Limiti della Calcolabilità

Tesi di Church

 Nel 1936 Church propone la seguente ipotesi di lavoro, nota come Tesi di Church

Qualunque funzione sui numeri naturali effettivamente calcolabile è ricorsiva

- dove
 - il concetto di "funzione ricorsiva" è definito rigorosamente
 - il concetto di "effettivamente calcolabile" non è definito matematicamente, ma solo fisicamente/meccanicamente

Sommario

- Tesi di Church, di Turing, e di Church-Turing
- Gödelizzazione
- Macchina di Turing Universale
- Problema della fermata
- Altri problemi indecidibili

Tesi di Turing

Limiti della Calcolabilità

 Nel 1936 Turing propone la seguente ipotesi di lavoro, nota come Tesi di Turing

Una Logical Computing Machine può eseguire qualunque calcolo che può essere descritto come puramente meccanico

- Quindi
 - se esiste una procedura effettiva per ottenere il valore di una funzione matematica, allora tale funzione è calcolata da una LCM/MdT
- La nozione di calcolabilità mediante MdT è formale (come quella di funzione ricorsiva)

Limiti della Calcolabilità

Tesi di Church-Turing (1)

- Le due tesi stabiliscono una corrispondenza
 - tra funzioni ricorsive e funzioni T-calcolabili
 - tra esse e la nozione informale di procedura effettiva
- Kleene ha dimostrato l'equivalenza tra le due Tesi
 - Quindi ha senso parlare di Tesi di Church-Turing

Limiti della Calcolabilità

5

Tesi di Church-Turing (2)

- Ogni algoritmo può essere espresso da un'opportuna MdT → Tutto ciò che è calcolabile, è calcolabile attraverso una MdT
- Ma, dal momento che la classe delle funzioni T-calcolabili coincide con la classe delle funzioni ricorsive generali, allora la tesi è riformulata come
- Una funzione è effettivamente calcolabile sse è ricorsiva generale

Limiti della Calcolabilità

Tesi di Church (2)

- Si dimostra che
 - ogni funzione T-calcolabile è effettivamente calcolabile
 - ogni funzione ricorsiva generale è effettivamente calcolabile

Gödelizzazione (1)

- Problema: è possibile trattare una TM mediante una TM?
 - Le TM elaborano codifiche di numeri naturali
 - Se riuscissimo a codificare in numeri naturali il comportamento di una TM, allora si potrebbe definire un'altra TM che elabora la prima

Limiti della Calcolabilità 7 Limiti della Calcolabilità

Gödelizzazione (2)

- Il comportamento di una generica TM è completamente definito dalle sue istruzioni
- Ogni istruzione associa alla configurazione corrente un'operazione atomica
 - Configurazione della macchina
 - stato corrente
 - simbolo contenuto nella cella puntata dalla testina
 - Operazione atomica
 - lettura/scrittura di un simbolo
 - spostamento della testina

Limiti della Calcolabilità

0

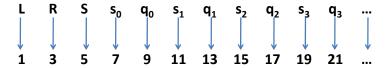
Gödelizzazione (3)

- Per codifcare una TM è quindi necessario codificare opportunamente:
 - gli stati (finiti)
 - i simboli dell'alfabeto di input (finiti)
 - gli spostamenti della testina (finiti)
 - il blank

Limiti della Calcolabilità 10

Gödelizzazione (4)

- Sia una TM provvista
 - degli stati q_0 , q_1 , q_2 , ..., q_n
 - dell'alfabeto di input con simboli s₁, s₂, ..., s_m
 - del simbolo di blank s_o
 - degli spostamenti L, R, S
- Associamo ad ogni elemento un numero dispari nel modo seguente



Gödelizzazione di una Istruzione

- Ogni istruzione I può quindi essere associata al numero naturale g(I) (numero di Gödel) moltiplicando le cinque potenze aventi come base i primi cinque numeri primi e come esponente rispettivamente i numeri dispari associati agli elementi della istruzione
- Esempio: sia I la istruzione definita dalla configurazione $<q_3$, $s_1>$ e con operazione associata $<s_0$, L, $q_1>$, allora $g(I) = 2^{21} * 3^{11} * 5^7 * 7^1 * 11^{13}$

