
1

Università di Bari Aldo Moro
CdL Magistrale in Informatica

Corso di Modellazione Sistemi Distribuiti
Cooperativi

Seminario su: Modellazione mediante ASM di
EMS in un ambiente di Grid Computing

Dott. Luciano Manelli

2

Grid - OGSA
L'architettura di un sistema GRID è stata definita da I.Foster e

C.Kesselman quale “wide-scale distributed computing
infrastructure to support large computing resources sharing
and cooperating to solve problems in dynamic multi-
institutional Virtual Organizations”.

Sono state definite tre principali caratteristiche:
1) a large-scale coordinated management of resources

belonging to different administrative domains,
2) standard, open, multi-purpose protocols and
3) good performance parameters.
Grazie all’uso di risorse distribuite eterogenee, i grid systems

stanno divenendo una valida alternativa ai tradizionali
sistemi distribuiti

3

Grid - OGSA

The OGSA standard:
- describes requirements (such as interoperability

and resource sharing, optimisation, quality of
service, job execution, data services, security,
scalability and extensibility) ;

- and considers six important independent
capabilities needed to support grid systems and
applications: Execution Management Services;
Data Services; Resource Management Services;
Security Services; Self-Management Services; and
Information Services.

4

Grid - OGSA

In particular the Execution Management Services
(EMS) address the job management and execution
capability of a grid system and it is concerned
with the research of candidate locations for

- execution,
- preparation for execution,
- initiating and managing the execution of jobs until

the end.

5

Grid - OGSA

These requirements are also partially fulfilled by
OGSA specifications in the Basic Execution
Service. In particular, any grid middleware offers
a job management and execution capability, as it
enables users to use distributed resources for
computationally intensive applications. In fact,
EMS are also implemented in the Globus Toolkit
and in gLite, both used in several grid
deployments.

6

Collective

Computing Services in the Layered Grid Architecture

Application

Fabric

Connectivity

Resource“Sharing single
resources”:
negotiating access,
controlling use”

Internet
Transport

Application

Link

Internet Protocol A
rchitecture

Grid
Architecture

Internet
Architecture

7

Job types

• Sequential, batch jobs
• Parallel (MPI) jobs
• Checkpointable jobs
• Interactive jobs
• DAG jobs (set of jobs with inter-dependencies

modeled with Directed Cycle-Free Graphs)
• Partitionable jobs

– Jobs to be partitioned within the CE

8

Job States
• SUBMITTED: the user has submitted the job via UI
• WAITING. the WMS has received the job
• READY: A CE, which matches job requirements, has been selected, and the job

is transferred to the JSS
• SCHEDULED: the JSS has sent the job to the CE
• RUNNING: the job is running on the CE
• DONE: this state has different meanings:

- DONE (ok) : the execution has terminated on the CE (WN) with success
- DONE (failure) : the execution has terminated on the CE (WN) with some problems
- DONE (cancelled) : the job has been cancelled with success

• OUTPUTREADY: the output sandbox is ready to be retrieved by the user
– reflects the time difference between end of computation on CE and the moment

WMS got necessary notification about job termination.

• CLEARED: the user has retrieved all output files successfully, and the job
bookkeeping information is purged some time after the job enters in this state.

• ABORTED: the job has failed
– The job may fail for several reasons one of them is external to its execution (no

resource found).

9

State Diagram
SUBMITTED

WAITING

READY

SCHEDULED

RUNNING

DONE(ok)DONE(failed)

OUTPUTREADY

CLEARED

ABORTEDDONE(cancelled)

10

Grid - OGSA

Unfortunately, a uniform access to resources is not
available across these two different middlewares.
That means, for example, that jobs originated on
Globus Toolkit cannot be forwarded to gLite, even
if they have access authorizations to resources.

11

Grid - OGSA

So, the use of grid formal models can help the high-
level middleware design with the reduction of the
risk that a change in the dynamics specifications
could have a large impact on the specification of
other aspects. Furthermore, the grid model-based
approaches allow the specification of dynamic
aspects in a more intuitive way, without the
necessity of having programming skills.

12

Grid - OGSA
The system is always initially in a state of inactivity, i.e.

waiting for a job is submitted. When a client application
uses the grid system, a job is submitted. A user can also
cancel the submitted job. A job is the smallest unit that the
grid system manages. The system controls the availability
of needed resources. Available resources are those
resources that meet the system necessities (the
“matchmaking”). Every different grid middleware controls
the resource discovery, allocation and reallocation in
different way, that addresses questions of efficiency,
stability and scalability and each resource is controlled by
its owner host.

