Introduzione all'Architettura degli Elaboratori

Sommario

- Macchina di von Neumann
- Esecuzione dei programmi
- Rappresentazione dei dati
 - Dati numerici
 - Dati alfabetici

Introduzione all'Architettura 1 Introduzione all'Architettura

Il Modello di von Neumann (1)

 L'architettura di un computer è basata sul modello proposto da Janos (John) von Neumann alla metà degli anni '40 del secolo scorso

Il Modello di von Neumann (2)

• Prevede 3 entità logiche: Memory La memoria - La Central Processing Unit, suddivisa in Arithmetic Control Logic Unit Control Unit Unit - Arithmetic Logic Unit I dispositivi di Input/Output Input Output Le informazioni (dati) viaggiano tra le componenti mediante un bus

Introduzione all'Architettura

Introduzione all'Architettura

4

Central Processing Unit (1)

- È la componente che acquisisce, interpreta ed esegue le istruzioni dei programmi
- Si compone a sua volta di
 - Control Unit, responsabile del prelievo e della decodifica delle istruzioni e dell'invio dei segnali di controllo
 - Arithmetic Logic Unit, per l'esecuzione delle operazioni aritmetiche e logiche
 - Alcune varianti del modello prevedono anche un clock

Introduzione all'Architettura

5

Central Processing Unit (2)

- Da un punto di vista operativo, la CPU fa uso di alcuni registri:
 - Elementi di memoria i cui valori possono essere acceduti in lettura e scrittura molto velocemente
 - Registro Istruzione Corrente (CIR) contiene
 l'istruzione in corso di esecuzione
 - Contatore di Programma (PC) contiene l'indirizzo della prossima istruzione del programma in esecuzione

Introduzione all'Architettura

6

Memory (1)

- È la memoria centrale, di lavoro
 - da non confondersi con la memoria di massa in cui vengono immagazzinati dati e programmi quando non in uso
- Contiene gli elementi che il computer sta usando nella elaborazione corrente, e precisamente
 - Le istruzioni del programma in corso di esecuzione
 - I dati necessari all'esecuzione di quel programma

Memory (2)

 Si può immaginare la memoria come costituita da tante celle, ognuna identificata univocamente da un proprio indirizzo

Introduzione all'Architettura 7 Introduzione all'Architettura

1/0

- Sono i dispositivi con cui rispettivamente
 - vengono forniti dati e programmi al computer
 - vengono prodotti dal computer i risultati dell'elaborazione

Introduzione all'Architettura

0

Elementi di supporto

- La macchina di von Neumann è una macchina astratta, un modello per realizzare macchine reali
- Per questo non vengono enfatizzati ulteriori elementi logici che pure sono necessari, come a esempio
 - i già citati bus e clock di sistema
 - le memorie di massa
 - le interfacce di rete

– ...

Introduzione all'Architettura

10

Esecuzione dei Programmi (1)

- La macchina di von Neumann è in grado di eseguire programmi espressi in un opportuno linguaggio macchina
 - Per le macchine reali il linguaggio macchina è codificato secondo codici binari o esadecimali

Esecuzione dei Programmi (2)

- Si suppone che il programma da eseguire sia caricato nella Memory prima dell'esecuzione
 - da qualche memoria in cui è stato precedentemente registrato
 - fornito in input dal programmatore

– ...

- Si suppone inoltre che il programma sia suddiviso logicamente in due parti
 - L'insieme di istruzioni che devono essere eseguite
 - I dati (di input/output e di supporto calcolati e temporanei) su cui de istruzioni operano

Il Ciclo Fetch-Execute (1)

- L'esecuzione del programma avviene ripetendo iterativamente le fasi di
 - Acquisizione (fetch) dell'istruzione da eseguire dalla Memory
 - Interpretazione (decodifica) dell'istruzione
 - Esecuzione dell'istruzione

Introduzione all'Architettura

13

Il Ciclo Fetch-Execute (2)

- Il contenuto del PC viene caricato nel CIR
- Il PC viene aggiornato con l'indirizzo dell'istruzione successiva
- L'istruzione del CIR viene decodificata ed eseguita
 - Eventualmente accedendo a dati

Introduzione all'Architettura

- Rappresentazione dei Dati
 Tutte le informazioni (dati e istruzioni) in un computer sono rappresentate in forma binaria
 - Cioè come sequenza finita di simboli '0' e '1'
- L'unità di informazione è il bit (binary digit)
 - un bit può assumere solo i valori 0 oppure 1
- Una seguenza di 8 bit costituisce un byte
 - Un byte può assumere uno tra i 2⁸ valori 00000000, 00000001, 00000010, ..., 11111111
- Con word si intende N byte
 - N dipendente dallo specifico contesto

