to serve multiple tasks including storage and
sophisticated treatment of real-world geometry in a spatial database.

An important application area where spatial database is emerged as central is
o�ered by urban planning where advances in geo-referencing have caused a growing
demand for more powerful exploratory spatial data analysis to acquire the neces-
sary predictive or descriptive knowledge by analyzing jointly socio-economic data
and topographic maps both stored in spatial databases. This has been the prac-
tice in urban planning environments for centuries. For instance, population and
economic census data overlapped to geographic data can be the key indicator of
level of deprivation, thus supporting a good public policy. In these studies, geo-
referencing has enabled the spatial representation of socio-economic phenomena as
spatial objects. In UK for instance the geo-referencing units for population census
data are the areal objects ED (enumeration district), ward, district, and county, of
which ED is the smallest unit for which data is published.

These advances in geo-referencing have provided an added impetus to the devel-
opment of GISs (Geographical Information Systems) which are increasingly used to
store, manipulate and analyze physical, social and economic data of a geographic
area in order to provide the information necessary for e�ective decision-making in
urban planning [HK89]. As a toolbox, a GIS allows planners to perform spatial
analysis using geo-processing functions such as map overlay or connectivity mea-
surements. Yet GISs do not adequately support the spatial decision process because
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they lack of appropriate modeling capabilities [Den91] [Kee98]. In this case, spatial
data mining adds some data analysis capabilities to GISs to assist the work of pub-
lic and private planners in knowledge-intensive activities such as urban planning
[MEL+03].

In this section, we strike the right balance between fundamental concepts of
spatial databases and special requirements of spatial data mining. In particular,
we focus on regression that is a fundamental task in spatial data mining, where
the goal is to mine a spatial regression model on the basis of the interaction of
two or more spatially-referenced objects or space-dependent attributes, according
to a particular spacing or set of arrangements. Finally, we discuss an application
of multi-relational regression to some real-world geo-referenced census data from
Stockport area.

6.1.1 Spatial databases
A spatial database is a full-�edged database system with additional capabilities
for handling both spatial data types in its data model and spatial query language
and supporting them in their implementation by providing at least spatial indexing
and e�cient algorithms for spatial join [RSV02]. These spatial requirements justify
the need of integrating the representation and sophisticated treatment of real-world
geometry with traditional data at the logical level and providing an e�cient support
to model, store and query spatial data at the physical level.

It is clear that this spatial data treatment cannot be addressed with a tradi-
tional relational data model since the underlying data representation, the query
language and access methods are designed to deal with simple types such as integer
and string. Really, information concerning a spatial object should be spread over
many relations and many join operations have to be performed to recreate a typi-
cal complex, structured spatial object. Furthermore, no appropriate indexing and
retrieval operations for spatial data are provided.

Conversely, the object-relational (OR) paradigm appears to be perfectly suited
to manage spatial data that requires complex structures to describe the geometry
of spatial objects and model the relationships among them [SM96]. The geometry
attribute is a structured data type de�ned to represent a geometry in terms of
both Euclidean spatial dimensions (e.g. set of x-y coordinates) and additional data
dimensions including depth, time and elevation: di�erent types of spatial objects
(e.g. wards or roads) are modeled in layers located in single relations, sharing a
common coordinate system. Each layer can have its own set of a-spatial attributes
A1, . . . , An, named thematic data, and at most one geometry attribute S. Thereby,
an object-relational spatial database D is a set of relations T1, . . . , Tn, where each
relation Ti ∈ D has either a geometry attribute Si or an attribute Ai, such that Ti

can be linked (joined) to a relation Tj ∈ D having a geometry attribute Sj . Points,
lines and/or polygons are stored in a single geometry �eld within a relation. A
spatial query combines spatial information with attribute data describing objects
located in the space and include spatial join operators which are de�ned to query
multiple layers on the base of geometrical, directional or topological relationships.
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To increase the e�ciency of spatial join operations, spatial indexes, such as KD-tree
and/or Quadtree [Sam90], can be built on geometry attributes.

In alternative, the object-oriented (OO) paradigm may be suited in modeling
spatial objects and managing huge quantities of spatial data. For instance, in
[MEL+03], Malerba and his colleagues present a protypical GIS named INGENS
(Inductive Geographic Information System) that couples a collection of maps stored
in an object-oriented DBMS (ObjectStore 5.0 by Object Design, Inc.), so that full
use is made of a well-developed, technologically mature a-spatial DBMS. Each map
is treated as a grid of cells with respect to a hybrid tessellation-topological model
that follows the usual topographic practice of superimposing a regular grid on a
map to simplify the localization process: a map is divided into square cells of the
same size and one-to-one associations (e.g. left, right, up, down, ...) among cells
allow map-reading from a cell to one of its neighbors in the map. For each cell both
the raster image in GIF format is kept in addition to its vector coordinates and
component spatial objects which are described according to two structural categories
of objects: geometric and thematic. The former corresponds to a physical hierarchy,
while the latter corresponds to a logical hierarchy. The physical hierarchy describes
the spatial objects according to the most appropriate geometric entity, that is: point,
line or polygon. In di�erent maps of the same geographical area, the same object
may have di�erent physical representations. For instance, a road can be represented
as a line on a small-scale map, or as a region on a large-scale map. Points are
described by their spatial coordinates, while (broken) lines are characterized by the
list of line vertexes and regions are represented by their boundary lines. Similarly,
the logical hierarchy describes the nature of each spatial object. For instance, an
administrative boundary must be put into one of the following classes: city, province,
county or state. Both physical and logical hierarchies may be easily modeled in
OO data model by means of features like polymorphisms and inheritance. The
limitation is that neither spatial indexing nor spatial join operation are embedded
in classical OODBMS, but the object-oriented technology facilitates the extension
of the OODBMS to accommodate the management of spatial objects. Indeed,
INGENS architecture includes the Map Descriptor module that is the application
enabler responsible for the automated generation of �rst-order logic descriptions
of spatial and a-spatial properties or relationships involving geographical objects
stored in the coupled OO database [LML+02].

6.1.2 A spatial data mining framework
Spatial data mining investigates how implicit knowledge, spatial relationships, or
other patterns not explicitly stored in spatial data can be extracted [Kop99]. A
spatial pattern is a pattern showing the interaction of two or more spatially-referred
objects or space-dependent attributes, according to a particular spacing or set of
arrangements [DeM00]. Although many data mining tools deal at least implicitly,
with spatial data, they essentially ignore the spatial dimension of data treating
them as non-spatial.

