Un esempio di modellizzazione mediante PN: moDElling MObile NEtworks

Presentazione
- Questa dispensa introduce il tool moDElling MObile NEtworks (DEMONE) con lo scopo di mostrare un'applicazione di modellizzazione mediante Reti di Petri

Introduzione a MANET (1)
- MANET (Mobile Ad-hoc NETwork) indica una tipologia di reti wireless che possono operare senza la necessità di una infrastruttura fisica fissa
 - le comunicazioni tra una sorgente e una destinazione sono stabilite e mantenute dalla cooperazione tra i vari host presenti nella rete
 - ogni host può agire
 • sia come end-point di una comunicazione (mittente/destinatario di msg)
 • che come router di pacchetti

Introduzione a MANET (2)
- Le MANET sono sistemi altamente dinamici, a causa
 - del duplice ruolo ricoperto da ogni host
 - del continuo cambiamento nella topologia della rete,
- Due aspetti della dinamica:
 - dinamica della rete: cambiamento della posizione degli host
 - dinamica del comportamento computazionale di ogni host
Introduzione a MANET (3)

• Le MANET sono applicate per permettere la comunicazione tra
 – squadre di soccorso nel caso di disastri
 – navi durante traversate oceaniche
 – robot
 – sistemi spaziali
 – ...

Introduzione a MANET (4)

• Problemi
 – definizione di protocolli di routing specifici per questo tipo di reti
 – studio delle prestazioni
 – necessità di sincronizzazione
 – analisi della concorrenza
 – ...

Our research

The problem

• There exist several environments for simulating MANET
• Most of them
 – are event-driven simulators, where components synchronization is imposed through an external clock
 – do not allow to formally describe the system, so studying interesting computational properties is harder
Purpose

• Building an environment
 – in which synchronization is established by the internal behaviour of the agents in the mobile system
 – which allows formally modelling MANET
 • Petri Net
 • ASM

The Approach

• Modelling the MANET means describing two different abstraction levels
 – the mobile network level, i.e., the set of communicating agents, their movement and the logical links among them
 – the mobile system level, i.e., the formal description of each communicating agent

• Formal Model:
 – Colored Nested Petri Nets (current release)
 – Abstract State Machine (work in progress)
 – ... (future)

Petri Nets

• PNs model the behavior of each communicating agent
 – each communicating agent is a “system”
• Places are states of the system
 – characterized by specific values of state variables
• Transitions are associated to computational activities, which drive the evolution of the system
The Hierarchical Structure of MANET Model

- Layer 0: MANET PN
- Layer 1:
 - Host PN
 - Communication PN
 - Mobility PN
- Layer 2:
 - Service_1 PN
 - Service_2 PN
 - Routing PN

Architecture

- It includes three main logical components:
 - **Mobile Network editor**: for configuring the MANET (number and features of communicating agents)
 - **Visual XDM (conteXt-sensitive Dialog Model)**: editor for the PN, for modeling the behavior of hosts
 - **Mobile System Simulator**: for simulating the entire system network and executing all PNs

MANET Editor

- PN Editor:
 - Specify computational behavior of communicating agents
 - Implicitly defines mobile system clock
Dynamic Source Routing

- **Initiator** wants to communicate with **Destination**
- If (Dest is a neighbour of Init) OR (a route to Dest is in Init's cache)
 - Communication can start
 - End algorithm
- Init broadcasts **RREQ pck** to neighbours
- Algorithm reiterated until route is found
 - **RREP pck** is sent back to Init

Two Routing Protocols

Rete di Petri DSR
Ad-hoc On demand Distance Vector - AODV

- If a route to Dest is not in Init’s cache AND Dest is not a neighbour of Init
 - RREQ pck is broadcasted to neighbours
 - If a node receiving RREQ is not Dest, neither knows a route to Dest, it
 - updates its info about route to Init
 - updates RREQ with its ID
 - broadcasts the updated RREQ
 - Else it
 - unicasts a RREP pck back to Init

The experimentation

- Purpose: Validating DEMONE as a proper tool for simulating MANET behavior
- Method: Simulating the behavior of two popular routing protocols and comparing the results obtained by DEMONE to findings in literature
 - 1500 simulations of Dynamic Source Routing (DSR) protocol
 - 1500 simulations of Ad-hoc On-demand Distance Vector (AODV) protocol
Experimental Setting

- 3 differently populated mobile networks
 - Low density: 10 hosts
 - Medium density: 20 hosts
 - High density: 30 hosts
- For each host:
 - Transmission range randomly defined at the beginning, and constant for the entire simulation
 - Speed and direction randomly defined at the beginning and randomly re-defined at each clock

Collected Data (1)

- For each protocol, 500 runs for each density
 - Total: 3000 simulations
 - In each run Init and Dest are randomly defined
- Time spent for discovering route to Dest
 - Chronological time: measured in milliseconds
 - Simulation time: measured in number of clock cycles – each PN execution is a clock cycle

Collected Data (2)

- Effectiveness: rate of success in route discovering, measured as the ratio of the total number of successful communication to the total number of trials

Collected Data (3)

- Efficiency of each protocol
 - Path optimality: (length of shortest path) / (length of actual path, discovered by the protocol)
 - Routing overhead for the network: (total number of RREQ and RREP) / (theoretical minimum number of packets required for discovery)
 - Routing overhead for each host: (number of times each host executes computational activities related to route discovery) / (network size)
Research Questions
1. For each metric M_i, except of success rate
 - H_0: There is not statistically significant difference between M_i values for DSR and AODV
 - H_1: There is a statistically significant difference between M_i values for DSR and AODV
2. Rate of success is simply compared in the two protocols
3. Is simulation time able to measure time as well as chronological time?
 - Correlation between the two time metrics in both protocols

Results (1)
- Is there statistical difference between M_i values for DSR and AODV?

