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Managing geophysical data generated by emerging spatio-temporal data
sources (e.g. geosensor networks) presents a growing challenge to GIS science.
The presence of correlation (i.e. spatial correlation across several geosensor
sites and time correlation within each site) poses difficulties with respect to
traditional spatial data analysis. This paper describes a novel spatio-temporal
analytical scheme that allows us to yield a characterization of correlation in
geophysical data along the spatial and temporal dimensions. We resort to a
multivariate statistical model, namely CoKriging, in order to derive accurate
spatio-temporal interpolation models. These predict unknown data by utiliz-
ing not only their own geosensor values at the same time, but also information
from near past data. We use a window-based computation methodology that
leverages the power of temporal correlation in a spatial modeling phase. This
is done by also fitting the computed interpolation model to data which may
change over time. In an assessment, using various geophysical data sets, we
show that the presented algorithm is often able to deal with both spatial and
temporal correlations. This helps to gain accuracy during the interpolation
phase, compared to spatial and spatio-temporal competitors. Experimental re-
sults validate the use of the window-based methodology in the computation of
time-evolving, spatio-temporal interpolation models of a geosensor network. In
particular, we evaluate the efficacy of the interpolation phase by using estab-
lished machine learning metrics (i.e. root mean squared error, Akaike informa-
tion criterion and computation time).
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1. Introduction

Natural processes and physical fields (e.g. solar radiation and wind speed) are being
increasingly observed across space and over time. The ubiquity of this kind of spatio-
temporal data, namely geophysical data, has motivated us to investigate and develop
appropriate models to analyze and interpolate them. Interpolation, i.e. the prediction
of missing data in each location across space or time, can be useful in supplementing,
smoothing and standardizing observational data. It allows us to transform irregular point
or line data into a raster representation, or to perform resampling between different raster
resolutions (Mitas and Mitasova 1999).

The geophysical interpolation context we consider in this study is georeferenced and
timestamped data which are routinely sampled for a physical numeric field by geosensors,
installed at fixed-to-ground sites of a network. The spatial location of the geosensors is
known, distinct and invariant. The acquisition activity is synchronized on the geosensors
of the network. The time points of the acquisition activity are equally spaced in time. This
scenario recurs in various geophysical applications (e.g. solar radiation measurements in
photovoltaic plants, wind and weather data sensors and ambient pollution monitoring
sensors (Appice et al. 2014a)).

At present, several studies (Guttorp and Schmidt 2013, Appice et al. 2014b, Pravilovic
et al. 2017) have already assessed that the temporal information within a site and the
spatial information across distinct sites are both informative in a geophysical scenario.
However, the analysis of both spatial and temporal correlations is more complicated than
modeling purely spatial or purely temporal correlations. On the other hand, the classes of
spatio-temporal dependence structures differ from each other in the way in which space
and time are coupled. At one extreme, space and time are considered to be independent,
giving rise to the separable covariance model that allows us to represent the spatio-
temporal correlation function as the product of a spatial and temporal term. Otherwise,
at the cost of a heavier computational burden, non-separable space-time models can be
considered by including suitable parameters that indicate the strength of the interaction
between the spatial and temporal components (Guttorp and Schmidt 2013). In addition,
non-stationarity and anisotropy are usual characteristics of geophysical data, since the
statistical property of a field can often undergo a time change (Appice et al. 2014b), to be
taken into account in the modeling phase. If data changes are present and unaccounted
for in the geo-statistical model development, they can result in poorly specified models,
as well as in inappropriate spatial-temporal inferences and predictions.

In view of the need to compute accurate geophysical interpolation models, we adopt a
computational approach that reaches a compromise between: (1) deriving a model of the
spatio-temporal correlation and (2) accounting for the possible temporal variation of a
physical field distribution. To this end, we use a window-based computation methodology
(Omitaomu et al. 2009, Appice et al. 2014a) that allows us to compute local, spatio-
temporal interpolation models from geophysical data, observed at a few backward time
points. In this way, we are able to compute window-aware correlation functions, which
may change over time as new geophysical data windows are processed. This use of a
window operator is here supported by the observation that, although geophysical data
can be subject to the temporal variation of their distribution, the property of temporal
correlation suggests that the stability of the field statistical property can at least be seen
at a local (window) level (Appice et al. 2014a).

In particular, we illustrate an interpolation scheme, called CoSTK (CoKriging Spatio-
Temporal interpolator), that uses the Window operator to learn a time-evolving, spatio-



September 14, 2017

8:45 International Journal of Geographical Information Science krigingTosubmit

International Journal of Geographical Information Science 3

temporal interpolation model in a geosenor network. It computes one interpolation model
for each (target) time point. Each timestamped model accounts for the geophysical data
observed at the target time point, as well as for the data selected by the Window opera-
tor at the backward time points. A multi-variate interpolation model, namely CoKriging
(Wackernagel 2003), can be used to construct a continuous map of the Principal Compo-
nent of the spatio-temporal correlated, windowed data. This map is used to interpolate
the data at the unobserved sites of the target time point.