Spatial data mining demands for the development of speci�c techniques which,
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di�erently from traditional data mining techniques, take this spatial dimension of
the data into account when exploring the pattern space. This leads to one of the
main degree of complexity in mining spatial data that is the implicit de�nition
of spatial properties and relationships due to the geometrical representation and
positioning of spatial objects in the space. Modeling these spatial relationships is a
key challenge both in descriptive tasks (e.g. association rules discovery) [MELA02]
and predictive tasks (e.g. classi�cation and regression) [SSV+02] that arise in spatial
domains.

The problem of regression in spatial domains has been already investigated by
some researchers [KVCS96] [PB97] that exploit principles of spatial statistics [Cre93]
to perform regression on spatial objects belonging to a single layer (e.g. land parcel
layer) by taking into account the spatial correlation among them (e.g. land parcels
forming the neighborhood of a speci�c parcel). In the special case a regression model
is built on area referenced data, the target variable is associated with an area. The
units of observation for an area can be descriptive of one or more primary units,
possibly of di�erent type, within the area. In addition to attributes that relate
to primary units or areas, there are attributes that refer to relationships between
primary units (e.g. contact frequencies between households) and between areal
units (e.g., migration rates). This relational information may a�ect the spatial
variation and it must be taken into account in modeling phase. For instance, when
the target variable Yi measures the proportion of people su�ering from respiratory
disease in area i and if Xki measures levels of atmospheric pollution in area i, the
Yi may not be only a function of Xki but also levels of Xk in areas neighboring
i. Such de�nition re�ects both the reinforcing e�ects of extensive tracts of high
(low) levels of pollution but also the fact that people move across areas over the
course of time and their exposure to this risk factor is not only a function of their
local environment. In this case, we are interested in mining a regression model with
spatially lagged explanatory variables [Hai90].

Whittle [Whi54] and Mead [Mea67] have argued that a further aspect of spatial
regression is that the e�ect of target variable at i site may operate as an explanatory
(predictor) variable at another site. This leads to build a spatial regression model
with spatially lagged target variable [Hai90] that can be used to describe the spatial
correlation among the values assumed by the target variable in a speci�c site and
its neighborhood. For instance, when the target variable Yi measures the level of
atmospheric pollution in an area, its value may be in�uenced by the spatial variation
of level of atmospheric pollution in the neighborhood.

In general, when the spatial heterogeneity of response is anticipated, data analyst
may allow either the constant or one (or more) of the other regression parameters to
vary spatially, thanks to the introduction of dummy variables identifying di�erent
sub-areas of area under analysis. This comprises the bene�ts of automated methods
that look for regional segmentation (e.g. tree structured models) according to spatial
heterogeneity and build a spatial regression model for each segment, i.e., piecewise
spatial regression model.

All these issues are clearly coped by Mr-SMOTI that fully exploits the multi-
relational approach to build regression model in form of trees including spatially
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lagged explanatory (eventually target) variables. In this case, multi-relational ap-
proach perfectly �ts the need of representing spatial objects, spatial relationships
among them as well as spatial dependent attributes and exploits the fact that the
e�ect of an explanatory variable at any target spatial object is not limited to the
properties of the speci�ed object during tree induction step. Moreover, di�erently
from classical spatial data mining methods that underlie single table assumption,
Mr-SMOTI is able to process units of observations collected for spatial objects be-
longing not necessarily to the same layer (e.g. EDs, road crossing EDs, urban areas
overlapping EDs, etc.).

As a consequence discovered patterns are model trees with regression and split-
ting nodes that may involve attributes from several spatially related layers. Splitting
nodes contribute to segment area under analysis according to spatial heterogeneity
in spatial structure of units of analysis. Regression nodes allow to detect spatial
and a-spatial factors which have either a global or local e�ect for prediction.

Since Mr-SMOTI is tight-coupled with a relational database, this requires a com-
plex data transformation to make spatial relationships explicitly stored in tables of
a relational database. This requirement has been already coped for spatial asso-
ciation rules discovery tasks in [ACL+03], where a spatial data mining framework
named ARES (Spatial Association Rules Extractor) is described. ARES couples an
object-relational spatial database (Oracler Spatial Cartridge 9i) and integrates an
algorithm named SPADA (Spatial Pattern Discovery Algorithm) [LM04] to mine
multi-level spatial association rules involving relationships among spatial objects
stored in a spatial database. In this case, the access to geo-referenced data for mak-
ing explicit spatial properties and/or relationships among them is accomplished
through a middle layer including two modules namely RUDE (Relative Unsuper-
vised DiscrEtization) and FEATEX (FEATure EXtraction). RUDE is designed for
relative unsupervised discretization [LW00] of numerical features, while FEATEX
is implemented as a PL/SQL Oracle package of procedures and functions, each of
which computes a di�erent feature [ACL+03]. Hence, FEATEX functions can be
used in SQL queries (see Example 6.2). According to their nature, features extracted
by FEATEX can be distinguished as geometrical, directional and topological fea-
tures [LML+02]. Geometrical features (e.g. area, length) are based on principles of
Euclidean geometry, directional features (e.g. north, south, north-east, north-west)
regard relative spatial orientation in 2D, while topological features (e.g. crosses, on
top) are relations preserving themselves under topological transformations such as
translation, rotation, and scaling. In addition, hybrid features (e.g. roughly paral-
lel), which merge properties of two or more feature categories, can be also extracted
by FEATEX.

Example 6.2 The query:

SELECT FEATEX.RELATE(X.GEOM, Y.GEOM) from roads X, parks Y

analyzes the geometries of each pair of spatial objects in the layers of interest (roads
and parks) and returns the name of the topological binary relationship (e.g. disjoint,
crosses) between them. Topological relationships are computed according to the 9-
intersection model [Ege91] that is based on the consideration that for each spatial
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object X it is possible to distinguish three parts: its interior (AO), its boundary
(δA) and its exterior (A−). Therefore, binary topological relationships between two
objects can be described in terms of part intersections.The 9-intersection model is
concisely represented as a 3× 3 matrix:

R(X,Y ) =




X0 ∩X0 X0 ∩ ∂Y X0 ∩ Y −

∂X ∩ Y 0 ∂X ∩ ∂Y ∂X ∩ Y −

X− ∩ Y 0 X− ∩ ∂Y X− ∩ Y −




Not all the matrix con�gurations correspond to physically feasible relations between
two spatial objects.
¨

In [CAM04], Ceci and his colleagues focus on spatial classi�cation tasks and
present an extension of ARES framework that includes a spatial associative classi�er
method based on a multi-relational approach that is able to take spatial relation-
ships into account. Classi�cation is driven from spatial association rules and it is
performed by Mr-SBC (Multi-Relational Structural Bayesian Classi�er) [CAM03b]
that is an extension of naïve Bayes classi�er [DP97] to multi-relational setting. Sim-
ilarly to Mr-SMOTI, Mr-SBC is currently implemented as a module of the system
MURENA and therefore tightly-couples an Oracler 9i relational database. This
means that features of spatial objects are extracted by FEATEX and stored into
relational tables. Foreign key associations between tables are then adequately mod-
eled.