Rappresentazione di Dati Numerici

- Data la finitezza della macchina computer, tutte le informazioni che in esso si possono rappresentare sono necessariamente finite
- Quando, a esempio, si parlerà di
 - "insieme dei numeri interi" si intenderà un'approssimazione finita di $\mathbb N$
 - "insieme dei numeri reali" si intenderà un'approssimazione finita di R

Introduzione all'Architettura

16

14

Rappresentazione di Dati Numerici (2)

- Siamo abituati a pensare (e usare) i numeri interi in forma decimale e posizionale
 - Decimale, perché espressi in base 10, facendo uso di dieci simboli ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9')
 - Posizionale perché la posizione in cui compare un simbolo è fondamentale per la sua interpretazione (il numero 12 e il numero 21 sono rappresentati dagli stesssi simboli '1' e '2', ma disposti in posizioni diverse)

Introduzione all'Architettura

17

Rappresentazione di Dati Numerici

• Sia N un generico numero intero: in forma decimale e posizionale è rappresentato come la sequenza di n simboli (cifre decimali)

$$a_n a_{n-1} a_{n-2} ... a_2 a_1 a_0$$

- dove le a_i sono le diverse cifre, con a_n cifra più significativa, e a_0 cifra meno significativa
- Se N è espresso in base b, allora vale $N_b = a_n * b^n + a_{n-1} * b^{n-1} + a_{n-2} * b^{n-2} + ... + a_2 * b^2 + a_1 * b^1 + a_0 * b^0$

Introduzione all'Architettura

1.9

Rappresentazione di Dati Numerici (4)

• Esempi

$$-485_{10}$$
= $(4*10^2+8*10^1+5*10^0)_{10}$

$$-3642_8 = (3*8^3 + 6*8^2 + 4*8^1 + 2*8^0)_{10} =$$

$$(3*512 + 6*64 + 4*8 + 2*1)_{10} = (1536 + 384 + 32 + 2)_{10} =$$

$$1954_{10}$$

$$-9C3_{16} = (9*16^2+12*16^1+3*16^0)_{10}$$
$$= (9*256+12*16+3*1)_{10} = (2304+192+3)_{10} = 2499_{10}$$

$$-100110012 = (1*27+0*26+0*25+1*24+1*23+0*22+ 0*21+1*20)10 = (128+0+0+16+8+0+0+1)10 = 15310$$

Rappresentazione di Dati Numerici (5)

 Esempio di conversione di un numero decimale (342) in binario

ν- /		diventa il bit meno significativo
342 : 2 = 1	.71 con resto 0	
171 : 2 = 8	con resto 1	
85 : 2 = 42	con resto 1	
42 : 2 = 21	con resto 0	
21 : 2 = 10	con resto 1	
10 : 2 = 5	con resto 0	1
5:2=2	con resto 1	
2:2=1	con resto 0	
1:2=0	con resto 1	342 ₁₀ =101010110 ₂

Rappresentazione di Interi (1)

- Possiamo considerare due casi:
 - Interi senza segno unsigned integer: si intendono solo i positivi
 - Interi con segno signed integer: si intendono i postivi e i negativi
 - Immaginiamo che il computer possa utilizzare una word di N byte per rappresentare un integer (sia signed che unsigned): N byte = N * 8 bit = Wbit

Introduzione all'Architettura

21

Rappresentazione di Interi (2)

- Avendo a disposizione W bit è possibile rappresentare i valori binari da 0 a 2^W-1
- Nel caso si voglia rappresentare gli interi signed il bit più significativo viene utilizzato per indicare il segno
 - Convenzionalmente '0'='+' e '1'='-'
- In tal caso quindi con W bit si possono rappresentare gli interi compresi tra –(2^{W-1}-1) e + (2^{W-1}-1)

Introduzione all'Architettura

22

Rappresentazione di Reali (1)

- Nell'ambito di un computer l'approssimazione di R espressa da "numeri reali" indica più precisamente un'approssimazione (finita) dei numeri razionali
- Concettualmente, un numero "reale" è rappresentato dalla giustapposizione di due numeri
 - Se W bit sono disponibili, i primi W_r indicano la parte intera, i rimanenti W_f la parte frazionaria
- Tale rappresentazione è detta a virgola fissa (fixed point)

Rappresentazione di Reali (2)

- La modalità di rappresentazione più diffusa è quella a virgola mobile (floating point)
- Utilizza due valori
 - Mantissa, interpretato come numero frazionario tra -1
 e +1
 - Caratteristica, usato come esponente
- Si basa sulla notazione esponenziale, secondo cui r=m*bⁿ
 - dove r è il numero reale da rappresentare, m è la mantissa, b è la base di rappresentazione e n la caratteristica

Rappresentazione di Caratteri (1)

- Anche i caratteri sono rappresentati mediante codici binari
- Più in generale si parla di "simboli" per specificare oltre agli usuali caratteri alfabetici, anche i simboli che indicano
 - le cifre (decimali)
 - la punteggiatura
 - i simboli speciali (blank, carriage return, linefeed, ...)

