## La Macchina di Turing

La Macchina di Turing

#### Sommario

- Codifica dei dati
- Macchina Astratta
- Definizioni
- Esempi

La Macchina di Turing

#### Codifica dei dati

- È possibile introdurre la teoria della computabilità facendo riferimento ad algoritmi che elaborano numeri naturali
- Non è una limitazione, nonostante l'informatica tratti algoritmi relativi a dati di varia natura (testi, immagini, suoni, video, ...)
- Non si ha perdita di generalità in quanto è possibile codificare algoritmicamente qualsiasi tipo di dato in un numero naturale

Macchina di Turing

#### Macchina Astratta (1)

- La Macchina di Turing (TM) è una macchina astratta: non corrisponde ad alcuna macchina reale
  - Originariamente chiamata Logical Computing Machine - LCM
- Non si considerano quei vincoli che intervengono nella realizzazione di macchine da calcolo reali
  - Dimensione memoria
  - Tempo di calcolo

. . La Macchina di Turin

### Macchina Astratta (2)

- È definita indipendentemente dalla sua realizzazione fisica
- Definisce esclusivamente relazioni funzionali tra le sue parti

## Macchina Astratta (3)

- Storicamente introdotta da Alan Turing per indagare il problema della decisione (Entscheidungsproblem) posto da David Hilbert:
  - Esiste una procedura formale per decidere se una data affermazione matematica è vera?
- La TM nasce quindi uno strumento matematico concettuale, per studiare problemi di natura matematica
  - e con elevato impatto sulla filosofia del XX e XXI secolo

## Verso la Definizione (1)

- Un calcolo svolto da un umano consiste nell'operare su un insieme di simboli scritti su un opportuno supporto
  - È inessenziale che il supporto sia bidimensionale, ma deve essere sufficientemente grande, e tale che in una posizione si possa scrivere un solo simbolo
- I simboli devono appartenere a un prefissato alfabeto

### Verso la Definizione (2)

- Un umano, per svolgere un calcolo, effettua una successione di operazioni elementari
  - Ogni operazione svolta per il calcolo dipende dalle operazioni precedenti e dai simboli letti
  - Ogni operazione svolta determina un cambiamento dello stato mentale di chi la svolge
- Un umano, mentre svolge un calcolo, ricorda solo un numero finito di simboli letti dal supporto
  - Quando necessario cerca le informazioni sul supporto, focalizzando l'attenzione sui simboli a sinistra o a destra della posizione corrente

## Verso la Definizione (3)

- Il calcolo ha fine quando giunti a un certo punto non è possibile svolgere più alcuna operazione
  - Il risultato potrebbe anche non essere ottenuto
- Un calcolo è svolto utilizzando un insieme di dati di input, che l'umano riceve dall'esterno
  - per semplicità supponiamo noto l'input all'inizio del calcolo

La Macchina di Turing

## Macchina di Turing: Struttura (1)

- È un apparato costituito da:
  - un nastro monodimensionale, di lunghezza infinita, suddiviso in celle, ognuna delle quali può essere vuota oppure contenere un solo simbolo
  - una testina di lettura/scrittura dei simboli dalle/sulle celle
    - La testina oltre a leggere/scrivere, si può spostare di una cella a sinistra, a destra, oppure può restare ferma

La Macchina di Turing

10

# Macchina di Turing: Struttura (2)

- Sul nastro sono scritti i simboli manipolati dalla TM
  - Appartengono ad un alfabeto Σ

Macchina di Turing

# Macchina di Turing: Funzionamento (1)

- In ogni fase del calcolo, la testina è posizionata su una cella del nastro, contenente un simbolo  $s_i \in \Sigma$
- La TM può svolgere una operazione atomica:
  - leggere il simbolo contenuto della cella
  - scrivere un simbolo (eventualmente vuoto) nella cella
  - spostare la testina di un passo (a sinistra o a destra)
  - lasciare la testina ferma

# Macchina di Turing: Funzionamento (2)

- La successione degli eventi precedenti determina in ogni istante uno e un solo (TM deterministica) stato della TM
  - siano  $q_1, q_2, ..., q_n$  i possibili stati (finiti) di una TM
- La configurazione di una TM in un dato istante è la coppia ordinata definita dallo stato corrente q<sub>i</sub> e dal simbolo s<sub>j</sub> puntato dalla testina C=< q<sub>i</sub>, s<sub>i</sub>>

La Macchina di Turing

## Macchina di Turing: Funzionamento (3)

- Ogni TM è programmata per eseguire uno specifico calcolo
  - cioè dispone delle istruzioni per eseguire quell'unico compito
- Le istruzioni hanno la forma:

<configurazione> → <operazione atomica>

 Ogni istruzione specifica l'istruzione atomica che deve essere svolta quando la TM si trova in una data configurazione

La Macchina di Turing

. . .

# Macchina di Turing: Funzionamento (4)

- Le istruzioni di una TM sono registrate in una matrice funzionale che associa a ogni configurazione una e una sola operazione atomica
- Affinché il calcolo termini è necessario che ad almeno una configurazione possibile non corrisponda alcuna istruzione
  - Queste configurazioni sono dette finali

La Macchina di Turing

15

# Macchina di Turing: I/O

- I dati su cui opera una TM sono forniti in input scrivendoli sul nastro dall'esterno prima dell'inizio del calcolo
- L'output è ciò che è scritto sul nastro alla fine del calcolo

La Macchina di Turing

## **Definizione Formale**

- Una TM è una 7-pla TM=< Q, Σ, Δ, δ, q<sub>0</sub>, B, F >
  - Q insieme finito e non vuoto di stati
  - Σ alfabeto della macchina
  - Δ alfabeto di input
  - $-\delta$  funzione di transizione

 $\delta: (Q \times \Sigma) \to (Q \times \Sigma \times \{L, R, S\})$ 

(con L spostamento a sinistra, R a destra, S stop)

- $-q_0 \in Q$  stato iniziale
- B spazio vuoto (blank) = Σ \ Δ
- $F \subseteq Q$  insieme degli stati finali

La Macchina di Turing

## Esempio successore (1)

- Calcolo del successore di un numero
- Prima di definire la opportuna TM è necessario analizzare il problema, e "idearne" una soluzione
  - Esaminare l'ultima cifra della stringa di input
    - Se è < 9, allora sommare 1 e stop
    - Altrimenti sostituire l'ultima cifra con 0 ed esaminare la precedente
    - Ripetere il passo precedente

La Macchina di Turing

18

# Esempio successore (2)

- Sia  $\Delta = \{0, 1, 2, ..., 9\}; \Sigma = \Delta \cup B$
- Ci sono due stati:
  - − q<sub>0</sub>: deve essere aggiunto 1 − stato iniziale
  - q₁: è stato aggiunto 1 stato finale
- La matrice funzionale è:



## Tesi di Turing

- Una Logical Computing Machine può eseguire qualunque calcolo che può essere descritto come puramente meccanico
  - Tutto ciò che è calcolabile, è calcolabile attraverso una LCM (MdT)

La Macchina di Turing