Following this suggestion, we integrate Mr-SMOTI into this spatial data mining
framework (see Figure 6.1) to support data miners in regression tasks occurring in
spatial domains when spatial relationships and properties are explicitly computed
by FEATEX and stored into multiple relational tables.

It is noteworthy that, spatial regression performed within this framework im-
proves classical spatial regression methods since it makes data miners able to detect
not only spatial correlation among areal units but also among spatial objects of
di�erent type (e.g. the proportion of people su�ering from respiratory diseases in
a site depends on the high/low level of pollution of sites where people daily move
but it may also depends on the tra�c value of main roads crossing the area).

6.1.3 Mining Stockport geo-referenced census data
In this section, we present a real-world application concerning the mining of a
multi-relational regression model for a quantitative interpretation of geo-referenced
census data. We consider both 1991 census and digital map data provided in the
context of the European project SPIN! (Spatial Mining for Data of Public Interest)
[May00]. This data concerns Stockport, one of the ten metropolitan districts in
Greater Manchester, UK which is divided into twenty-two wards for a total of 589
census EDs. Spatial analysis is enabled by the availability of vectorized boundaries
for 578 Stockport EDs as well as by other Ordnance Survey digital maps of UK,
where several interesting layers are found, namely shopping areas, housing areas,
and employment areas (see Figure 6.2). Census data collected on 1991 is available
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Figure 6.1: A spatial data mining framework.

at ED level and provides socio-economic statistics (e.g. number of migrants, number
of communal establishments, etc).

Both census and map data are stored in an Oracler Spatial Cartridge 9i database
according to an object-relational data model.

The application presented in this study investigates the number of migrants
in Stockport EDs according to socio-economic factors represented in census data
as well as geographical factors (spatial layers) represented in topographic maps.
This is a spatial regression problem where units of analysis involve several units
of observation representing spatial objects belonging to several geographical layers
and spatial (topological) relationships among them. Target objects of analysis are
Stockport EDs. For each target ED, we determine by FEATEX relate function the
list of adjacent EDs in Stockport map forming the neighborhood of the ED as well
as the list of shopping areas, housing areas and employment areas whose boundary
(partially) overlaps the ED in question. In this way, units of analysis are obtained
by making topological relationships explicit and then they are stored in multiple
tables of an Oracler 9i relational database (see Figure 6.3). We extract census
data concerning the number of migrants (i.e. the target attribute), the number of
migrants moving within the ward and the number of communal establishments in
each ED. Census data also contains information about the number of employees
extracted on a 10% sample of ED population. Finally, for each pair formed by a
shopping (housing or region) area and overlapped ED, we compute the portion of
ED that is covered by the overlapping shopping (housing or region) area.

We de�ne three experimental setting. The �rst one (BK1) is obtained by ignoring
data on neighboring EDs. This is an example of intra-ED analysis where spatial
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Figure 6.2: Geographic layers extracted from the topographic map of Stockport.

features concern geographic objects enclosed within the boundaries of an ED, while
a-spatial features are aggregated census data concerning a single ED. Intra-ED
analysis is generally adopted in the characterization of a site (residential, industrial
area, and so on) for land allocation purposes. The second setting (BK2) is obtained
by processing neighboring census data with exception of number of migrants. This
is an inter-ED analysis, where topological relationships (e.g. adjacent) between
two regions are used to express spatial dependencies between EDs in addition to
topological relationships (e.g. overlap) between EDs and shopping areas, housing
areas or employment areas. The third setting (BK3) is obtained by extending BK2

data with number migrants on EDs forming the neighborhood of each target ED. In
this case we are interested in modeling spatial migration phenomenon in Stockport
by also exploiting the self-correlation on spatially lagged target variable over the
neighborhood of each ED. This corresponds with formulating the hypothesis that a
systematic spatial variation of number of migrants in Stockport EDs may arise not
only from the e�ect of one or more explanatory (predictor) variables over the target
ED, neighboring EDs or shopping (housing or employment) areas overlapping the
ED in question but it is also self-induced in the neighborhood. This auto-correlation
can be exploited both in the automated spatial segmentation (partitioning step) of
Stockport EDs as well as in forming regression function (regression step) to predict
number of migrants in each segment.

Each node of the tree mined by Mr-SMOTI in each BKi setting is translated
into an SQL query and stored in XML format as shown in Figure 6.4. SQL queries
associated with regression selection graphs corresponding to leaves of the tree have
multiple linear functions associated with them. Functions at leaves may involve
variables from two or more spatially-referenced objects. They are built stepwise,
therefore the e�ect of some variable that is introduced at higher level of tree is
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Figure 6.3: Multi-relational representation of geo-referenced census data extracted from Stockport
data.

shared by several functions associated with di�erent leaves. This allows us to inter-
pret discovered patterns in order to identify variables which have a global or local
in�uence on the trend of phenomenon to be modeled also according to a particular
set of spatial arrangements.

Each target ED satis�es exactly one query associated with a leaf of mined tree.
The complementary nature of di�erent branches of a splitting node ensures that
a given ED instance is not assigned con�icting prediction. Therefore, the set of
queries associated with leaves may be run on a new database structured according
to the same relational model of Stockport database in order to predict the unknown
values for the number of migrants.

At BK1 level, Mr-SMOTI mines a multi-relation model tree in 317 secs parti-
tioning Stockport data into 51 leaves. The tree is built by fully exploiting spatial
relationships (i.e. overlap) between EDs and shopping areas (housing areas or em-
ployment areas). The model tree is equivalently expressed by the set of mutually
exclusive SQL (or Prolog) queries associated with each leaf of the output tree struc-
ture. An example of extracted regression rule is the following:

SELECT T0.ZONE_ID T0ZONE_ID,
AVG((16.06+4.22*T0.EMPLOYED)+(1.4266667+-58.791576*
(T1.AREARATIO -(0.42323083+-0.14083165*T0.EMPLOYED))))
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Figure 6.4: A portion of the model tree built by Mr-SMOTI to predict the number of migrants
from Stockport data at BK1 level.

