Un esempio di modellizzazione mediante PN: moDElling MObile Networks

PN per Modellizzare MANET

Introduzione a MANET (1)

- MANET (Mobile Ad-hoc NETwork) indica una tipologia di reti wireless che possono operare senza la necessità di una infrastruttura fisica fissa
 - le comunicazioni tra una sorgente e una destinazione sono stabilite e mantenute dalla cooperazione tra i vari host presenti nella rete
 - -ogni host può agire
 - sia come end-point di una comunicazione (mittente/destinatario di msg)
- che come router di pacchetti PN per Modellizzare

Presentazione

- Questa dispensa introduce il tool moDEling MObile NEtworks (DEMONE) con lo scopo di mostrare un'applicazione di modellizzazione mediante Reti di Petri
- E' costituita dalle presentazioni fatte in vari congressi internazionali (WAC2007, UWA 2008, SM 2009, ACCESS2010) a cui sono stati aggiunti commenti specifici per il corso

PN per Modellizzare MANET

Introduzione a MANET (2)

- Le MANET sono sistemi altamente dinamici, a causa
 - -del duplice ruolo ricoperto da ogni host
 - del continuo cambiamento nella topologia della rete,
- Due aspetti della dinamica:
 - dinamica della rete: cambiamento della posizione degli host
 - dinamica del comportamento computazionale di ogni host

Introduzione a MANET (3) • Le MANET sono applicate per permettere la comunicazione tra -squadre di soccorso nel caso di disastri -navi durante traversate oceaniche -robot -sistemi spaziali	 Introduzione a MANET (4) Problemi definizione di protocolli di routing specifici per questo tipo di reti studio delle prestazioni necessità di sincronizzazione analisi della concorrenza 	
PN per Modellizzare 5 MANET	PN per Modellizzare 6 MANET 6	
	The problem	
Our research	 There exist several environments for simulating MANET Most of them are event-driven simulators, where components synchronization is imposed through an external clock do not allow to formally describe the system, so studying interesting computational properties is harder 	
PN per Modellizzare 7 MANET 7	PN per Modellizzare 8 MANET 8	

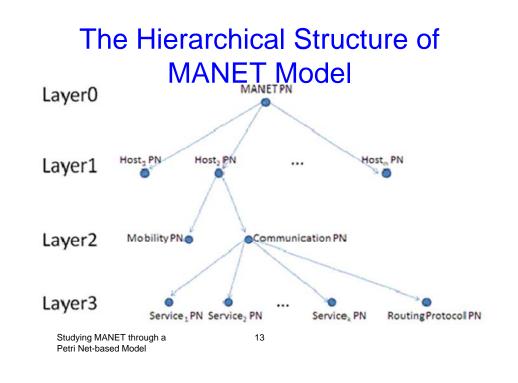
Purpose

- Building an environment
 - in which synchronization is established by the internal behaviour of the agents in the mobile system
 - -which allows formally modelling MANET
 - Petri Net
 - ASM

DEMONE moDEling MObile NEtworks

PN per Modellizzare MANET

PN per Modellizzare MANET

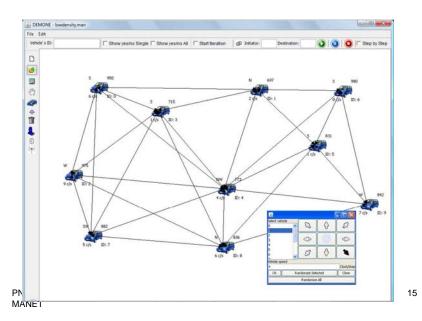

The Approach

- Modelling the MANET means describing two different abstraction levels
 - -the mobile network level, i.e., the set of communicating agents, their movement and the logical links among them
 - -the mobile system level, i.e., the formal description of each communicating agent
- Formal Model:
 - -Colored Nested Petri Nets (current release)
 - -Abstract State Machine (work in progress)
 - -... (future)

