Reti di Petri - Introduzione

Premessa (1)

- Una Rete di Petri (Petri Net PN) è
 - -un modello astratto e formale

Reti di Petri - Introduzione

- per la rappresentazione del comportamento dinamico di sistemi discreti
- -che esibiscono attività asincrone e concorrenti

Reti di Petri - Introduzione

Premessa (2)

- Molto usate nella modellizzazione di
 - -Sistemi concorrenti
 - Interazione tra sistemi diversi, compresa utente-computer
 - -Protocolli di comunicazione
 - -Workflow
 - -Sistemi complessi

— . . .

Notazione (1)

- Concettualmente una PN è costituita
 - -da un insieme di elementi, detti posti, che rappresentano i possibili stati del sistema
 - da un insieme di transizioni, che rappresentano gli eventi che quando si verificano determinano cambiamenti di stato
 - -da un insieme di elementi, detti token, la cui presenza/assenza/numerosità/tipo/... permette l'attivazione delle transizioni

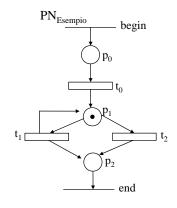
Reti di Petri - Introduzione 3 Reti di Petri - Introduzione 4

Notazione (2)

- Le PN sono rappresentate come grafi
 - -i cui nodi sono
 - i posti, raffigurati con dei cerchi
 - le transizioni, raffigurate con dei rettangoli
 - i cui archi sono i link che collegano posti e transizioni
- I token sono rappresentati come pallini all'interno dei posti

Reti di Petri - Introduzione 5

Notazione (4)


- In un dato istante uno o più posti possono essere marcati
 - La marcatura (token) indica che determinati eventi relativi a quel posto si sono compiuti
 - Una marcatura è indicata da un pallino all'interno di un posto

Notazione (3)

- Attenzione: a differenza di altri formalismi, le transizioni di stato NON sono raffigurate come i link tra gli stati
- Gli archi di input connettono posti con transizioni
- Gli archi di output connettono transizioni con posti

Reti di Petri - Introduzione 6

Esempio (1)

Esempio (2)

- PN_{Esempio} è il nome della rete
- I posti sono p₀, p₁, p₂, di cui
 - -p₀ è l'unico posto iniziale
 - -p₁ ha una marca
 - −p₂ è l'unico posto finale
- Le transizioni sono t₀, t₁, t₂

Reti di Petri - Introduzione

Informalmente (2)

- Il comportamento dinamico di una PN è controllato (gestito, determinato, ...) dal movimento e dalla propagazione dei token
- La disponibilità di token nei posti che precedono una transizione
 - -permette l'attivazione della transizione
 - determina la disponibilità di token nei posti che seguono la transizione, così da permettere la successiva propagazione

Informalmente (1)

- Un posto rappresenta una locazione in cui risiedono i token
 - un posto può essere considerato come una memoria (temporanea o persistente) di dati
 - in ogni istante, un posto può essere visto
 come un contenitore di un numero (variabile o costante) di token

Reti di Petri - Introduzione 10

Computazione (1)

- Lo stato corrente del sistema è dato dal numero (e, quando ha senso parlarne, anche dal tipo/colore) di token presenti in ogni posto
- Le transizioni rappresentano le componenti attive del sistema
 - modellizzano le attività computazionali che sono svolte quando scatta la transizione

Reti di Petri - Introduzione 11 Reti di Petri - Introduzione 12

Computazione (2)

- L'esecuzione di una transizione determina un cambiamento nello stato del sistema
 - -cambiamento delle marcature
- Le transizioni possono scattare solo quando sono abilitate

Reti di Petri - Introduzione 13 Reti di Petri - Introduzione 14

PN: Definizioni

- PN=<Name, P, T, E, P', Q, M>, dove
 - Name è il nome della rete
 - $-P = \{p_0, p_1, ..., p_n\}$ insieme finito, non vuoto di posti
 - $-T = \{t_0, t_1, ..., t_m\}$ insieme finito non vuoto di transizioni
 - E ⊆ (PXT) ∪ (TXP) insieme di archi orientati che vanno da posti a transizioni o da transizioni a posti
 - P' ⊆ P insieme finito non vuoto di posti iniziali
 - -Q⊆Pè insieme finito non vuoto di posti finali
 - M : P -> {0,1} è la funzione di marcatura che associa ad ogni posto di P il valore 0 o 1
 - ∀ p_i se M(p_i)-1 allora p_i si dice marcato, altrimenti non marcato

Abilitazione

- Una transizione di stato è abilitata solo se tutti i posti che precedono quella transizione hanno un opportuno grado di marcatura
 - le precondizioni per l'esecuzione di quella transizione sono soddisfatte

Preset/Postset

- ∀ t_i il suo preset è l'insieme di posti che la precedono
 - –È indicato con Pr(t_i)
 - -Se \forall p_j ∈ Pr(t_i) M(p_j)=1 allora diciamo che Pr(t_i) è marcato
- ∀ t_i il suo postset è l'insieme di posti che la seguono
 - −È indicato con Post(t_i)

Attivazione

- Una transizione è attivabile se il suo preset è marcato
- Quando una transizione t_i viene attivata allora
 - I posti del suo preset perdono una marca
 - $\forall p_i \in Pr(t_i) M(p_i)=0$
 - -I posti del suo postset ne acquisiscono una
 - $\forall p_h \in Post(t_i) M(p_h)=1$

Reti di Petri - Introduzione 17

Costrutto di sequenza

 La sequenza in una PN è definita dalle transizioni che permettono di passare da un posto nel Preset a un posto in Postset

Esecuzione di una PN

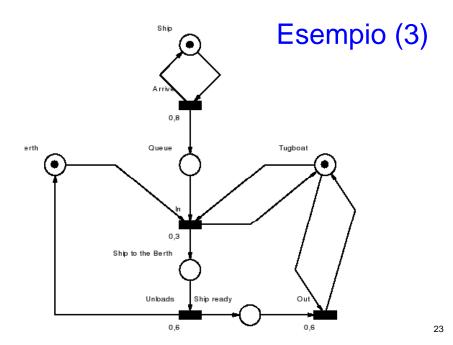
- Eseguire una PN significa stabilire uno o più cammini che legano uno o più elementi di P' a un elemento di Q
- È necessario marcare tutti i posti in P'
- Vengono poi attivate in sequenza tutte le transizioni attivabili lungo un cammino
- L'esecuzione termina quando un elemento in Q è marcato

Reti di Petri - Introduzione 18

Costrutto di iterazione

- Il costrutto di iterazione in una PN è realizzato con uno più archi che collegano una transizione a uno o più posti del suo preset
 - Ogni volta che la transizione viene attivata, il suo preset viene nuovamente marcato, e quindi la transizione è nuovamente attivabile

Reti di Petri - Introduzione 19 Reti di Petri - Introduzione 20


Esempio (1)

- Un sistema portuale prevede
 - -un molo, dove attraccano le navi
 - un rimorchiatore, che scorta l'ingresso/uscita delle navi
- Le navi arrivano all'esterno di un porto con una frequenza di 80 minuti
- Una nave è scortata dall'esterno al molo da un rimorchiatore
 - -tempo richiesto: 30 min.
- –solo dopo l'attracco della nave al molo il

Esempio (2)

- Le operazioni di scarico della nave richiedono 60 min
- Dopo aver completato lo scarico, se il rimorchiatore è disponibile scorta la nave all'esterno
 - -tempo richiesto 60 min
 - -il molo diventa disponibile per altre navi

Reti di Petri - Introduzione 22