CoKriging is a multi-variate interpolation model belonging to the stochastic Kriging-
family of optimal linear interpolation models. It is considered here since, similarly to
its univariate Kriging counterpart (Krige 1951), it has the attractive properties of being
unbiased and having minimal variance of the prediction error. Historically it is used to
explore the influence of a secondary co-field as a function of the purely spatial correlation
with the primary field (e.g. Knotters et al. (1995), Rocha et al. (2012), Triantakonstantis
and Stathakis (2014)). In this study, CoKriging is examined in the univariate scenario
(i.e. data are collected for a single field), but with the goal of dealing with multi-time data
(i.e. data that are routinely collected at various time points). In particular, the field under
study, observed at a target time point, is the primary variable. On the other hand, the
principal component representation of the primary field observations over the reference
window is the secondary co-variable. We note that this construction of a secondary
variable by combining Principal Component Analysis and a Window operator, as well as
its processing via CoKriging, allows us to account for a characterization of the spatio-
temporal information.This contributes to modeling the correlation of the primary field
in space and time simultaneously.

The paper is organized as follows. The background and the actual contribution of
this paper is clarified in the next Section. The relevant related work is briefly reviewed
in Section 3. The learning problem and the proposed approach are introduced in Sec-
tion 4. Experiments with real data are presented in Section 5. Finally, Section 6 draws
conclusions and illustrates future directions of this research.

2. Background and contribution

Principal Component Analysis (PCA), Window operator and CoKriging have already
attracted valuable research attention in the GISience literature.

Several studies explore the use of PCA, often in combination with Kriging. For exam-
ple, Jiang et al. (2009), as well as Nazzal et al. (2015), employ PCA in an exploratory
study of various natural and anthropogenic factors affecting the groundwater quality.
They extract Principal Components to reduce the dimensionality of the system of mea-
sured fields. In particular, the Principal Components are extracted in a purely spatial
context, in order to discriminate between the factors with the highest/lowest contribu-
tion on the groundwater. They use Ordinary Kriging, in order to interpolate the map
of the spatial distribution of each Principal Component score separately. Following this
research direction Aversano et al. (2017) apply PCA and Kriging in a spatial setting, in
order to build accurate surrogate models in reacting flows for predictive purposes and
engineering design. Although the above studies describe promising results achieved by
combining PCA and Kriging, they neglect the temporal information. They use Krig-
ing instead of CoKriging and compute an interpolation model for each derived Principal
Component score (rather than a direct interpolation model for each original observational
field). This contributes to making the approach presented in this study different, since it
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employs PCA as a means to derive a temporal characterization of the spatial correlation
of the observed field. Specifically, the proposed combination of PCA and CoKriging ex-
plores a strategy to directly add a temporal perspective of the spatial correlation in the
interpolation model of the field under study.

On the other hand, there are also various studies that explore the use of a Window
operator as a means to select surrounding (spatial, temporal, spatio-temporal) data for
spatio-temporal analysis. In particular, Weiss et al. (2014) present an overview of sev-
eral algorithms that consider information present within surrounding data to interpolate
missing data in a remotely sensed imagery time-series. Gafurov and Bardossy (2009)
describe a temporal interpolation algorithm to fill-in the missing data, using data from
window-defined earlier and/or later dates. Interestingly, the Window operator is some-
times investigated also in combination with CoKriging. For example, Zhang et al. (2009)
explore the idea of augmenting primary data collected at a specific time point with sec-
ondary data collected, in the same area of interest, at an alternative user-defined date.
These primary and secondary data are used to define both the primary and secondary
(co-)variables of CoKriging respectively. Similarly, Sideris et al. (2014) handle data ob-
served at the previous time point as the secondary co-variable of CoKriging. Finally,
Rouhani and Wackernagel (1990), as well as Skoien and Bloschl (2007), construct var-
ious secondary co-variables with data observed at consecutive (background) windowed
time steps. These multiple co-variables are again handled via CoKriging. The promis-
ing results achieved in these studies mainly inspire our idea of pursuing a combination
of a Window operator and CoKriging. However, our consideration of CoKriging here is
slightly different from that experimented in the background studies. In fact, our study re-
sorts to PCA to derive a characterization of the spatial correctional across time and uses
this characterization (instead of the observed data) as the secondary co-variable. This
is different from the studies reported above, which define the secondary co-variable(s)
of CoKriging based on the observed (window-selected) data without any data transfor-
mation. Our feeling is that observations of a field collected at several consecutive time
points may be strongly contemporaneously correlated with each other. This may lead
to creating a system of strongly redundant variables. Collinearity among variables may
lead to a series of problems, such as unreliable coefficients and predictions, as well as
aggravated data redundancy and computational complexity (Chen et al. 2016). The idea
that we promote here is that the reduction of the collinearity in the set of covariates
may improve the accuracy (as well as the efficiency) of CoKriging. In particular, to the
best of our knowledge, this is the first study that employs PCA as a means to derive
a collinearity-free characterization of spatial correlation across time within CoKriging.
We have chosen PCA since it is a simple orthogonal transformation, commonly used
in regression. It requires no parameter, removes variable correlations and thus reduces
collinearity (Dormann et al. 2013).