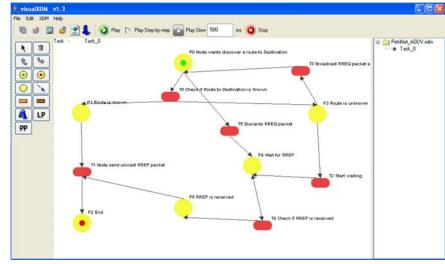
9

Petri Nets

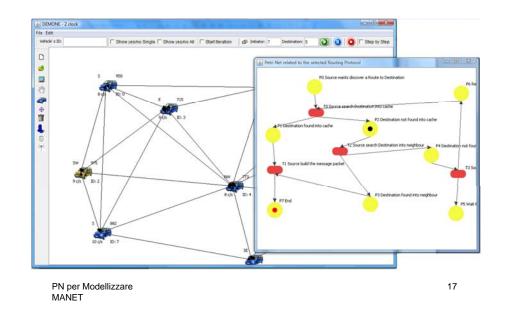
- PNs model the behavior of each communicating agent
 - -each communicating agent is a "system"
- Places are states of the system
 - characterized by specific values of state variables
- Transitions are associated to computational activities, which drive the evolution of the system


Architecture

- It includes three main logical components
 - Mobile Network editor: for configuring the MANET (number and features of communicating agents)
 - Visual XDM (conteXt-sensitive Dialog Model): editor for the PN, for modeling the behavior of hosts
 - -Mobile System Simulator: for simulating the entire system network and executing all PNs

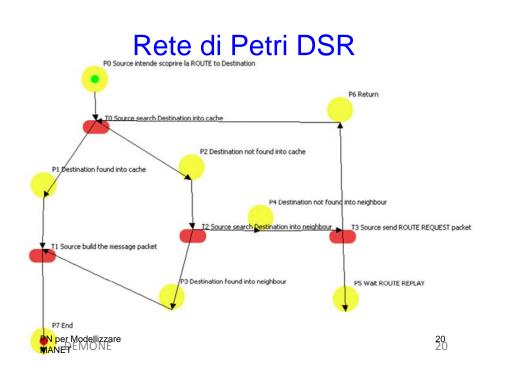

14

PN per Modellizzare MANET


MANET Editor

- Specify computational behaviour of PN Editor: communicating agents
 Visual XDM
- Implicitly defines mobile system clock

MANET Simulation



Two Routing Protocols

PN per Modellizzare MANET

Dynamic Source Routing

- Initiator wants communicate with Destination
- If (Dest is a neighbour of Init) OR (a route to Dest is in Init's cache)
 - -Communication can start
 - -End algorithm
- Init broadcasts RREQ pck to neighbours
- Algorithm reiterated until route is found
 - RREP pck is sent back to Init

Ad-hoc On demand Distance Vector - AODV

- If a route to Dest is not in Init's cache AND Dest is not a neighbour of Init
 - -RREQ pck is broadcasted to neighbours
 - If a node receiving RREQ is not Dest, neither knows a route to Dest, it
 - updates its info about route to Init
 - updates RREQ with its ID
 - broadcasts the updated RREQ

-Else it

• unicasts a RREP pck back to Init

PN per Modellizzare	
MANET	

21

Validation of DEMONE

Rete di Petri AODV

The experimentation

- Purpose: Validating DEMONE as a proper tool for simulating MANET behavior
- Method: Simulating the behavior of two popular routing protocols and comparing the results obtained by DEMONE to findings in literature
 - –1500 simulations of Dynamic Source Routing (DSR) protocol
 - –1500 simulations of Ad-hoc On-demand
 Distance Vector (AODV) protocol

PN per Modellizzare MANET

Experimental Setting

- 3 differently populated mobile networks
 - -Low density: 10 hosts
 - -Medium density: 20 hosts
 - -High density: 30 hosts
- For each host:
 - Transmission range randomly defined at the beginning, and constant for the entire simulation
 - Speed and direction randomly defined at the beginning and randomly re-defined at each clock

PN per Modellizzare MANET 25

Collected Data (1)

- For each protocol, 500 runs for each density
 - -Total: 3000 simulations
 - -In each run Init and Dest are randomly defined
- Time spent for discovering route to Dest
 - Chronological time: measured in milliseconds
 - Simulation time: measured in number of clock cycles – each PN execution is a clock cycle

PN per Modellizzare MANET 26

Collected Data (2)

• Effectiveness: rate of success in route

discovering, measured as the ratio of the total number of successful communication to the total number of trials