13

Grid - OGSA
If the necessary resources are available, these are allocated

and ready to begin the computation. The allocation consists
of assigning and queuing the job, eventually scheduled, to
their local manager, otherwise, the system returns inactive
aborting the execution of the submitted job and returning
ready for a new job, or for a different use by the host. If all
the sub-processes are correctly performed, the execution of
the submitted job can be considered completed without
problems. On the other case, the system leaves all the
resources and returns inactive. A resource could fail the
execution of its job because of any problem. If a resource
fails the job, this returns inactive.

14

Grid - OGSA
A grid system is constituted by a pool of distributed resources and it can

be available for a job. It implements the following requirements.
Req.1 A job can be submitted to the grid; if there is no job, the system

remains in a inactivity state.
Req.3 The grid middleware checks the matchmaking between resources

and job constraints before the execution; if there are problems (e.g.
lack of memory or of devices, or slow CPU speed, etc.) the system
reject the job.

Req.4 After accepting the job the system runs it.
Req.5 If there are no failures the job is completed; on the other case the

job fails.
Req.6 A user can cancel a job every time.
Req.7 At the end of the computation (job completed or aborted for every

reason) every resource is released.
Req.8 If software or hardware errors occur the job is aborted.
Req.9 At the end of every computation the result is communicated to the

end user.

15

Grid - OGSA
It is evident, from analyses requirements, that the system, during

execution of a job, passes through various states. Considering the
system states emerged in the process and requirements explanation,
jobs traverse the following set of states:

IDLE. The system starts in state of inactivity.
READY. After the control of the availability of every resource, the system

is enabled to start execution of a job on such a resource, which
matches job requirements.

RUNNING. The job is executing on computational resources.
FAILED. The computation can fail due to some error or failure event.
DONE OK. The job is terminated successfully.
CANCELLED,REMOVED. The job has been successfully cancelled on

user request.
ABORTED: job processing is aborted by grid middleware due to some

error or failure event.
16

Grid - OGSA
We can note in Figure 1 the graphical representation of the system internal state flow.

17

Grid – OGSA - Rules

18

Grid – OGSA – Locations 1
State 1: Idle

active : false

monitoredState : “IDLE”

State 2: Ready

active : true

loadJob(job, system) : the job is loaded

monitoredState : “READY”

19

Grid – OGSA – Locations 2
State 3: Running

allocateResources(system, job, resources) : the
resource are allocated

addLocalQueue (job, resources) : the job is in
queue at the resource and the local counter is
incremented

run(job) : the job is running

monitoredState : “RUNNING”

20

Grid – OGSA – Locations 3
State 4: Done ok

minusLocalQueue (job, resources) : the local queue
is changed and the local counter is decremented

completeSuccessJob : true

terminedLocalJob : true

showOutputMessageJob : “JOB OK”

monitoredState : “DONE OK”

21

Grid – OGSA – Locations 4
State 5: Cancelled

completeSuccessJob : false

cancelledJob : true

showOutputMessageJob : “JOB CANCELLED”

monitoredState : “CANCELLED”

22

Grid – OGSA – Locations 5
State 6: Removed

minusLocalQueue (job, resources) : the local queue is
changed and the local counter is decremented

releaseResources(system, job, resources) :
resources are released

completeSuccessJob : false

terminedLocalJob : true

removedJob : true

showOutputMessageJob : “JOB REMOVED”

monitoredState : “REMOVED”

23

Grid – OGSA – Locations 6
State 7: Aborted

completeSuccessJob : false

abortedJob : true

showOutputMessageJob : “ERROR”

monitoredState : “ABORTED”

24

Grid – OGSA – Locations 7
State 8: Failed

minusLocalQueue (job, resources) : the local queue
is changed and the local counter is decremented

completeSuccessJob : false

terminedLocalJob : true

showOutputMessageJob : “JOB FAILED”

monitoredState : “FAILED”

25

Grid – OGSA – Rules - SUBMIT

if state= IDLE
if submittedJob is true
SUBMIT rule {

monitoredState:= “READY” (5)
active :=true
loadJob(job,system)
state := READY

}
26

Grid – OGSA – Rules - ACCEPT
if state= READY

if atLeastOneResourceForType(job,resources) is
true
ACCEPT rule {

monitoredState:= “RUNNING”

allocateResources(system,job,resources)
addLocalQueue (job,resources)
run(job)
state := RUNNING

}

27

Grid – OGSA – Rules - REJECT
if atLeastOneResourceForType(job,resources) is

false
REJECT rule {

monitoredState:= “ABORTED” (7)
completeSuccessJob := false
abortedJob := true
showOutputMessageJob:="ERROR
state :=ABORTED

