Intrusioni e Virus Chiettivo: Accedere al Sistema, spesso ottenendo la passwd dell'utente • Nella maggior parte dei sistemi esiste un file che associa ogni utente alla rispettiva passwd • Password file protection: • one-way encryption • access control

3

Three Classes of Intruders

- Masquerader utente non autorizzato che accede al Sistema usando l'account *di un* utente legittimo (outside)
- Misfeasor utente legittimo che accede a servizi per cui non è aitorizzato, oppure che fa cattivo uso dei suoi privilegi (*inside*)
- Clandestine user elude il controllo per evadere le analisi sulle sue attività

```
(inside|outside)
Intrusioni & Virus
```

Intruders

Intruder attacks range from benign to serious:

- Benign intruders tolerable but consume resources
- Difficult to know in advance the type of intruder
- Really growing problem
 - globalization
 - the move to Client/Server architectures

4

 – hacker's steep learning curve Intrusioni & Virus

Types Of Hackers

- Old School Capt Crunch no malicious intent – believe in open system
- Script Kiddies 12-30 yrs old, mostly males – limited knowledge – too much time on their hands – also called Cyber Punks – brag and get caught

Intrusioni & Virus

Types Of Hackers

 Professional Criminals – Crackers – careers built on criminal hacking – break into secure areas and sell information – often involved in espionage and organized crime

Intrusioni & Virus

Cyber Punk

Kevin Poulsen 1990 Notare la foto: anche se "cattivo" è un "bel ragazzo". E' Americano!

Intrusioni & Virus

Took over all the telephone lines of Los Angeles KISS-FM radio station - he then made himself the 102nd caller and won a \$50,000 944 S2 Porche 5

7

Indicted for 19 counts of conspiracy, fraud, wiretapping and money laundering - spent 3 years in prison

Crackers

Vladimir Levin 1994

Notare la foto: "cattivo" anche se matematico, comunque brutto. E' Russo! Chiedetevi ora perché. Trump vince

Russian mathematician – led group that hacked into

- led group that hacked into Citibank computers and extorted 10 million dollars.
- Caught in 1995 by Interpol - sentenced to three years in prison and forced to give up his share of the money.

Types Of Hackers

- Coders Virus Writers see themselves as an elite group - they have a lot of programming background and write code, but won't use it themselves
- They have their own networks to experiment with, which they call **Zoos**
- They leave it to others to introduce their codes into **The Wild**, or the Internet.

Tecniche per Acquisire le Passwd

	(1.	Try default passwords used with standard accounts shipped with the system
	2.	Exhaustive try of all short passwords
	3.	Try words in system's dictionary or list of likely passwords (hacker bulletin boards)
,	4.	Collect information about users (full names, names of spouses and children, pictures and books in their office, related hobbies)
	5.	Try users' phone numbers, social security numbers, room numbers
	6.	Try all legitimate license plate numbers
	7.	Use a trojan horse
	8.	Tap the line between a remote user and the system
Intru	usioni & '	Virus 10

Intrusion Detection

Second line of defense (firewall is 1st)

- Quick detection minimizza i danni e permette un più veloce ripristino
- Deterrent un Sistema di intrusion detection efficace per prevenire le intrusioni
- Collection of techniques information about intrusion techniques leads to stronger prevention facility

Intrusion Detection

• Basic Assumption:

Behavior of the intruder *differs* from legitimate user in quantifiable ways

• There is an element of compromise and art in the practice of intrusion detection

Intrusioni & Virus

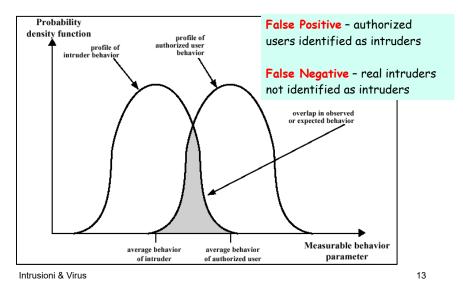
11

9

g

u.