Considering the background, our specific proposal of combining PCA, a Window op-
erator and CoKriging in a single interpolation algorithm represents one of the main
contributions of this work. Although the proposed algorithm should be considered a
heuristic, another contribution is the empirical demonstration that our spatio-temporal
system is often more efficacious (in terms of accuracy and/or efficiency) than existing
spatial and spatio-temporal interpolation models. In short, the specific contributions of
this paper can be highlighted as follows: (1) We describe a schema to characterize the
correlation of geophysical data along the spatial and temporal dimensions simultane-
ously. (2) We define a system that supplements any observation site with a multivariate
system. This includes a field observed from the geosensor network at the same time
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with window-coupled data observed in the near past. (3) We apply a multivariate in-
terpolation solution, in order to analyze the structure of this system of variables and
construct an accurate spatio-temporal interpolate, with the help of a spatio-temporally
coupled covariable. (4) We demonstrate the importance of dealing with both temporal
and spatial correlation, in order to yield an accurate interpolate of geophysical data and
validate the accuracy of the proposed window-based methodology in the computation of
a time-evolving spatio-temporal interpolate.

3. Related work

Historically the challenge of predicting a geophysical field by looking at observational
geosensor data has led to a variety of spatial deterministic interpolation algorithms like
Inverse Distance Weighting (Shepard 1968) and Radial Basis Functions (Lin and Chen
2004), as well as stochastic, like Kriging (Krige 1951, Cressie 1990) and its multi-variate
extension CoKriging (Wackernagel 2003). These algorithms determine field estimates
based upon actual measures of the physical field which are spatially sampled in a Ge-
ographic Information System (GIS). They account for the property of data correlation.
Specifically, they take into account a stronger correlation between data points which are
spatially closer than data points that are farther apart.

Although the spatial interpolation theory has a long history, some studies have been
recently made to inject traditional temporal data mining techniques into spatial inter-
polation models. These studies aim at handling both spatial and temporal correlation
of geophysical data within a joint interpolation scenario. They still consider physical
data collected by a geosensor network as the outcome of a stochastic process with ran-
dom noise. Therefore, they are founded on the idea that geophysical processes can be
modeled by means of relatively few parameters (Shumway and Stoffer 2010).

Following the spatio-temporal direction, Romanowicz et al. (2006) describe a two-step
spatio-temporal methodology for the air data quality analysis. In the first step, they re-
sort to non-stationary time series analysis methods, in order to supplement data sets over
periods with missing measurements. The time series are decomposed into trend and har-
monic components. In the second step, they analyze the spatial relations within the data
sets. They derive a spatio-temporal model of log-transformed data. This model consists of
the trend, while the noise describes the spatio-temporal variations in the data. It is used
to predict variations at un-sampled points across time and space. Appice et al. (2013)
describe a regressive time dynamic model of the physical field. They modify the IDW in-
terpolation algorithm by exploiting a time-evolving spatial model and use the final model
to estimate data at un-sampled points across time and space. Finally, Sherman (2010)
performs the theoretical work that investigates how the temporal and spatial correlation
can interact with each other. This seminal study contributes to the formulation of the
empirical estimators of space-time variograms and covariances, which pave the way for
learning a spatio-temporal interpolation model with Kriging-family algorithms. Following
this research direction, Cressie and Wikle (2011) discuss the importance of a character-
ization of the joint spatio-temporal co-variance structure of a spatio-temporal process
for an optimal Kriging prediction. However, both these studies lack implementations.
This issue is overcome by Pebesma (2012), who defines the space-time package to deal
with spatio-temporal data in R. Gréler et al. (2016) have recently used the space-time
classes to estimate spatio-temporal covariance/variogram models and to perform spatio-
temporal interpolation. Their implementation handles various types of spatio-temporal
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Figure 1. Block diagram of CoSTK - Co (Spatio-Temporal) Kriging. Let D(Z, G, AT') be a geo-
physical data set and € be a window size. A spatio-temporal interpolation model is computed for
each time point t € AT, in order to predict unseen data at time ¢. Let Z; be the primary variable
representing the data snapshot at time t. The window operator selects the data snapshots with
the time varying between t — 2 and ¢ — 1. The Principal Component Analysis is applied to the
selected data window and the top ranked Principal Component PCY, is selected as a secondary
variable (see details in Section 4.1). Finally, the CoKriging system of the equation is computed
with primary variable Z; and secondary variable PC1, (see details in Section 4.2).
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covariance structures and facilitates spatio-temporal interpolation. In any case, their for-
mulation assumes the temporal stability of the geophysical data, thus it creates a global
covariance function that fits the entire set of spatio-temporal observational data. Then it
neglects possible time changes in the statistical property of the examined field, so that the
inferred interpolation models may also result in poorly specified models. Finally, Rouhani
and Wackernagel (1990) and Skoien and Bloschl (2007) explore the use of CoKriging in
the discovery of an interpolation model that considers data observed at the backward
time points as secondary co-variables of the interpolation system of equations. Similarly,
Zhang et al. (2009) and Sideris et al. (2014) use CoKriging in spatio-temporal interpola-
tion, by considering a system of equations with a secondary co-variable associated with
data observed at a certain backward time point.