FROM ED T0, ED_EMPLOYMENT_REGION T1
WHERE T0.ZONE_ID=T1.TAG AND T0.ESTABLISHMENT IN (0) AND

T0.EMPLOYED <= 3.0 AND T0.EMPLOYED > 1.0.
GROUP BY T0.ZONE_ID

The variable T0.EMPLOYED has here a global e�ect since it is estimated by
considering a set of examples that includes as a proper set the training examples
e�ectively falling in the leaf node. This means that the e�ect of a straight-line
regression on T0.EMPLOYED is shared by all leaves of the sub-tree rooted in the
corresponding regression node. In this special case, straight-line regression on the
number of employees on 10% sample population of target ED (T0.EMPLOYED) is
estimated on the entire set of target EDs (T0) having both no communal establish-
ments (T0.ESTABLISHMENT IN (0)) and number of employees in the 10% sample
population that is greater than one but less or equal to three (T0.EMPLOYED<=
3.0 AND T0.EMPLOYED>1.0) independently by the presence or absence of some
employment area overlapping the target ED in question. In contrast, straight-
line regression on the residual of the percentage of ED area overlapped by a sin-
gle emplyment area (T1.AREARATIO-0.42323083+0.14083165*T0.EMPLOYED)
is evaluated on a proper subset of the target EDs used to estimate the straigh-line
regression on T0.EMPLOYED that is the EDs (partially) overlapped by at least
one employment area.

When Stockport database is translated into a set of Prolog facts, the regression
rule above can be equivalently expressed as a Prolog program in the form:
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query(X,Y):-�ndall(ZONE_ID,ed(ZONE_ID,_,_,_,_),L),predictMigrants(L,Y).

predictMigrants([ ],[ ]).
predictMigrants([H|T],W):- migrants(H,M), W=[[H,M]|V], predictMigrants(T,V).
predictMigrants([H|T],v):- predictMigrants(T,V).

migrants(ZONE_ID, MIGRANTS) :- �ndall([EMPLOYED, AREARATIO,
MIGRANTS], rule(ZONE_ID,MIGRINWARD,ESTABLISHMENT,
EMPLOYED,MIGRANTS,AREARATIO), [ ]),!, fail.

migrants(ZONE_ID, MIGRANTS) :- �ndall([EMPLOYED, AREARATIO,
MIGRANTS], rule(ZONE_ID, MIGRINWARD, ESTABLISHMENT,
EMPLOYED, MIGRANTS, AREARATIO), EDs), predict(EDs, MIGRANTS),
!.

rule(X, MIGRINWARD, ESTABLISHMENT, EMPLOYED, MIGRANTS,
AREARATIO):- ed(X, MIGRINWARD, ESTABLISHMENT, EMPLOYED,
MIGRANTS), ESTABLISHMENT=0, EMPLOYED =< 3,
EMPLOYED > 1, ed_employment_region(X, SDO_GID,
AREARATIO).

predict(EDs,MIGRANTS):- length(EDs, L), reg_function(EDs, V),
MIGRANTS is V/L.

reg_function([ ], 0).
reg_function([[EMPLOYED, AREARATIO, MIGRANTS]|T],V):-

reg_function(T, W), V is W+41.29-4.16*EMPLOYED-
58.79*AREARATIO.

At BK2 level, Mr-SMOTI mines a multi-relation model tree in 17120 secs par-
titioning Stockport data into 54 leaves. This con�rms that processing census data
in the neighborhood strongly increases the time-complexity of mining process but
not the size-complexity of mined tree expressed as number of leaves.

An example of regression rule extracted is the following:

SELECT T0.ZONE_ID T0ZONE_ID ,
AVG((14.660273+5.168677*T0.EMPLOYED )+ (6.724149+

1.4513543*(T1.EMPLOYED -(7.7872725+-0.0508446*
T0.EMPLOYED )))+ (-8.056492+-1.8275621*((T1.MIGRINWARD
-(11.272183+-1.2915368*T0.EMPLOYED ))-(-4.5321145+
0.23710525*(T1.EMPLOYED -(7.7872725+-0.0508446*
T0.EMPLOYED )))))) T0MIGRANTS ,

FROM ED T0, ED_NEIGHBOUR T1
WHERE T0.ZONE_ID=T1.TAG AND

T0.ESTABLISHMENT IN (0) AND
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T0.EMPLOYED <= 3.0 AND
(T0.MIGRINWARD -(2.6219103+1.1807395*T0.EMPLOYED ))<=

11.016611 AND
((T0.MIGRINWARD -(2.6219103+1.1807395*T0.EMPLOYED ))-

(-2.5749257+-0.4340402*(T1.EMPLOYED -(7.7872725+-0.0508446*
T0.EMPLOYED ))))<= 1.8331742 AND

(T1.MIGRINWARD -(11.272183+-1.2915368*T0.EMPLOYED ))<=
-0.6891094 AND

(T1.EMPLOYED -(7.7872725+-0.0508446*T0.EMPLOYED ))<=
-2.685583 AND

((T1.MIGRINWARD -(11.272183+-1.2915368*T0.EMPLOYED ))-
(-4.5321145+0.23710525*(T1.EMPLOYED -(7.7872725+-0.0508446*
T0.EMPLOYED ))))<= 1.9208084

GROUP BY T0.ZONE_ID

This regression rule identi�es Stockport EDs where census data in neighbor-
hood seems to a�ect the prediction of number of migrants. The prediction function
in SELECT clause is equivalent to �AVG(11.06+ 2.91*T0.EMPLOYED+1.86*T1.
EMPLOYED-1.82*T1.MIGRINWARD)�. This multiple function is obtained by com-
bining the e�ect of three straight-line regression: the �rst straight-line regression
involves the number of employees on 10% sample population of each target ED
while the latter two regressions involves the number of 10% sample employees and
the number of migrants within the ward of some neighboring EDs respectively. In
this case T0.EMPLOYED has a global e�ect. Indeed, looking at corresponding
output tree, straight-line regression on T0.EMPLOYED is estimated on the set of
Stockport EDs in T0 having no communal establishment and number of employees
on 10% sample population that is greater than 3 (T0.ESTABLISHMENT IN (0)
AND T0.EMPLOYED <= 3.0) without considering EDs forming the neighborhood.
Straight-line regression on T1.EMPLOYED is then performed on a subset of the
EDs already mined to estimate regression on T0.EMPLOYED. This subset corre-
sponds to Stockport EDs in T0 having both �T0.ESTABLISHMENT IN (0) AND
T0.EMPLOYED <= 3.0 AND (T0.MIGRINWARD -(2.6219103+1.1807395*T0.
EMPLOYED ))<=11.016611� and one or more neighboring EDs in T1 with �T1.
MIGRINWARD-(11.272183+-1.2915368*T0. EMPLOYED))<=-0.6891094 AND (
T1.EMPLOYED -(7.7872725+-0.0508446*T0.EMPLOYED ))<= -2.685583�. Fi-
nally, straight-line regression on the residual of T1.MIGRINWARD has an e�ect
that is local to the portion of training data actually falling in the corresponding leaf.
It is noteworthy that all continuous splitting tests following a regression step are
oblique splits (e.g. T0.MIGRINWARD -(2.6219103+1.1807395* T0. EMPLOYED
))<= 11.016611) since they involve continuous residual variables where the e�ect
of performed regressions has been removed.