Limiti della Calcolabilità 11 Limiti della Calcolabilità 12

Gödelizzazione di una TM

- Dal momento che una TM è identificata dall'insieme (finito) delle sue istruzioni, allora è possibile associare a ogni TM uno specifico numero di Gödel g(TM), ottenuto nel modo seguente
 - Sia n il numero di istruzioni della TM
 - Si moltiplichino le n potenze aventi come base i primi n numeri primi, e come esponenti, nell'ordine, i numeri di Gödel delle n istruzioni di TM

$$g(TM) = 2^{g(I_1)} *3^{g(I_2)} *5^{g(I_3)} *...* p_n^{g(I_n)}$$

Limiti della Calcolabilità

13

15

Macchina di Turing Universale (1)

- È possibile definire una particolare TM (la UTM) capace di simulare il comportamento di qualsiasi altra macchina di Turing M
- La UTM è una TM che riceve in input
 - la codifica di M = g(M)
 - l'input a M = I
- Per ogni M e per ogni I, la UTM decodifica le quintuple di M e le applica a I ottenendo così lo stesso output che si sarebbe ottenuto se si fosse eseguita la macchina di Turing M con input I

Macchina di Turing Universale (2)

- La UTM è in grado di simulare qualsiasi TM
- Quindi, per la tesi di Church, è in grado di calcolare qualunque funzione computabile
- Una TM è una macchina specifica per l'esecuzione di un unico algoritmo
- La UTM è un'evoluzione della TM in quanto è programmabile: si può programmare qualsiasi TM, e quindi eseguire qualsiasi algoritmo
- La UTM rappresenta il passo dalla computabilità alla programmazione

Il problema della Fermata (1)

- Stabilire se per ogni TM M e per ogni input I, l'esecuzione di M con input I termina o prosegue all'infinito?
- Il problema è indecidibile
 - Non esiste alcun algoritmo che, prendendo in input una generica TM M e un suo generico input I, produca in output un valore che stabilisce se l'esecuzione di M su I termina o meno

Limiti della Calcolabilità

Il problema della Fermata (2)

- Supponiamo per assurdo che il problema della fermata sia decidibile
- Allora (tesi di Church-Turing) esiste una TM
 Halt che riceve in input la codifica g(M) di una
 generica TM M e un suo generico input I.
- Halt produce in output
 - 1 se il calcolo di M con input I termina
 - 0 se il calcolo di M con input I non termina

Limiti della Calcolabilità

17

Il problema della Fermata (3)

- Ma se esiste Halt come quella definita allora è possibile definire un'altra TM Halt' che riceve in input g(M) e produce in output
 - − 1 se il calcolo di M con input g(M) termina
 - − 0 se il calcolo di M con input g(M) non termina
- Infatti Halt' è un caso particolare di Halt
 - Non ha più in input la coppia <g(M), l>, ma il solo elemento g(M)

Limiti della Calcolabilità 18

Il problema della Fermata (4)

- Ma se esiste Halt' come quella definita allora è possibile definire un'altra TM Confuse che riceve in input la codifica di una TM g(M) e
 - produce in output 0, se Halt' con input g(M) = 0
 - cioè Confuse termina con output 0 se Halt' con input g(M) non termina
 - genera un calcolo che non termina, se Halt' con input g(M) = 1
 - cioè Confuse non termina se Halt' con input g(M) termina

Il problema della Fermata (5)

- Confuse è una macchina assurda
- Se applicata a sé stessa, cioè eseguita con input uguale alla sua stessa codifica g(Confuse)
 - Confuse termina (con output 0) sse Confuse non termina
 - Confuse non termina sse Confuse termina

Limiti della Calcolabilità 19 Limiti della Calcolabilità 20

Altri problemi indecidibili

- Una generica istruzione di una TM M sarà eseguita almeno una volta quando M è eseguita con input I?
- Conseguenza del precedente: una TM con input I si comporta correttamente?
- Date due TM, esse sono equivalenti?
- Una generica funzione f è una funzione totale?
- ...

Conseguenze sulla Programmazione

- Non è possibile essere certi (in assoluto) che un dato programma è privo di difetti
- Non è possibile essere certi (in assoluto) che un dato programma esegue la funzione per cui è stato creato

• ...

Limiti della Calcolabilità 21 Limiti della Calcolabilità 22