4. Spatio-temporal interpolation via CoKriging

Let D(Z,G, AT) be a geophysical data set. Z is a numeric physical field. G is a network
of distinct geolocations over a given spatial domain. Each geolocation is represented by
its spatial coordinates (e.g. latitude and longitude). A fixed-to-ground active geosensor
is installed at each geolocation of G, in order to routinely observe data for Z. AT is
the observation (sampling) time line. This time line is discretized in equally-spaced time
points denoted as AT = ty,t9,...,t7, so that all geosensors of the network observe new
data for Z simultaneously at each acquisition time point t; € AT. According to this
formulation, the geophysical data set can be viewed as a sequence of timestamped data
snapshots, that is, D(Z, G, AT) = (G, z,(+)), (G, 2z, (1)), - . ., (G, z¢,.(+)). A data snapshot
(G, z(+)) is the set of observations sampled for Z at a certain acquisition time point
t € AT by geosensors installed in network G. z;: G+ Z is the field function that assigns
a geosensor location (z,y) € G to the value here observed for Z at time ¢. z;(g) denotes
the georeferenced, timestamped value of Z, collected at geolocation g € G for time point
t € AT. A geosensor may also be temporally inactive and does not register data at a
certain time point (due to synchronization, sensor faults, communication malfunctions
or malicious attacks). However, the missing observation can be preprocessed on-the-fly
during the learning stage and replaced by an aggregate (e.g. inverse distance weighted
mean) of data actually sampled across a (spatio-temporal) neighborhood.

In this study, we present a spatio-temporal interpolation algorithm (see Figure 1),
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which inputs data set D(Z,G, AT) and uses a temporal window to consume its data
snapshots. It derives a characterization of the spatio-temporal correlation in the win-
dowed data snapshots, and uses this in-window spatio-temporal information to compute
a time-evolving, spatio-temporal-aware interpolation model. Let 2 be the window size. At
time ¢, the Window operator selects (2 backward geophysical data snapshots timestamped
between t — €2 and t — 1. The interpolation process is a pipeline of three algorithmic steps:

(1) The primary variable is identified. This variable represents the geophysical data
in the data snapshot observed at time t.

(2) A data expansion mechanism is triggered by synthesizing the secondary co-
variable. It borrows from the spatial- and temporal-aware information that is
enclosed in the window, by resorting to PCA (see Section 4.1).

(3) A CoKriging system of equations (see Section 4.2) is constructed, in order to de-
rive the interpolate of the primary field at time ¢. The spatio-temporally coupled
co-variable defined in the previous step is exploited.

The computed interpolation model can be used to predict (out-of-sample) unknown data
points Z;(¢’) for any new suitable geolocation ¢’ ¢ G at present time t.

We note that the above formulation contributes to addressing the traditional spatial
interpolation task in a local spatio-temporal-aware setting. In fact, it allows us to compute
a sequence of spatio-temporal-aware local models, which change over time, by naturally
fitting the model to time-drifting spatial data. Specifically, a local interpolation model
is computed for each time point ¢t. This model is spatio-temporal-aware, meaning that
it is computed from spatial data observed at time ¢, as well as spatial data temporally
observed in the past (before t).!

4.1. A spatio-temporally coupled covariable

We introduce a Window operator, in order to select the geophysical data snapshots
collected over a backward time window. Let 2 be the window size and ¢t be a time
point of the time line. The Window operator selects the data snapshots acquired by
the geosensor network with the time varying between ¢ — 2 and ¢t — 1. Let us introduce
variables Z;_q, Z;_qy1, - .-, Zt, in order to denote the measurements of Z collected in the
data snapshots (G, z:—q(-)), (G, zt—q+1(*)), - .. and (G, z(+)), respectively. We expect that
window variables Z;_q, Z;_q+1,..., 4 may be strongly contemporaneously correlated
with each other. At each time point, they can be interpreted as a linear combination of
the same set of observations (i.e. the observations from data sharing the same statistical
property). An illustration of this phenomenon is shown in Figure 2(a). It shows the
correlation matrix, extracted at one time point, including both the target data (Z;) and
the backward data (Zy—q, Zt—q+1, - - - Zt—1). In general, there is a strong contemporaneous
correlation between temporally close data (and such a correlation pattern is independent
of the particular data set).

In view of the above discussion (see Section 2), after defining the multiple variables
associated with the windowed time points, a natural postprocessing step consists of con-
verting the backward secondary data Z;_q, ..., Z;—1 into uncorrelated Principal Compo-
nents PCy,, ..., PCq,, using the PCA standard orthogonal transformation. An example
of the effect of this transformation can be seen on the right side of Figure 2(b). The

IThe investigation of the forecasting potentiality of this interpolation model (i.e. processing past data to predict
unseen future data) is out of the scope of this study.
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Figure 2. NCDC Air Climate geosensor network (see Section 5.1 for further details): physical
field Solar Radiation (ncdcS), acquisition time point ¢ = 45 and window size © = 4. Figure 2(a):

Pearson correlation matrix of variables Z; and backward variables Z;_1,..., Z;_q. Figure 2(b):
Pearson correlation matrix of variable Z; and Principal Components PC1,,... PCq, expressing
a partially orthogonal representation of Z;_1,...,Z;_q.