At BK3 level, Mr-SMOTI mines a multi-relation model tree in 18425 secs parti-
tioning Stockport data into 49 leaves. An example of regression rule discovered by
Mr-SMOTI is the following:
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SELECT T0.ZONE_ID T0ZONE_ID ,
AVG((14.660273+5.168677*T0.EMPLOYED)+

(-1.2258624+-0.0458495*(T1.MIGRANTS -(42.826923+-3.1153846*
T0.EMPLOYED)))) T0MIGRANTS

FROM NEIGHBOUR T1, ED T0
WHERE T0.ZONE_ID=T1.TAG AND T0.ESTABLISHMENT IN (0) AND

T0.EMPLOYED <= 3.0 AND
(T1.MIGRINWARD -(11.272183+-1.2915368*T0.EMPLOYED ))
<= -0.6891094 AND
T0.ZONE_ID NOT IN (SELECT T1.TAG FROM NEIGHBOUR T1

(WHERE T1.MIGRINWARD-(11.272183+-1.2915368*
T0.EMPLOYED))<= -0.6891094 AND (T1.EMPLOYED -(7.7872725
-0.050844677*T0.EMPLOYED ))<= -2.685583 ) AND

(T0.MIGRINWARD -(2.6219103+1.1807395*T0.EMPLOYED ))
<= 11.016611

GROUP BY T0.ZONE_ID

This rule models the migration phenomenon on 20 Stockport EDs by exploit-
ing correlation on spatially lagged target variable (i.e. number of migrants) over
the neighborhood of each ED. Regression function in SELECT clause is equivalently
written as �AVG(5.02*T0.EMPLOYED-0.045*T1.MIGRANTS+15.36)�. This func-
tion is obtained stepwise by combining two straight-line regressions. The �rst
straight-line regression concerns the number of employees in the 10% sample pop-
ulation of target EDs (T0.EMPLOYED). Looking at tree, we dicover that slope
(14.660273) and intercept (5.168677) of this straight-line regression are estimated
on the set of 66 target EDs (T0) having no communal establishment and low num-
ber of employees on 10% sample population (T0.ESTABLISHMENT in (0) AND
T0.EMPLOYED<=3). Regression on T0.EMPLOYED has clearly a global e�ect
and its contribution is equally shared by all regression functions associated with
leaves of the sub-tree rooted in the corresponding regression node. The second
straigth-line regression concerns the residual variable associated with number of
migrants (T1.MIGRANTS-42.826923+3.1153846*T0.EMPLOYED) in neighbour-
ing EDs (T1) having the residual value of number of migrants within ward less
than -0.6891094 (T1.MIGRINWARD-11.272183+1.2915368*T0.EMPLOYED<= -
0.6891094). It is computed on a proper subset of the EDs previously mined to
estimate the straight-line regression involving the number of sample employees in
target ED as predictor variable. This means that number of migrants in neighbour-
hood has only a local e�ect.

Predictive accuracy and size complexity of multi-relational model trees mined
with Mr-SMOTI are estimated according to a 10-fold cross validation of Stockport
data by varying the level BK i. Both accuracy and complexity are compared with
corresponding values obtained with multi-relational model trees mined by TILDE-
RT on Prolog facts representation of same data. We also evaluate predictive accu-
racy and complexity of model trees mined with SMOTI and M5' on attribute-value
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representation of Stockport data obtained according to P1 and P2. All these re-
sults are reported in Table 6.1 while results of the Wilcoxon test on the predictive
accuracy performed by Mr-SMOTI with respect to the other regression methods in
this study are presented in Table 6.2.

Three main conclusions can be drawn from these experimental results. First,
Mr-SMOTI appears to be able to detect both local and global e�ects represented in
(multi-)relational data and it is more accurate than TILDE-RT which approximates
the model at leaf with a simple constant value. Second, Mr-SMOTI is able to ex-
ploit the relational structure of data generally resulting in a better accuracy results
with respect to the propositional method SMOTI. Moreover M5' combined with
the P1 and P2 attribute-value data transformation sometime results in regression
models which have accuracy approximately equivalent to Mr-SMOTI predictive ac-
curacy, although model trees mined with M5' are signi�cantly more complex than
the corresponding (multi-)relational model trees. Third the propositional SMOTI
builds model trees with a greater number of regression nodes than Mr-SMOTI. This
can be explained by the fact that SMOTI transforms splitting nodes in regression
nodes when two lines associated with the children of a splitting node are equal with
respect to a statistical test [MECA04]. In Mr-SMOTI the (multi-)relational struc-
ture of data does not permit performing the statistical test for coincident regression
lines [Wei85], hence more splitting tests should be expected.

Table 6.1: Performance of predicting the number of migrants from Stockport data. Results
of Mr-SMOTI and TILDE-RT are obtained by running the methods on (multi-)relational data,
while results of SMOTI and M5' are obtained by running the methods on the attribute-value
repreresentation of same data obtained according to P1 and P2.
BK Results Multi-relational set-

ting
Propositional setting

P1 P2
Mr-
SMOTI

TILDE-
RT

SMOTI M5' SMOTI M5'

BK1 Avg.MSE 15.39 16.71 18.50 15.24 15.36 21.31
Avg.Leaves 46.5 2.9 48.3 185.3 48.3 178.5
Avg.Regnodes 3.4 - 5.3 - 4.8 -

BK2 Avg.MSE 15.33 16.59 24.50 17.38 16.32 18.75
Avg.Leaves 48.5 2 108.8 939.5 50.7 226.2
Avg.Regnodes 5.3 - 14.4 - 8.6 -

BK3 Avg.MSE 15.436 16.59 22.06 17.38 19.49 16.26
Avg.Leaves 44.4 2 120.8 989.4 48.6 227.1
Avg.Regnodes 7.2 - 14.1 - 9.2 -

6.2 Applications to Bioinformatics
Multi-relational regression has some interesting applications within bioinformatic
domains, where ILP methods have been already applied on drug designing, pre-
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Table 6.2: Mr-SMOTI versus TILDE-RT, SMOTI and M5': results of Wilcoxon rank test on the
accuracy of regression models induced from Stockport data.

