ASM – Analisi di Alcune Properietà

ASM - Proprietà

ASM in sintesi

- ASM
- Simulano l'esecuzione di pseudo-codice arbitrario su strutture dati
- Semplicità concettuale e facilità di utilizzo
- Metodologia di sviluppo gerarchica:
 - Ground model
 - Raffinamenti successivi
- Qualità dipendente dal problema, non dalla notazione delle ASM

3

PN in sintesi

- PN
- Ideate per rappresentare sistemi complessi
 - Concorrenza
 - Sincronizzazione
- Composizione di sotto-reti
- Una transizione influenza solo una parte dello stato complessivo

ASM - Proprietà 2

PN – ASM: Corrispondenze

- Si riconoscono alcune corrispondenze:
 - Posti e stati
 - Transizioni e coppie di condizione + regola
 - Marcature: passaggio attraverso uno stato

ASM - Proprietà

Reachability

- Def.: Cammino
 - sequenza di stati collegati da regole
- Stato S_n raggiungibile dallo stato iniziale S₀ se esiste un cammino che collega S₀ con S_n
 - $-\exists P = \{S0, ..., Sn\}$
 - $\, \forall i \in N, \, 0 \le i < n, \, C_i \, soddisfatta, \, R_i \, eseguita$

ASM - Proprietà 5

Liveness (2)

- S_n è uno stato vitale (gode di vitalità), se:
 - -S_n è raggiungibile
 - $\begin{array}{l} \forall \ P_i = \{S_0, \ S_1{}^i, \ ..., \ S_{n-1}{}^i, \ S_n\} \ i\text{-esimo cammino} \\ \text{in A che collega} \ S_0 \ \text{con} \ S_n \ e \ \forall \ S_j{}^i \in P_i, \\ \text{ovviamente con} \ S_j{}^i \neq S_0, \ S_n, \ j\text{-esimo stato del} \\ \text{cammino} \ P_i, \ \text{allora} \ S_i{}^j \ \text{deve essere un punto di} \\ \text{raggiungibilità per } \ S_n \end{array}$
 - Per almeno uno di questi S_jⁱ, S_n deve a sua volta fungere da punto di raggiungibilità.

Liveness (1)

- Def.: Punto di Raggiungibilità
 - sia A una ASM, S_0 ed S_n due suoi stati distinti con S_0 stato iniziale, $P = \{S_0, \ldots, S_n\}, S_i \in P$ uno stato nel cammino P, allora S_i si dice punto di raggiungibilità per S_n , se per ogni stato S_j nel grafo di raggiungibilità di S_i , allora S_n è raggiungibile da S_i .

ASM - Proprietà 6

Reversibilità

- Se un uno stato Sn è raggiungibile dallo stato iniziale S0, allora S0 deve risultare raggiungibile da Sn
 - Esistenza del cammino inverso
 - Cammino inverso ≠ sequenza inversa

Completezza

- Implica la possibilità di attivare lo stato designato a partire da un qualsiasi stato iniziale
 - La ASM sarà completa se esiste un cammino tra ogni differente stato nella rete
 - $-\forall$ Si \neq Sn : \exists P = {Si, ..., Sn}

ASM - Proprietà

Complessità

- Strettamente legata alle capacità computazionali del sistema
- Def. Molteplicità: numero di percorsi distinti che collegano una coppia di stati
- Complessità è il massimo della molteplicità dello stato calcolata su ogni diverso stato da quello finale
 - max (m(S,Sn)), \forall S \neq Sn

Multimodalità

 ASM multimodale se esistono diverse successioni di coppie regola/condizione che portano la ASM in uno stesso stato computazionale

$$-∃$$
 P1 = {S0, ..., Sn},
 $-∃$ P2 = {S0, ..., Sn},
 $-∃$ Si ∈ P1 e Sj ∈ P2 | Si, Sj ≠ S0, Sn ∧ Si
 $≠$ Sj

ASM - Proprietà 10

Metodologia di Verifica

- Definizione di un algoritmo che prende in input una specifica di una ASM e produce un grafo orientato
- · Proprietà dell'algoritmo
 - Visita in ampiezza
 - Normalizzazione (eliminazione dei cappi)
 - · Calcolo della complessità
- Ricondurre lo studio delle proprietà come studio delle proprietà di strutture algebriche già note

ASM - Proprietà 11

12