Principal Components are contemporaneously uncorrelated with each other and, on av-
erage, are weakly correlated with the primary variable Z;. This set of almost orthogo-
nal components may have nonzero lagged cross-correlations. The top ranked component
(PC1,) can be plausibly intended as a local characterization of the property of correla-
tion in the surrounding space-time system. Consequently, it is exploited to derive the
spatio-temporally coupled scondary co-variable in the CoKriging system of equations to
interpolate the primary field.

4.2. A (spatio, temporal) CoKriging system of equations

The actual learning process considers, for each time point ¢ = t1,19, ..., ¢, a multivari-
ate data system defined as Z; = (Z;, PC1,), where Z; denotes the primary data observed
at time t. PCy, denotes the secondary co-data associated with the first Principal Com-
ponent score synthesized from the data observed over the window [t — ,¢ — 1]. The
motivation behind the decision of selecting the top-ranked Principal Component, that
accounts for the greatest quota of the total variability, is that the Principal Components
can be interpreted as latent orthogonal factors useful to aggregate information observed
across space and time over a window of near backward data. However, given the strong
contemporaneous correlation existing between data observed at close time points, the
first Principal Component is expected to explain a very high proportion of the total
variability exhibited by the original windowed secondary data. For example, Figure 2(b)
shows that the scores associated with the smallest eigenvalues, PCy,, PC3, and PCy,,
are unlikely to contain useful information. This can most likely be interpreted as a small
irregular component, containing the variation uncommon to the windowed data, which
has not been captured by PC1,. For these reasons, we can reasonably apply this noise
reduction, thus shrinking the smallest eigenvalues.

The CoKriging estimate is computed from this multivariate system.! This estimate
is a linear combination of both the primary variable (variable of interest Z(t)) and the
secondary variable (co-variable PC1,). It is unbiased, with a minimization of the variance
estimation, and requires the covariance model of the primary variable, the covariance
model of the secondary variable and the cross-covariance model of both the primary
and secondary variable (see Figure 4.2). In particular, the ordinary CoKriging equation
considered in this study? is in the form:

IWe consider here an isotopic data configuration, where both the primary and the secondary data are observed
at all the geosensor sites, but both are not available at the estimation site (Subramanyam and Pandalai 2008).
20rdinary CoKriging usually is preferred to simple CoKriging, since it requires neither knowledge nor stationarity
of the primary and secondary means over the entire area (Goovaerts 1998).
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Figure 3. NCDC Air Climate geosensor network (see Section 5.1 for further details): physical
field Solar Radiation (ncdcS), acquisition time point ¢ = 45 and window size Q2 = 4. Covariance
(axis Y') of primary variable Z and secondary variable PC, as well as cross-covariance of Z-PC1,
by varying the distance (axis X) between the observed values. The Gaussian model is used to fit
the theoretical variogram to each sample (cross-)variogram. Here the Gaussian model is chosen as
it is the best model among Linear, Gaussian, Exponential, Spherical and Matern models fitting
on the sample variogram of primary variable Z (see details in Section 4.2.1). The Gaussian model
is also fitted on the sample covariance of PC and the sample cross-covariance of Z-PC.

2(g) = arlg)z(g) + Y Belg)pen, (9), (1)

geG geG

where 2(¢’) is the estimate computed at an unknown geolocation ¢’, a4(g) is the weight
assigned to the primary value z;(g) and (5;(g) is the weight assigned to the primary value
pey, (g). The unbiasedness of this ordinary estimator is ensured by forcing all primary
data weights to sum up to one (i.e. Z at(g) = 1) and all secondary data weights to sum
geG
up to zero (Z Bi(g) = 0) (Isaaks and Srivastava 1989, Goovaerts 1998). Specifically,
geG

a:(g) and Si(g) (for each g € G) are obtained by minimizing the error variance under
the two unbiasedeness constraints. This is equivalent to solving the ordinary CoKriging
system expressed in terms of the following correlograms:
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D> ailgi)Cre,z(gi — g5) + » Bi(9;)Cro,pe(gi — ;) + n2(g) = Cre,z(gi — g') with g; € G

HJ'EG gjec (2)
D> ailg) =1

9; €EG

> Bi(gi) =0

9;,€G

where Cxy (x,y) generally represents the (cross-)covariance (or variogram) function
between a variable X and a variable Y at geolocations = and y. u1(u) and pa(u) are the
two Lagrange parameters accounting for the unbiasedness constraints and ¢’ is the esti-
mation site. To determine -, we consider the sample variogram. This is constructed from
the sample data as a description of how they are (cor)related with distances. The sam-
ple variogram is 2y(h) with semi-variogram ~(h) representing half the average squared
difference between points separated by a distance h (Cressie 1993) (see the example of a
sample variogram in Figure 4.2). In particular, the sample semi-variogram is calculated