Collected Data (3)

- Efficiency of each protocol
 - Path optimality: (length of shortest path) / (length of actual path, discovered by the protocol)
 - Routing overhead for the network: (total number of RREQ and RREP) / (theoretical minimum number of packets required for discovery)
 - Routing overhead for each host: (number of times each host executes computational activities related to route discovery) / (network

N per Modellizzare MANET

Research Questions

- 1. For each metric M_i , except of success rate
 - H₀: There is not statistically significant difference between M_i values for DSR and AODV
 - $-H_1$: There is a statistically significant difference between M_i values for DSR and AODV
- 2. Rate of success is simply compared in the two protocols
- 3. Is simulation time able to measure time as well as chronological time?
 - -Correlation between the two time metrics in both protocols

PN per Modellizzare MANET 29

Results (1)

 Is there statistical difference between M_i values for DSR and AODV?

Metric	10 hosts	20 hosts	30 hosts
Chronological Time	YES (0,0003) (greater for AODV)	YES (0,0166) (greater for AODV)	YES (0,0119) (greater for AODV)
Simulation time	YES (0,0000) (greater for AODV)	YES (0,0000) (greater for AODV)	YES (0,0000) (greater for AODV)
Path optimality	NO (0,1580)	YES (0,0001) (greater for AODV)	YES (0,0004) (greater for AODV)
Routing overhead (network)	YES (0,0000) (greater for AODV)	YES (0,0000) (greater for AODV)	YES (0,0000) (greater for AODV)
Routing overhead (host) PN per Modellizzare	NO (0,9970)	YES (0,0395) (greater for AODV)	NO (0,9117)
MANET			

Results (2)

• Effectiveness of the protocols

Protocol	10 hosts	20 hosts	30 hosts
DSR	0,7940	0,5880	0,5800
AODV	0,9800	0,8960	0,8100

Results (3)

• Is there statistical correlation between

chronological time and simulation time?

Network Size	DSR	AODV
10 hosts	0,80	0,70
20 hosts	0,77	0,65
30 hosts	0,77	0,59

Analysis of Properties	All markings are always reachable -all computational activities specified in the model can be executed -conditions exist for executing all the components of the algorithms implementing the routing protocols
PN per Modellizzare 33	33 Studying MANET through a 34
MANET	Petri Net-based Model

Boundedness (1)

• If some tokens represent the number of communications currently managed by the MANET, boundedness specifies the maximum number of communications the system is able to process

Poochability

- PN concerning hosts acting as router is unbound
 - -each host can serve as router for indefinite

number of communications

• PN concerning hosts acting as end points are 1-bound

-Each host can start only 1 communication

Liveness

- PNs are live
 - each transition in all PNs is contained in at least a path connecting the initial marking to other markings

Conservativeness

- The PNs are not conservative
 - -Tokens are created/removed depending on the specific activities
 - If tokens represent data packets received and re-sent by intermediate host, then conservativeness can be used for verifying no packet is lost during communication sessions

Studying MANET through a 37	Studying MANET through a 38
Petri Net-based Model	Petri Net-based Model
Reversibility • The PNs are not reversible – In case of failure the control is taken by a specific module, for recovering purposes	Conclusions

Findings (1)

- In most cases the two protocols present different behavior
 - AODV is more effective, but it consumes more resources
 - -This is confirmed by literature
- The empirical study validates the capability of DEMONE to simulate MANET –but DEMONE also allows formal modeling

Findings (2)

- Trends of Simulation time and Chronological time are analogous
- The Simulation time, established by internal behavior is a good indicator of Chronological time
 - even if they cannot be considered in the same way
 - -results are encouraging and more analysis will be executed

PN per Modellizzare MANET	41	PN per Modellizzare MANET	42

DEMONE

- Imposes a new view on the synchronization of the system
- Allows
 - -formal modelling of MANET, in order to analyse computational behaviour of communicating agents and network
 - simulation of MANET: preliminary results are analogous to results known in literature and obtained with other tools

Current /Future Work

- Simulations with larger network size (50 100 hosts)
- Implementation of other models – Abstract State Machine
- Analysis of more properties
 - -Completeness: is EP reachable from SP?
 - -Complexity: max number of path for reaching EP from SP