BK Method Wilcoxon Test
p W+ W−

BK1

TILDE-RT 0.1055 11 44
P1-SMOTI 0.1309 12 43
P1-M5' 0.9219 26 29
P2-SMOTI 0.0019 0 55
P2-M5' 0.9219 29 26

BK2

TILDE-RT 0.0371 7 48
P1-SMOTI 0.0097 3 52
P1-M5' 0.0136 4 51
P2-SMOTI 0.0644 9 46
P2-M5' 0.4116 19 36

BK3

TILDE-RT 0.01137 4 51
P1-SMOTI 0.03711 7 48
P1-M5' 0.0039 1 54
P2-SMOTI 0.03711 7 48
P2-M5' 0.08398 10 45

dicting mutagenicity and carcinogenicity as well as predicting protein structure and
function including genome scale prediction of protein functional class [D�01]. In this
Section, we discuss two applications in the area of quantitative structure activity re-
lationships (QSARs), namely Mutagenesis and Biodegradability. Both applications
involve molecular databases where the structure of molecules is mined to understand
complex molecular properties (i.e. mutagenecity in nitro-aromatic compounds and
biodegradability activity in chemicals compounds of water).

Graph mining methods are adopted to mine this type of data. They typically de-
rive interesting frequent, patterns and then use these as features to build predictive
models. Several approaches have been suggested [YH02] [DKK03] [IK03] [KD04]
for the task of identifying fragments which can be used to build such models. The
earliest approaches to compute such fragments are based on techniques from ILP
[Deh98] which is here theoretically appealing because of the use of expressive rep-
resentation languages.

This data has been also adopted as ILP benchmark datasets for multi-relational
regression and some results are discussed in [Blo98] [Kra96] [KWPd01].

6.2.1 Experiments on Mutagenesis
Mutagenesis data [SMKS94] consists of structural descriptions of 230 molecules of
aromatic and heteroaromatic nitro compounds. The regression problem here is to
predict the mutagenic activity of these molecules, that is measured by a real number.
Since mutagenecity is the ability to cause DNA to mutate, predicting the mutagenic
activity of molecules is a relevant issue in the understanding and prediction of
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carcinogenesis. In this study, the data to be analyzed are based on results reported
in [DLD+91] where the mutagenic activity of molecules is estimated according to
the Ames test using Styphimurium TA98. The original study of Debnath and his
colleagues recognizes two subsets of data: 188 (regression friendly) molecules for
which linear regression yields good results and 42 molecules that are regression-
unfriendly.

In our experiments, we analyze relational descriptions of the 188 regression
friendly molecules consisting of atoms and their bond connectivities stored in three
di�erent tables of a relational database that is Molecule (target table), Atom and
Bond. According to a recent study on this data [SKM99], we consider three level
of experimental setting for mutagenesis, which can provide richer descriptions of
molecules. The �rst setting (BK1) consists of those data derived with the molecular
modeling package QUANTA. For each molecule it obtains the atoms, bonds, bond
types, atom types, and partial charges on atoms. The second setting (BK2) adds a
boolean attribute identifying compounds with 3 or more benzyl rings (termed indi-
cator variable Ind1) and a boolean attribute identifying a sub-class of compounds
termed acenthryles (termed indicator variable IndA). The third setting (BK3) adds
information on the hydrophobicity of molecules (termed logP) and the energy level
of the lowest unoccupied molecular orbital (termed LUMO). The greater the BKi

(i = 1, 2, 3) the more complex the regression problem with BK1 ⊂ BK2 ⊂ BK3.
By running Mr-SMOTI on the entire set of data stored in an Oracle 9i database,

it builds the output multi-relational model tree in 1653 secs at BK1 level, 1126 secs
at BK2 level and 45 secs at BK3 level. This suggests that at higher levels, namely
BK2 and BK3, we add information that is strongly relevant for the regression task
and permits a more rapidly converge toward the output tree.

Table 6.3: Performance of predicting mutagenesis level from Mutagenesis data: results of Mr-
SMOTI and TILDE-RT are obtained by running the methods on multi-relational data, while results
of SMOTI and M5' are obtained by running the methods on the attribute-value representations
of same data obtained according to P1 and P2.
BK Results Multi-relational set-

ting
Propositional setting

P1 P2
Mr-
SMOTI

TILDE-
RT

SMOTI M5' SMOTI M5'

BK1 Avg.MSE 1.79 1.51 71.55 1.72 3.17 1.61
Avg.Leaves 18.2 9 134.4 654.3 20.3 67.7
Avg.Regnodes 1.50 - 18.2 - 4.9 -

BK2 Avg.MSE 1.14 1.19 8.97 1.28 1.23 1.15
Avg.Leaves 15.4 11.70 137.3 692.7 19.8 67.7
Avg.Regnodes 1.00 - 14.8 - 4.3 -

BK3 Avg.MSE 0.88 1.19 1.39 1.02 1.28 1.03
Avg.Leaves 4.80 14.90 80.9 140.3 15.5 71.4
Avg.Regnodes 2.00 - 17.5 - 8.8 -
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Table 6.4: Mr-SMOTI versus TILDE-RT, SMOTI and M5': results of Wilcoxon rank test on the
accuracy of regression models induced from Mutagenesis data.

BK Method Wilcoxon Test
p W+ W−

BK1

TILDE-RT 0.2324 40 15
P1-SMOTI 0.0371 7 48
P1-M5' 0.6953 32 23
P2-SMOTI 0.8457 25 30
P2-M5' 0.4922 35 20

BK2

TILDE-RT 0.4922 20 35
P1-SMOTI 0.0039 1 54
P1-M5' 0.0371 7 48
P2-SMOTI 0.3750 18 37
P2-M5' 0.9219 26 29

BK3

TILDE-RT 0.0039 1 54
P1-SMOTI 4.0000 4 51
P1-M5' 0.0839 10 45
P2-SMOTI 0.0371 7 48
P2-M5' 0.0839 10 45

Predictive accuracy and complexity of multi-relational model trees built by Mr-
SMOTI are estimated according to a 10-fold cross validation of Mutagenesis data by
varying the level BK i. These results as well as the corresponding results obtained
by running TILDE-RT, SMOTI and M5' are reported in Table 6.3. Results of the
Wilcoxon test on the predictive accuracy performed by Mr-SMOTI with respect to
the other regression methods in this study are presented in Table 6.4.

These results show that at BK1 level, Mr-SMOTI predictive accuracy is statis-
tically equivalent to the accuracy of regression models built by both TILDE-RT
and M5', while it is signi�cantly better than the accuracy performed by SMOTI
in both attribute-value setting (P1 and P2). In addition, except for TILDE-RT,
regression models built by Mr-SMOTI are generally simpler than the corresponding
models built by propositional methods. At BK2 level, results on average square
radix MSE prove that Mr-SMOTI can perform better than TILDE-RT that labels
each leaf of a tree-based predictor with a constant value and the propositional meth-
ods SMOTI and M5' that do not exploit the relational structure of training data.
These conclusions are signi�cantly con�rmed by results collected at BK3 level.