1
as y(h) = AN ()| Z (gi,95) € N(h)(2(g:) — 2(g;))?, where N(h) is the set of all pair-
wise Euclidean distances d(g;, gp) = h, |IN(h)]| is the number of pairs on N(h), z(g;) and
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z(g;) are the data values at spatial locations g; and g;, respectively. As the measured
data are commonly affected with noise, a theoretical variogram (see the theoretical var-
iogram in Figure 4.2) is fitted on the the sample data (Isaaks and Srivastava 1989), in
order to diminish the effect of variability. The theoretical model is fitted on the sample
variogram values with three parameters, namely nugget, range and sill. The nugget is
the intercept of the variogram. It includes variance at scales smaller than the minimum
separation distances between points and variance, attributed to changes as data are sam-
pled. The range defines the distance of the spatial dependence in the data: at distances
greater than the range, the data are considered to be spatially independent. The sill is
the asymptotic value of 7(h) as h becomes very large.

4.2.1.  Technical details

We solve CoKriging in the R environment for statistical computing. Initially, we deter-
mine the best theoretical model fitting the sample variogram of the primary field. The
Weighted-Least Mean Square method is used to fit a theoretical model on the sample
variogram and determine the nugget, range and sill of this fitting. As the fitting process
can be influenced by the initial values of range, nugget and sill, default parameters are
initialized according to the guidelines suggested by Pebesma and Graeler (2017). Range is
taken as 1/3 of the maximum sample variogram distance, nugget is taken as the mean of
the first three values of the sample variogram and sill is taken as the mean of the last five
values of the sample variogram. The fitting method is used with weights equal to N;/ (h?),
where IV; is the number of point pairs and h; is the distance. As theoretical models, we
consider various model families, namely: Linear, Gaussian, Exponential, Spherical and
Matern (Cressie 1993). For each theoretical model, the described procedure may provide
a certain numerical estimate of range, nugget and sill. The best theoretical model that
minimizes the fitting root mean squared error is selected (Turner and Gardner 2015).
Subsequently, the model family selected on the primary variable is employed, in order to
fit the sample variogram of the secondary variable, as well as the cross-variogram of the
primary-secondary variables. Determining the cross-variogram is a complex step, due to
the necessity of giving an estimate that is conditionally positive definite (Huang et al.
2009). We follow the technical note of Rossiter (2012) and rely on a cross-variogram that
can be fitted using the linear model of co-regionalization. This linear model fits a single
spatial structure to both direct and cross-variogram, by optimizing the partial sills and
the nugget by least squares. Any negative eigenvalues are set to zero and the eigenvectors
are recomputed to ensure positive semi-denite matrices of the partial sills and the nugget
(Pebesma and Graeler 2017). This ensures a valid linear model of co-regionalization, pro-
viding a quick approximation for iterative methods of adjusting partial sills and nuggets
(Kinoshita et al. 2016).

5. Empirical evaluation and discussion
The spatio-temporal interpolate presented in this paper is evaluated on several geophys-

ical data sets by considering both accuracy and efficiency metrics.

5.1. Geophysical data sets

We consider eleven geophysical data sets measured at equally-spaced discrete time points
across six (regular and irregular) geosensor networks. We observe that this study does
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Figure 4. Box plot representation of the geophysical data sets.

not attempt to perform any exploratory data analysis based on spatial and/or temporal
patterns hidden in the data. It relies upon automatic interpolation algorithms, in order
to estimate parameters of accurate interpolation equations. Both small and large net-
works are considered for this empirical study, in order to investigate the accuracy of the
computation also when few data are collected, as well as when more data feeds the learn-
ing process. Several networks (e.g. ARPA, MESA, TCEQ, NCDC, SR) measure data,
which contain significant outliers (see the box plots in Figures 4(b)-4(k)). The presence of
outliers commonly contributes to modifying the mean squared error of the interpolation
model by affecting the model parameters and augmenting generally the difficulty of the
interpolation task (Buzzi-Ferraris and Manenti 2010).

ARPA Ostreopsis QOuvata geosensor network (http://www.arpa.puglia.it/web/
guest/algatossica) was used to measure the Density of Ostreopsis Ovata both in the
top water column (arpaTS) and in the bottom sea (arpaBS), through K = 20 geosensors,
installed in Apulia (Italy) by ARPA-Apulia Agency (Regional Agency for Environmen-
tal Prevention and Protection). Geosensors were irregularly distributed in the area with
latitude varying between 39.8501 and 41.919 and longitude varying between 15.3418 and
18.4846. For each field data were measured every two weeks from June 15th to September
30th, 2016 (T' = 8). Upper data vary between 0 and 848066 cells per liter (see Figure
4(a)). Bottom datavary between 0 and 7362000 cells per liter (see Figure 4(b)).

MESA Air Pollution geosensor network (http://depts.washington.edu/mesaair/)
was used to measure the NO, Concentration, through K = 20 geosensors, installed
in California. Geosensors were irregularly distributed in the area with latitude varying
between -118.43 and -117.751 and longitude varying between 33.7861 and 34.176. Data
were measured every two weeks from January 13th, 1999 to January 12th, 2000 (7" = 48).
They vary between 0.002 and 9.329 ppb (see Figure 4(c)).