<table>
<thead>
<tr>
<th>Metric</th>
<th>10 hosts</th>
<th>20 hosts</th>
<th>30 hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronological Time</td>
<td>YES (0,0003)</td>
<td>YES (0,0166)</td>
<td>YES (0,0119)</td>
</tr>
<tr>
<td></td>
<td>(greater for AODV)</td>
<td>(greater for AODV)</td>
<td>(greater for AODV)</td>
</tr>
<tr>
<td>Simulation time</td>
<td>YES (0,0000)</td>
<td>YES (0,0000)</td>
<td>YES (0,0000)</td>
</tr>
<tr>
<td></td>
<td>(greater for AODV)</td>
<td>(greater for AODV)</td>
<td>(greater for AODV)</td>
</tr>
<tr>
<td>Path optimality</td>
<td>NO (0,1580)</td>
<td>YES (0,0001)</td>
<td>YES (0,0004)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(greater for AODV)</td>
<td>(greater for AODV)</td>
</tr>
<tr>
<td>Routing overhead (network)</td>
<td>YES (0,0000)</td>
<td>YES (0,0000)</td>
<td>YES (0,0000)</td>
</tr>
<tr>
<td></td>
<td>(greater for AODV)</td>
<td>(greater for AODV)</td>
<td>(greater for AODV)</td>
</tr>
<tr>
<td>Routing overhead (host)</td>
<td>NO (0,9970)</td>
<td>YES (0,0395)</td>
<td>NO (0,9117)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(greater for AODV)</td>
<td></td>
</tr>
</tbody>
</table>

Results (2)
- Effectiveness of the protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>10 hosts</th>
<th>20 hosts</th>
<th>30 hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSR</td>
<td>0,7940</td>
<td>0,5880</td>
<td>0,5800</td>
</tr>
<tr>
<td>AODV</td>
<td>0,9800</td>
<td>0,8960</td>
<td>0,8100</td>
</tr>
</tbody>
</table>

Results (3)
- Is there statistical correlation between chronological time and simulation time?

<table>
<thead>
<tr>
<th>Network Size</th>
<th>DSR</th>
<th>AODV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 hosts</td>
<td>0,80</td>
<td>0,70</td>
</tr>
<tr>
<td>20 hosts</td>
<td>0,77</td>
<td>0,65</td>
</tr>
<tr>
<td>30 hosts</td>
<td>0,77</td>
<td>0,59</td>
</tr>
</tbody>
</table>
Analysis of Properties

Reachability

• All markings are always reachable
 – all computational activities specified in the model can be executed
 – conditions exist for executing all the components of the algorithms implementing the routing protocols

Boundedness (1)

• If some tokens represent the number of communications currently managed by the MANET, boundedness specifies the maximum number of communications the system is able to process

Boundedness (2)

• PN concerning hosts acting as router is unbound
 – each host can serve as router for indefinite number of communications
• PN concerning hosts acting as end points are 1-bound
 – Each host can start only 1 communication
Liveness
- PNs are **live**
 - each transition in all PNs is contained in at least a path connecting the initial marking to other markings

Conservativeness
- The PNs are not **conservative**
 - Tokens are created/removed depending on the specific activities
 - If tokens represent data packets received and re-sent by intermediate host, then conservativeness can be used for verifying no packet is lost during communication sessions

Reversibility
- The PNs are not **reversible**
 - In case of failure the control is taken by a specific module, for recovering purposes

Conclusions
Findings (1)

• In most cases the two protocols present different behavior
 – AODV is more effective, but it consumes more resources
 – This is confirmed by literature
• The empirical study validates the capability of DEMONE to simulate MANET
 – but DEMONE also allows formal modeling

Findings (2)

• Trends of Simulation time and Chronological time are analogous
• The Simulation time, established by internal behavior is a good indicator of Chronological time
 – even if they cannot be considered in the same way
 – results are encouraging and more analysis will be executed

DEMONE

• Imposes a new view on the synchronization of the system
• Allows
 – formal modelling of MANET, in order to analyse computational behaviour of communicating agents and network
 – simulation of MANET: preliminary results are analogous to results known in literature and obtained with other tools

Current /Future Work

• Simulations with larger network size (50 – 100 hosts)
• Implementation of other models
 – Abstract State Machine
• Analysis of more properties
 – Completeness: is EP reachable from SP?
 – Complexity: max number of path for reaching EP from SP