}

28

Grid – OGSA – Rules -
COMPLETE

if state= RUNNING
if notFailureAnySubProcs (job,resources) is true

and completeAllSubProcs (job,resources) is true
COMPLETE rule {

monitoredState:= “DONE OK”
completeSuccessJob := true

showOutputMessageJob:="JOB OK"
terminedLocalJob:=true

minusLocalQueue(job,resources)
state := DONE OK

}

29

Grid – OGSA – Rules -
FAILURE

if state= RUNNING
if notFailureAnySubProcs (job,resources) is false

or completeAllSubProcs (job,resources) is false
FAILURE rule {

monitoredState:= “FAILED”
(9)

completeSuccessJob := false
showOutputMessageJob:="JOB

FAILED"
terminedLocalJob:=true

minusLocalQueue(job,resources)
state := FAILED

} 30

Grid – OGSA – Rules -
CANCEL

if cancelRequest is true
CANCEL rule {

monitoredState:= “CANCELLED” (10)
showOutputMessageJob:="JOB CANCELLED"
completeSuccessJob := false
cancelledJob := true
state := CANCELLED

}

31

Grid – OGSA – Rules -
REMOVE

if abortRunning is true
REMOVE rule {

monitoredState:= “REMOVED” (11)
showOutputMessageJob:="JOB REMOVED"
completeSuccessJob := false
terminedLocalJob:=true
removedJob := true

minusLocalQueue(job,resources)
releaseResources(system, job, resources)
state := REMOVED

}
32

Grid – OGSA – Rules - FINISH
if termination(job) is true

FINISH rule {
monitoredState:= “IDLE” (12)
active:=false
showOutput(showOutputMessageJob)
state := IDLE

}

33

Grid – OGSA – Rules - ERROR
if termination(job) is false

ERROR rule{
monitoredState:= “IDLE” (13)
active:=false
printStackTrace(system, job, resources)
recoverySystem(system, job, resources)
state := IDLE

}

34

Grid – OGSA – Transition 1

35

Grid – OGSA – Transition 2

36

Grid – OGSA – Transition 3

37

Grid – OGSA – Transition 4

38

Grid - OGSA

39

Job Submission Scenario

UI
JDL

Logging &
Bookkeeping
(LB)

WMS

Job Submission
Service (JSS)

Storage
Element
(SE)

Compute
Element CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

40

UI
JDL

Logging &
Bookkeeping
(LB)

(WMS)

Job Submission
Service (JSS)

Storage
Element
(SE)

Compute
Element (CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

Job Submit
Event

Input Sandbox
Job Status

submitted

Job Submission Scenario

41

UI
JDL

Logging &
Bookkeeping
(LB)

WMS

Job Submission
Service (JSS)

Storage
Element
(SE)

Compute
Element (CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

Job Status

submitted

waiting

Job Submission Scenario

42

UI
JDL

Logging &
Bookkeeping
(LB)

WMS

Job Submission
Service (JSS)

Storage
Element
(SE)

Compute
Element (CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

Job Status

submitted

waiting

ready

Job Submission Scenario

43

UI
JDL

Logging &
Bookkeeping
(LB)

(WMS)

Job Submission
Service
(JSS)

Storage
Element
(SE)

Compute
Element (CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

Job Status

submitted

waiting

ready

BrokerInfo

scheduled

Job Submission Scenario

44

UI
JDL

Logging &
Bookkeeping
(LB)

(WMS)

Job Submission
Service (JSS)

Storage
Element
(SE)

Compute
Element (CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

Job Status

submitted

waiting

ready

scheduled
Input Sandbox

running

Job Submission Scenario

45

UI
JDL

Logging &
Bookkeeping
(LB)

(WMS)

Job Submission
Service (JSS)

Storage
Element
(SE)

Computing
Element (CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

Job Status

submitted

waiting

ready

scheduled

Job Status

running

Job Submission Scenario

46

UI
JDL

Logging &
Bookkeeping

WMS

Job Submission
Service

Storage
Element

Compute
Element

Information
Service

Logical File
Catalog
(LFC)

submitted

waiting

ready

scheduled

running

Job Status

done

Job Status
Job Submission Scenario

47

UI
JDL

Logging &
Bookkeeping

WMS

Job Submission
Service

Storage
Element

Compute
Element

Information
Service

Logical File
Catalog

submitted

waiting

ready

scheduled

running

done

Job Status

Job Status

outputready

Output Sandbox

Job Submission Scenario

48

UI
JDL

Logging &
Bookkeeping
(LB)

WMS

Job Submission
Service (JS)

Storage
Element
(SE)

Compute
Element (CE)

Information
Service (IS)

Logical File
Catalog
(LFC)

Output Sandbox

cleared

submitted

waiting

ready

scheduled

running

done

Job Status

outputready

Job Submission Scenario