TCEQ Air Climate geosensor network (http://www.tceq.state.tx.us/) was used to
measure the Air Temperature (tceqT), Wind Speed (tceqW) and Ozone Concentration
(tceqO), through K = 26 geosensors, installed in Texas. Geosensors were irregularly dis-
tributed in the area with latitude varying between 26.13083 and 33.13222 and longitude
varying between -106.5011 and -93.98778. For each field, data were measured hourly from
May 5th (00:00) to 7th (00:00) 2009 (7" = 48). Air Temperature data vary between 60.9
and 103.8 F° (see Figure 4(d)), Wind Speed data vary between 0.6 and 18.5 mph (see
Figure 4(e)) and Ozone Concentration data vary between 0 and 59 ppb (see Figure 4(f)).

NCDC Air Climate geosensor network (http://www.ncdc.noaa.gov/data-access/
land-based-station-data/land-based-datasets/climate-normals) was used to
measure the Solar Energy (ncdcS), Precipitation (ncdcP) and Air Temperature (ncdcT),
through K = 72 geosensors, installed in the United States. Geosensors were irregularly
distributed in the area with latitude varying between -122.6068 and -67.8833 and longi-
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tude varying between 26.5258 and 48.7412. Data were measured monthly from August
2005 to July 2009 (T' = 48). Solar radiation was recorded as a monthly-averaged mea-
sure of the total daily solar radiation. Precipitation was the total amount of precipitation
measured in the month. Air Temperature was the maximum air temperature registered
in the month. Solar Radiation data vary between 1.1 and 30.5 M.J/meter? (see Fig-
ure 4(g)), Precipitation data vary between 0 and 657.2 mm (see Figure 4(h)) and Air
Temperature data range between -13.1 and 47.5 C° (see Figure 4(i)).

SR US Solar geosensor mnetwork SR geosensor network (http://www.ncdc.
noaa.gov/data-access/land-based-station-data/land-based-datasets/
solar-radiation/) was used to measure the Diffuse Solar Radiation, through
K = 1071 geosensors, installed across the United States. Geosensors were regularly
distributed in a grid 0.5 degrees by 0.5 degrees of latitude/longitude of the area with
latitude varying between 37.05 and 41.95 and longitude varying between -123.95 and
-122.05. Data were hourly measured on July 17th 2004 from 7:00 to 18:00 (7' = 12).
They vary between 4 and 573 W/m? (see Figure 4(j)).

SAC Air Climate geosensor network (http://climate.geog.udel.edu/~climate/)
was used to measure the Air Temperature, through K = 900 geosensors, installed in
South America. Geosensors were regularly distributed in a grid 0.5 degrees by 0.5 degrees
of latitude/longitude of the area with latitude varying between -75.75 and -53.75 and
longitude varying between -55.75 and -34.25. Data were monthly-averaged measures from
January 1999 to December 2000 (7" = 12). They vary between 1.6 and 26.1° C' (see Figure

A(k)).

5.2. Methodology and metrics

We evaluate the performance of the interpolation process along with its accuracy and
efficiency. In the accuracy evaluation, we use the k-fold cross validation methodology to
guarantee a prediction phase with out-of-sample sets of unknown data (see Section 5.2.1).
To safely compare various algorithms, they are run with the same k-fold cross validation
for each data set. In the efficiency evaluation we consider the time spent computing the
interpolation model, processing the entire data set (see Section 5.2.2).

5.2.1.  Accuracy evaluation

The k-fold cross validation is a commonly used model validation methodology in ma-
chine learning, in order to assess how the results of a machine learning predictive method
will generalize to an independent (out-of-sample) data set. It allows us to learn an inter-
polation model from a data set of known data (training data set), while an out-of-sample
data set of unknown data (testing data set) can be used to evaluate the performance of
the learned model. We note that by resorting to this methodology our evaluation limits
problems like overfitting and gives an insight on how the interpolation model will gener-
alize to an out-of-sample data set. Specifically, we use the k-fold cross validation, in order
to randomly partition geosensors into k equally-sized complementary sub-samples (folds),
so that the holdout evaluation methodology can be repeated k times across the derived
folds. Each time the hold-out method consists in performing the training phase on one
subset (called the training set) and using the learning model to predict unused data in
the other subset (called the testing set).! Procedurally, we repeat the learning phase on k

1One of the main reasons for using cross-validation instead of using the conventional validation (e.g. repeatedly
partitioning the data set into two disjoint sets for training and for testing) is that, in several cases, there is
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trials. At each trial one of the k folds is used as the testing set producer and the hold-out
k — 1 folds are put together to form a training set producer. The interpolation model is
learned from the data measured from the training geosensors. This interpolation model
is then used to predict out-of training data measured from the corresponding testing
geosensors. In this way, the testing predictions are computed across all the k trials. The
advantage of this methodology is that it matters less how the data are divided. Every
data point is in a testing set exactly once and is in a training set £ — 1 times. Finally,
we note that, according to the described use of the k-fold cross validation, the learning
phase of the interpolation process is never performed by considering cross-sectional data
pooled over time. This satisfies our problem formulation, where the PCA is computed
by treating the full series of the windowed data of each training geosensor as a single
example of the training set. We note that this formulation is coherent with the main
goal of this paper, that is, illustrating an interpolation algorithm to supplement unseen
data, where no geosensor is installed to acquire them. This scope is slightly different
from the case inherent to the cross sectional data, where we consider geosensors that
may miss data acquisitions at certain times and the interpolation algorithm can be used
to supplement these missed data.