6.2.2 Experiments on Biodegradability
This dataset consists of 328 chemical molecules whose structural description in
terms of atoms and bonds is derived from the chemicals SMILES encodings. The
SMILES notation contains information on the two-dimensional structure of each
molecule. Therefore, an atom-bond representation similar to representation adopted
in experiments to predict mutagenecity is generated with SMILES encoding of a
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chemical molecule. Note that this atom-bond representation is quite di�erent from
the QUANTA-derived representation that comprises atom charges in addition to
atom types and bond type. Conversely, SMILES-derived representation includes
only bond type and atom element. Biodegradability dataset also contains infor-
mation about the number of times some FG bounds occurs in a molecule (e.g. ss-
count(moleculeId, fgName, count)) as well as the number of times certain small sub-
structures occur in a molecule (e.g. p2count(moleculeId, substructureId, count)).

This data structure can be naturally expressed by means of �ve tables of an Ora-
cle 9i relational database that is Molecule (the target table), Atom, Bond, SSCount
and P2Count while associations among them are modeled by means of foreign key
constraints. Data concerning molecule activity are stored in the target table. Other
global features of a molecule are mWeight (i.e. the molecular weight) and logP (i.e.
the logarithm of the compound's octanol/water partition coe�cient). In particular,
logP is a measure of hydrophobicity that is used in the mutagenecity study.

According to data described above, the aim of this study is to predict the
biodegradability of the chemical compound in water [DBK+99]. Generally, the
biodegradability of a molecule is described by di�erent degradation rates that are
available in literature [HBJ+91] in the form of half-life times (HLTs) for overall,
biotic and a-biotic degradation in four environmental comportments that is soil,
air, surface water and ground water. In this study, we focus on predicting the
surface water biodegradation HLT's in aerobic conditions. The target variable for
this regression problem is the natural logarithm of the arithmetic mean of the low
and high estimate of the HLT for aqueous biodegradation in aerobic conditions,
measured in hours.

Similarly to Mutagenesis dataset, we may consider four level of experimental
setting for biodegradability data which provide richer descriptions of molecules.
The �rst setting (BK1) consists of those data derived with SMILES without any
global feature on molecule. The second setting (BK2) adds the numerical attributes
mWeight and logP. The third setting (BK3) extends BK1 by adding the indicator
on molecular activity, while the fourth setting (BK4) includes all global features
describing the molecules.

By running Mr-SMOTI on the entire dataset, it builds the output multi-relational
model tree in 8475 secs at BK1 level, 18221 secs at BK2 level, 367 secs at BK3 level
and 1746 at BK4 level.

Predictive accuracy as well as complexity of regression models built by Mr-
SMOTI, TILDE-RT, SMOTI and M5' are reported in Table 6.5 by varying the
level BK i, while results of Wilcoxon test on the predictive accuracy performed by
Mr-SMOTI with respect to the other regression methods in this study are presented
in Table 6.6.

In this case, results on predictive accuracy show that at BK1 level, Mr-SMOTI is
statistically equivalent to TILDE-RT, while at BK2 level Mr-SMOTI looses against
TILDE-RT. Interestingly both methods outperform SMOTI and M5'. Conversely,
at BK3 and BK4 levels, Mr-SMOTI outperforms TILDE-RT, but its accuracy is
signi�cantly worse than corresponding results obtained with propositional regression
methods.
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Results at BK1 and BK2 levels con�rm some consideration already suggested by
Mutagenesis data: a constant piecewise multi-relational model can be more accurate
than the corresponding multiple linear piecewise multi-relational model when no
continuous attribute e�ectively signi�cant for the regression problem in question is
included in training data. Conversely, BK3 and BK4 levels con�rm that the stepwise
construction of a regression model may lead to signi�cantly more accurate regression
model both in multi-relational and propositional setting. In this particular case,
propositionalization by aggregation combined with SMOTI miner outperforms Mr-
SMOTI, but the propositional model tree is signi�cantly more complex (number
of regression nodes and number of leaves) than the corresponding multi-relational
model trees.

Table 6.5: Performance of predicting degradation level from Biodegradability data: results of Mr-
SMOTI and TILDE-RT are obtained by running the methods on multi-relational data, while results
of SMOTI and M5' are obtained by running the methods on the attribute-value representation of
same data obtained according to P2. The transformation of Biodegradability data with P1 method
returns 1506060 attribute-value individuals that is quite hard to be processed with SMOTI or M5'.

BK Results Multi-relational setting Propositional setting
P2

Mr-SMOTI TILDE-RT SMOTI M5'

BK1

Avg.MSE 1.38 1.31 2.24 1.44
Avg.Leaves 38.6 7 34.1 108
Avg.Regnodes 0.3 - 1.1 -

BK2

Avg.MSE 1.42 1.23 4.27 1.54
Avg.Leaves 29.3 7.8 32.5 112.3
Avg.Regnodes 4.6 - 5 -

BK3

Avg.MSE 0.37 0.58 0.05 0.17
Avg.Leaves 2.3 4.6 13.1 38.6
Avg.Regnodes 0 - 1.4 -

BK4

Avg.MSE 0.38 0.58 0.04 0.174
Avg.Leaves 2.7 4.7 13.3 39.5
Avg.Regnodes 0 - 2 -

6.3 Conclusions
In this chapter, we have discussed three real-world applications of multi-relational
regression.

The �rst one concerns the analysis of geo-referenced census data provided by
United Kingdom 1991 census to investigate the migration phenomenon in Stockport
enumeration districts (EDs) according to socio-economic factors represented in cen-
sus data as well as geographical factors (spatial layers) represented in topographic
maps. In this case, multi-relational regression extends classical spatial regression
by supporting data miners in modeling and processing spatial relationships among
spatial objects of di�erent nature too. The goal is to predict a continuous property
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Table 6.6: Mr-SMOTI versus TILDE-RT, SMOTI and M5': results of Wilcoxon rank test on the
accuracy of regression models induced from Biodegradability data.

BK Method Wilcoxon Test
p W+ W−

BK1

TILDE-RT 0.4922 35 20
P2-SMOTI 0.0488 8 47
P2-M5' 0.1934 14 41

BK2

TILDE-RT 0.0097 52 3
P2-SMOTI 0.0019 0 55
P2-M5' 0.6953 23 32

BK3

TILDE-RT 0.0058 2 53
P2-SMOTI 0.0019 55 0
P2-M5' 0.0039 54 1

BK4

TILDE-RT 0.0058 2 53
P2-SMOTI 0.0019 55 0
P2-M5' 0.0019 55 0

on the basis of the spatial interaction of two or more spatially-referenced objects not
necessarily belonging to the same layer or space-dependent attributes according to
a particular spacing or set of arrangements. In particular, regression models mined
by Mr-SMOTI are model trees with regression and splitting nodes that may involve
attributes from several spatially related layers. This means that both spatial and
a-spatial factors which have either a global or local e�ect for prediction are easily
detected by exploiting the stepwise construction of the multi-relational regression
model.

