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The Context

Formal methods for analyzing
computationally interesting
properties

– safety: deadlock-freedom, …
– liveness: starvation-freedom, …

Abstract State Machines
(ASMs) are successfully used for 
this purpose
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The Problem

ASMs are Turing-equivalent: their
formal verification cannot be fully
automatized

Model checking approaches to 
ASMs suffer from:

– The loss of expressive
power

– The difficulty in using
temporal logics
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The Idea

Applying predicate abstraction
to ASMs

Traditionally, it approximates
program states into a finite 
number of predicates

Two advantages
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A Note

Predicates over the states
provide an abstraction, but we
use them only for supporting
static ASM verification
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Abstract State Machines

ASMs are finite sets of rules of 
the form:

if condition then updates
which transform abstract states

An ASM state is an algebraic
structure: pairs of function
names together with arguments
values are called locations
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A Question

Why predicates over ASM states?

An algebraic structure can model 
any object of arbitrary complexity: 
understanding the semantics of the 
model is hard

We need an abstraction
framework capable of capturing
this semantics
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The Answer

Using predicates over ASM states
allows a modeler to represent the local
properties of each state

Predicates over ASM states are first-
order formulas defined over ASM 
locations: in each state they can hold
or not

Global properties of the ASM model 
can then be verified by composing
these local properties
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Dining Philosophers

Five philosophers are sitting
around a table with a bowl of 
spaghetti in the middle

For them life consists of 
two moments: 

– thinking
– eating

(with two forks)
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Dining Philosophers

Each philosopher is modeled by 
an ASM:

PhilosopherProgram(pi) =
if owner(rightFork(self)) = undef ⋀
ower(leftFork(self)) = undef then {
owner(rightFork(self)) := self
owner(leftFork(self)) := self

}
if owner(rightFork(self)) = self ⋀ owner(leftFork(self)) 
= self then {
owner(rightFork(self)) := undef
owner(leftFork(self)) := undef

}
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Dining Philosophers

Each ASM can traverse different
states

They are characterized by the 
following predicates:

– thinking: ¬(owner(rightFork(self)) = 
self  owner(leftFork(self)) = self)

– eating: owner(rightFork(self)) = self 
owner(leftFork(self)) = self
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Dining Philosophers

Starvation: There is at least one
ASM that cyclically returns to 
states characterized by the same
predicate expressing the waiting
(thinking)

Deadlock: All ASMs are in a 
state in which the predicate 
expressing the waiting holds
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A MANET Routing Protocol

A MANET is a wireless network 
supporting communications
among nomadic hosts in 
absence of a fixed infrastructure
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A MANET Routing Protocol

Each host is modeled by an ASM:

HostProgram(hi) =
if ¬isEmpty(requests(self)) then {
RREQ = top(requests(self))
nextHop = sender of
top(requests(self))
updateRoutingTable(self, RREQ)
receivedRREQ(self, dest) := true
Router(RREQ, nextHop)
}
…
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A MANET Routing Protocol

…
if wishToInitiate(self, dest) = true then
Initiator(dest)
if ¬isEmpty(replies(self)) {
RREP = top(replies(self))
if RREP.init self then {
nextHop = select c.nextHop ∈
hostsInRT(routingTable(self))
with RREP.init = c.dest
updateRoutingTable(self, RREP)
UnicastRREP(RREP, nextHop)
dequeue RREP from replies(self)
}
}
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A MANET Routing Protocol

Each ASM can traverse different states

They are characterized by the following
predicates:

– idle: wishToInitiate(self, dest) = false ∧
receivedRREQ(self, dest) = false ∧
isEmpty(replies(self)) = true, ∀ dest ∈
hosts

– router: receivedRREQ(self, dest) = true
– initiator: wishToInitiate(self, dest) = true
– forwarding: isEmpty(replies(self)) = false
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A MANET Routing Protocol

In a host several computational
activities are executed in 
parallel

The simultaneous fulfillment of 
different predicates captures this
beahvior
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Lessons Learned

A given predicate can hold in 
several states

In a given state several
predicates can hold
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Conclusion & Future Work

Predicates over the states can 
support the static verification of 
ASM models by overcoming the 
main limitations of model checking
approaches

Specific features of predicate 
abstraction with respect to the 
different kinds of properties need
to be investigated
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