We perform the five-fold cross validation (k = 5) with NCDC, SR and SAC and the
leave-one-out cross validation with ARPA, MESA and TCEQ. The leave-one-out cross
validation is a special case of the k-fold cross validation, which splits a network of K
geosensors into K folds of size 1 (k = K). We use the leave-one-out cross validation
to guarantee a sufficiently large training set when a small network (ARPA with K =
20, MESA with K = 20 and TCEQ with K = 26) is used to collect the geophysical
data. In this study, the accuracy of the interpolation process is measured over the k-fold
cross validation of a data set in terms of the Root Mean Squared Error and the Akaike
information criterion. Formally, let D(Z, G, AT) be a geophysical data set, G1,...,Gj a
k-fold cross validation that partitions the geosensor network G into k disjoint geosensor

k
folds (U Gp, = G and for each 1 < hy,he < k, hy # ha G, N Gp, = @), then RMSE

h=1
and AIC are computed as follows:

RSS(D)
size(D)’ (3)
RSS
size(D)

RMSE(D) =

AIC = size(D) In +2H, (4)

N T
where RSS(D) = Z Z (21, (9i) — 2, (gz-))2 is the residual sums-of-squares. size(D) is
i=1 j=1
the data set size, that is, size(D) = N x T, with N the number of geosensors in G and
T the number of time points in AT 2, (g;) is the field value measured by geosensor g; at
time ¢;. 2, (g;) is the field value predicted for geosensor g; at time ¢; by the interpolation
model learned from the complementary training set of g;. Let G}, be the fold comprising
gi (gi € Gp). The interpolation model to predict Z(g;) is learned from the training set

not enough data available to partition a data set into separate training and test sets without losing significant
modeling or testing capability. In these cases, a fair way to properly estimate model prediction performance is to
use cross-validation as a powerful general technique.
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observed by the geosensors belonging to G — Gp,. Finally, H is the number of estimated
parameters (variogram family, nugget, sill and range for each theoretical variogram fitted
to a sample variogram) in the interpolation models. We note that AIC is a criterion
which includes a penalty in the error estimate for all computed parameters. The lower
the RMSE and AIC, the better the interpolation model.

5.2.2.  Efficiency evaluation

The efficiency of the interpolation process is measured as the computation time (in
seconds) spent in learning the interpolation models of each data set. For each data set,
the computation times are measured by running the interpolation algorithm (without k-
fold cross validation) on an Intel(R) Core(TM) i7-4720U CPU@2.60GHz and 16G RAM
running Microsoft Windows 8.1 (64 bit).

5.3. Compared algorithms

The implementation of the algorithms compared in this experimental study is writ-
ten in R (version Rx64 3.4.0). Both the code and the data can be downloaded at

http://www.di.uniba.it/~appice/software/COSTK/index.htm. CoSTK is the local
spatio-temporal algorithm that implements the interpolation strategy illustrated in this
study. To investigate the effectiveness of PCA we also evaluate a variant (named CoKALL)
that excludes PCA, constructs one secondary co-variable for each backward time point in
the window and injects windowed co-variables in CoKriging.! In addition, we evaluate a
variant (named CoSTKPC) that employes PCA, selects the top-ranked Principal Compo-
nents, which explain 90% of the variance in the backward windowed data, and considers
the selected Principal Components as distinct secondary co-variables in CoKriging. The
technical set-up of these algorithms is described in Section 4.2.1.

Kriging (Krige 1951, Cressie 1993) is the purely spatial interpolate baseline. It learns a
local, spatial Kriging interpolation model for each time point ¢, so that the model learned
from the training data of the ¢t-stamped data snapshot is used to predict testing data
in the same t-stamped snapshot. For the technical set-up of this algorithm we consider
the Linear, Gaussian, Exponential, Spherical and Matern models as candidate theoretical
models. We use the Weighted-Least Mean Square method with weights equal to N;/ (h?),
starting from default initial parameters (see details in (Pebesma and Graeler 2017)). We
select the best theoretical model minimizing the fitting error.

STKriging (Gréler et al. 2016) is the global spatio-temporal baseline. It learns the
global spatio-temporal Kriging interpolation model from the entire data set. The same
global model is then used to predict testing data at each time point of the observational
time interval. We use the separable model to represent each spatio-temporal covariance
function as the product of a spatial and temporal term with a global sill. We select this
model based upon the consideration that the separable model has a strong computational
advantage in the se