
Applying Predicate Abstraction
to Abstract State Machines

Alessandro Bianchi, Sebastiano Pizzutilo, Gennaro Vessio
Department of Informatics – University of Bari, Italy

EMMSAD’15

Overview

• Introduction
• Background
• Our proposal
• Two examples
• Conclusion

2

The Context

Formal methods for analyzing
computationally interesting
properties

– safety: deadlock-freedom, …
– liveness: starvation-freedom, …

Abstract State Machines
(ASMs) are successfully used for 
this purpose

Introduction
Background
Our proposal
Two examples
Conclusion

3

The Problem

ASMs are Turing-equivalent: their
formal verification cannot be fully
automatized

Model checking approaches to 
ASMs suffer from:

– The loss of expressive
power

– The difficulty in using
temporal logics

Introduction
Background
Our proposal
Two examples
Conclusion

4



The Idea

Applying predicate abstraction
to ASMs

Traditionally, it approximates
program states into a finite 
number of predicates

Two advantages

Introduction
Background
Our proposal
Two examples
Conclusion

5

A Note

Predicates over the states
provide an abstraction, but we
use them only for supporting
static ASM verification

Introduction
Background
Our proposal
Two examples
Conclusion

6

Abstract State Machines

ASMs are finite sets of rules of 
the form:

if condition then updates
which transform abstract states

An ASM state is an algebraic
structure: pairs of function
names together with arguments
values are called locations

Introduction
Background
Our proposal
Two examples
Conclusion

7

A Question

Why predicates over ASM states?

An algebraic structure can model 
any object of arbitrary complexity: 
understanding the semantics of the 
model is hard

We need an abstraction
framework capable of capturing
this semantics

Introduction
Background
Our proposal
Two examples
Conclusion

8



The Answer

Using predicates over ASM states
allows a modeler to represent the local
properties of each state

Predicates over ASM states are first-
order formulas defined over ASM 
locations: in each state they can hold
or not

Global properties of the ASM model 
can then be verified by composing
these local properties

Introduction
Background
Our proposal
Two examples
Conclusion

9

Dining Philosophers

Five philosophers are sitting
around a table with a bowl of 
spaghetti in the middle

For them life consists of 
two moments: 

– thinking
– eating

(with two forks)

Introduction
Background
Our proposal
Two examples
Conclusion

10

Dining Philosophers

Each philosopher is modeled by 
an ASM:

PhilosopherProgram(pi) =
if owner(rightFork(self)) = undef ⋀
ower(leftFork(self)) = undef then {
owner(rightFork(self)) := self
owner(leftFork(self)) := self

}
if owner(rightFork(self)) = self ⋀ owner(leftFork(self)) 
= self then {
owner(rightFork(self)) := undef
owner(leftFork(self)) := undef

}

Introduction
Background
Our proposal
Two examples
Conclusion

11

Dining Philosophers

Each ASM can traverse different
states

They are characterized by the 
following predicates:

– thinking: ¬(owner(rightFork(self)) = 
self  owner(leftFork(self)) = self)

– eating: owner(rightFork(self)) = self 
owner(leftFork(self)) = self

Introduction
Background
Our proposal
Two examples
Conclusion

12



Dining Philosophers

Starvation: There is at least one
ASM that cyclically returns to 
states characterized by the same
predicate expressing the waiting
(thinking)

Deadlock: All ASMs are in a 
state in which the predicate 
expressing the waiting holds

Introduction
Background
Our proposal
Two examples
Conclusion

13

A MANET Routing Protocol

A MANET is a wireless network 
supporting communications
among nomadic hosts in 
absence of a fixed infrastructure

Introduction
Background
Our proposal
Two examples
Conclusion

14

A MANET Routing Protocol

Each host is modeled by an ASM:

HostProgram(hi) =
if ¬isEmpty(requests(self)) then {
RREQ = top(requests(self))
nextHop = sender of
top(requests(self))
updateRoutingTable(self, RREQ)
receivedRREQ(self, dest) := true
Router(RREQ, nextHop)
}
…

Introduction
Background
Our proposal
Two examples
Conclusion

15

A MANET Routing Protocol

…
if wishToInitiate(self, dest) = true then
Initiator(dest)
if ¬isEmpty(replies(self)) {
RREP = top(replies(self))
if RREP.init self then {
nextHop = select c.nextHop ∈
hostsInRT(routingTable(self))
with RREP.init = c.dest
updateRoutingTable(self, RREP)
UnicastRREP(RREP, nextHop)
dequeue RREP from replies(self)
}
}

Introduction
Background
Our proposal
Two examples
Conclusion

16



A MANET Routing Protocol

Each ASM can traverse different states

They are characterized by the following
predicates:

– idle: wishToInitiate(self, dest) = false ∧
receivedRREQ(self, dest) = false ∧
isEmpty(replies(self)) = true, ∀ dest ∈
hosts

– router: receivedRREQ(self, dest) = true
– initiator: wishToInitiate(self, dest) = true
– forwarding: isEmpty(replies(self)) = false

Introduction
Background
Our proposal
Two examples
Conclusion

17

A MANET Routing Protocol

In a host several computational
activities are executed in 
parallel

The simultaneous fulfillment of 
different predicates captures this
beahvior

Introduction
Background
Our proposal
Two examples
Conclusion

18

Lessons Learned

A given predicate can hold in 
several states

In a given state several
predicates can hold

Introduction
Background
Our proposal
Two examples
Conclusion

19

Conclusion & Future Work

Predicates over the states can 
support the static verification of 
ASM models by overcoming the 
main limitations of model checking
approaches

Specific features of predicate 
abstraction with respect to the 
different kinds of properties need
to be investigated

Introduction
Background
Our proposal
Two examples
Conclusion

20