The last two applications are related to bioinformatics and concern the quan-
titative interpretation of structure-activity relationships of chemical compounds
(QSARs) in two well-known ILP benchmark datasets that is Mutagenesis and
Biodegradability.

The comparison with the ILP method TILDE-RT and the two propositional
TDIMT methods SMOTI and M5' on di�erent (multi-)relational datasets demon-
strate that Mr-SMOTI is generally competitive with respect to existing regression
methods and its advantages (e.g. the solution of (multi-)relational regression prob-
lem in its original representation and the detection of global and local e�ect of
variables to also increase the comprehensibility of regression model) are not at the
expense of predictive accuracy or model complexity.
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Conclusions

In this dissertation we have presented both a new TDIMT method, named SMOTI,
for the data-driven construction of model trees from attribute-value data and its
further extension, Mr-SMOTI, to multi-relational setting. We conclude with an
overall summary of our claimed contributions and discussion of future work.

7.1 Summary
Model trees are an extension of regression trees that associate leaves with multiple
regression models. In this dissertation we have revised the current state of top-
down induction of model trees (TDIMT) in order to improve interpretability and
accuracy of these regression models as well as extend their applicability to practical
problems where data is naturally stored in multiple tables of a relational database.

We have started from the strengths and weaknesses of well known data-driven
approaches for mining model trees and proposed a new method named Stepwise
Model Tree Induction (SMOTI). Its main characteristic is the induction of trees with
two types of nodes: regression nodes, which perform only straight-line regression,
and splitting nodes, which partition the training space. The multiple linear model
associated with each leaf is then built stepwise by combining straight-line regressions
reported along the path from the root to the leaf. In this way, SMOTI solves the
problem of modeling phenomena where some variables have a global e�ect while
others have only a local e�ect. Internal regression nodes contribute to the de�nition
of multiple models and have a global e�ect, while straight-line regressions at leaves
have only local e�ect. This stepwise construction allows SMOTI, at no additional
cost, to de�ne a heuristic evaluation function, which is coherent with the linear
models at the leaves. On the other hand, only a subset of continuous attributes
may be involved in multiple linear models associated with the leaves, thus solving
problems due to collinearity.

To keep the over�tting problem under control, we have proposed to simplify
model trees mined by SMOTI with two alternative methods, namely Reduced Error
Pruning (REP) and Reduced Error Grafting (REG).

Experimental results on arti�cially generated datasets show that SMOTI outper-
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forms two state of art model tree induction systems, M5' and RETIS, in accuracy.
Results on benchmark datasets used for studies on both regression and model trees
show that SMOTI performs better than RETIS in accuracy, while it is not possible
to draw statistically signi�cant conclusions on the comparison with M5'. In any
case, model trees induced by SMOTI are generally simple and easily interpretable,
and their analysis often reveals interesting patterns which are not evident in trees
generated by the other systems.

We have also investigated the e�ect of simpli�cation on benchmark datasets and
results are in favor of simpli�ed trees in most cases.

Nevertheless, SMOTI su�ers from an important limitation, that is, the restric-
tion to propositional representation (i.e. single table assumption). In other words,
training data must be described by a �xed set of attributes, each of which can have
only a single, primitive value. Consequently, SMOTI does not appear able to di-
rectly mine model trees over data that reside in multiple tables. This implies that
aspects of the internal structure of training data cannot be processed and mined
trees cannot refer to such a structural property. This might comprise the appli-
cation of model trees in domains where the internal structure of individual to be
mined is of principal importance (e.g. geo-referenced data analysis, chemistry or
biology).

To deal with data scattered over many tables, we have explored the idea of
combining the stepwise construction supported by SMOTI with achievements of
relational data mining in order to overcome limitations due to single table assump-
tion. Hence, we have illustrated how to upgrade the propositional SMOTI to the
multi-relational miner named Multi-Relational Stepwise Model Tree Induction (Mr-
SMOTI) and mine multi-relational model trees directly from data, which resides in
multiple tables of a tightly integrated Oracle 9i relational database. Patterns as-
sociated with each node of the tree structure are (multi-)relational patterns since
they may involve multiple tables from the training relational database. They are
represented in the graphical language of regression selection graphs, which can be
translated into SQL, or equivalently into �rst order expressions.

Finally, we have discussed the application of Mr-SMOTI into some multi re-
lational regression problems occurring in geo-referenced census data analysis and
bioinformatics. The former involves data provided by the United Kingdom 1991
census where the goal is to investigate the migration phenomena (i.e. number of
migrants) in Stockport enumeration districts (EDs) according to socio-economic fac-
tors represented in census data as well as geographical factors (spatial layers) repre-
sented in topographic maps. In this case, multi-relational regression well copes with
the main issue of spatial regression, that is, the need to represent both units of ob-
servation and their relationships. The former are spatial objects sometime belonging
to di�erent layers, while the latter are useful to predict a continuous property. The
bioinformatics application focuses on two multi-relational benchmark datasets that
is Mutagenesis and Biodegradability, which have been extensively used in ILP. Mu-
tagensis concerns the problem of predicting mutagenic activity of molecules while
Biodegradability concerns the problem of investigating biodegradability in an aque-
ous environment under aerobic conditions.
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7.2 Future Work
As future work, we plan to use SQL primitives and parallel database servers to speed
up the stepwise construction of (multi-)relational model trees from data stored in
large database. In addition, following the mainstream of our research on data
mining query languages for spatial databases with an object-oriented logical model
[MAC03], we intend to pursue the investigation of de�ning a data mining query
language appropriate to support both the discovery and the query of model trees.

Similar to many TDIMT algorithms, Mr-SMOTI may generate model trees that
over-�t training data. Therefore, another future research direction is also the a
posteriori simpli�cation of (multi-)relational model trees with both regression nodes
and splitting nodes. We plan to investigate simpli�cation methods based on both
pruning and grafting operators.

We are also interested in applying (multi-)relational model trees mined by Mr-
SMOTI to the problem of predicting ordinal classes that is discrete classes with a
linear ordering as suggested by Kramer et al. [KWPd01].

Finally, applications to spatial domains suggest a further extension of Mr-SMOTI
in order to take advantage from a tight coupling with an object-relational spatial
database where both target objects as well as target relevant objects are spatial
objects belonging to several spatial layers stored in spatial tables. This corresponds
to modify the space of patterns explored during the tree construction by taking into
account spatial nature of data and explore spatial properties (e.g. area or length) as
well as spatial topological relationships (e.g. adjacent or overlap) implicitly de�ned
by the location of spatial objects in a space.
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