Introduzione all'Architettura

25

27

Rappresentazione di Caratteri (2)

- Per poter codificare univocamente i caratteri è necessaria una corrispondenza biunivoca tra questi e un opportuno sottoinsieme degli interi
 - Standard ASCII (American Standard Code for Information Interchange)
 - UNICODE

Introduzione all'Architettura 26

Rappresentazione di Caratteri (3)

- Funzioni di trasferimento
 - ord(c): numero d'ordine del simbolo c nella tavola di codifica
 - chr(i): Simbolo il cui numero d'ordine è i
- Proprietà
 - $-\operatorname{ord}(\operatorname{chr}(i))=i$ $\operatorname{chr}(\operatorname{ord}(c))=c$
 - SE c1 < c2 ALLORA ord(c1) < ord(c2)
- Relazione d'ordine totale
 - Coerente con i sottoinsiemi delle lettere e delle cifre

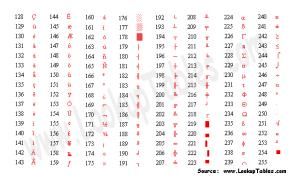

 Introduzione all'Architettura

Tabella ASCII

I OI N	_	•	•			_		•						
Dec Hx Oct Char	Dec Hx	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Ch	ır
0 0 000 NUL (null)	32 20	040		Space	64	40	100	«#64;	0	96	60	140	6#96;	*
l 1 001 SOH (start of heading)	33 21	041	a#33;	1	65	41	101	a#65;	A	97	61	141	6#97;	a
2 2 002 STX (start of text)	34 22	042	"	"	66	42	102	B	В	98	62	142	6#98;	b
3 3 003 ETX (end of text)			6#35;					a#67;					6#99;	
4 4 004 EOT (end of transmission)			\$					D					6#100;	
5 5 005 ENQ (enquiry)			6#37;					¢#69;					6#101;	
6 6 006 ACK (acknowledge)			4 #38;					F					6#102;	
7 7 007 BEL (bell)			«#39;					¢#71;					G#103;	
8 8 010 BS (backspace)			«#40;					H					a#104;	
9 9 011 TAB (horizontal tab)			«#41;					¢#73;					6#105;	
10 A 012 LF (NL line feed, new line)			6#42;					6#74;					j	
ll B 013 VT (vertical tab)			«#43;	+				¢#75;					6#107;	
12 C 014 FF (NP form feed, new page)			6#44;					6#76;					4#108;	
13 D 015 CR (carriage return)			«#45;					¢#77;					6#109;	
14 E 016 SO (shift out)			6#46;					4#78;					6#110;	
15 F 017 SI (shift in)			/					¢#79;					6#111;	
16 10 020 DLE (data link escape)			6#48;					4#80;					6#112;	
17 11 021 DC1 (device control 1)			1					Q					6#113;	
18 12 022 DC2 (device control 2)			«#50;					«#82;					6#114;	
19 13 023 DC3 (device control 3)			3					S					6#115;	
20 14 024 DC4 (device control 4)			«#52;					¢#84;					6#116;	
21 15 025 NAK (negative acknowledge)			6#53;					U					6#117;	
22 16 026 SYN (synchronous idle)			«#5 4 ;					«#86;					6#118;	
23 17 027 ETB (end of trans. block)			a#55;					4#87;					6#119;	
24 18 030 CAN (cancel)			«#56;					¢#88;					6#120;	
25 19 031 EM (end of medium)			a#57;					4#89;					6#121;	
26 1A 032 SUB (substitute)			%#58 ;					Z					z	
27 1B 033 ESC (escape)			6#59;					4#91;					6#123;	
28 1C 034 FS (file separator)			«#60;					\						
29 1D 035 GS (group separator)			6#61;					¢#93;					6#125;	
30 1E 036 RS (record separator)			>					4 ;					~	
31 1F 037 US (unit separator)	63 3F	077	«#63;	?	95	5F	137	¢#95;	_	127	7F	177	G#127;	DEL
								S	ourc	e: w	ww.	Look	upTables	mos.

Introduzione all'Architettura 2

Tabella ASCII Esteso

Unicode

- Codifica di tutti i caratteri possibili
 - delle lingue attualmente vive
 - di alcune lingue morte
- Più di 110mila caratteri

Introduzione all'Architettura 29 Introduzione all'Architettura 30