e s


S

а

ิล

C

Intruder & Authorized User Behavior

Finding The Bad Guy

- Necessità di distinguere un masquerader da un legitimate user
- Osservare la storia passata (Bayes Theorem)
- Stabilire un pattern of behavior
- Osservare deviazioni significative

Intrusioni & Virus

Two Approaches: Statistical Anomaly Detection

- Collection of data over a period of time about legitimate user behavior
- Statistical tests to observe behavior and confidently determine non-legitimate use
 - Threshold detection: for frequency of occurrence of certain events
 - Profile-based: profile of user activity and change detection
- Successful against masqueraders but not Intrusioni & Virus against misfeasors

15

Two Approaches:

Rule-based Detection

- Attempt to define set of rules that determine intruder's behavior
 - Anomaly detection: detect deviation from previous usage patterns
 - Penetration identification: expert system that searches for suspicious behavior
- Better approach for detecting penetration

Audit Record

Basic Tool of Intrusion Detection

- Native audit records
 - Information collected for accounting
 - No extra cost but not necessary or conveniently formed information
- Detection-specific audit records
 - Only info required by IDS
 - Extra overhead
 - Vendor independent
 - Subject, action, object, exception condition, resource usage, timestamp (Denning)

```
Intrusioni & Virus
```

17

Statistical Anomaly Categories

Threshold detection

- Counting the *number of occurrences* of a specific event type over an *interval of time*
- Generate either a lot of false positives or a lot of false negatives

Profile-based systems

- Characterizing the *past behavior* of individual users or related groups of users and then *detecting significant deviations*
- A profile is a set of parameters
- Foundation of this approach is an analysis of audit records
- Records over time define typical behavior. Current audit records are used to detect intrusion

Intrusioni & Virus

Statistical Anomaly Detection

- Various tests determine whether current activity fits within acceptable limits
 - Mean & standard deviation crude for intrusion detection
 - Multivariate correlation determines intruder behavior
 - Markov process establish transition probabilities among various states
 - Time series focus on time intervals
 - Operational model exceeding fixed limits
- Prior knowledge of security flaws is not required

Intrusioni & Virus

Measures Used For Intrusion Detection

	Measure	Model	Type of Intrusion Detected
		Login and Session Activity	
	Login frequency by day and time	Mean and standard deviation	Intruders may be likely to log in during off-hours.
	Frequency of login at different locations	Mean and standard deviation	Intruders may log in from a location that a particular user rarely or never uses.
	Time since last login Elapsed time per session	Operational Mean and standard deviation	Break-in on a "dead" account. Significant deviations might indicate masquerader.
	Quantity of output to location	Mean and standard deviation	Excessive amounts of data transmitted to remote locations could signify leakage of
	Session resource utilization	Mean and standard deviation	sensitive data. Unusual processor or I/O levels could signal an intruder.
	Password failures at login	Operational	Attempted break-in by password guessing.
	Failures to login from specified	Operational	Attempted break-in.
	Com	nand or Program Execution A	ctivity
	Execution frequency	Mean and standard deviation	May detect intruders, who are likely to use different
	Program resource utilization Execution denials	Mean and standard deviation	likely to use different commands, or a successful penetration by a legitimate user, who has gained access to privileged commands. An abnormal value might suggest injection of a virus or Trojan horse, which performs side-effects that increase I/O or processor utilization. May detect penetration attempt
			by individual user who seeks higher privileges.
		File access activity	
	Read, write, create, delete frequency	Mean and standard deviation	Abnormalities for read and write access for individual users may signify
	Records read, written	Mean and standard deviation	masquerading or browsing. Abnormality could signify an attempt to obtain sensitive data by inference and aggregation.
Intrusioni & Virus	Failure count for read, write, create, delete	Operational	May detect users who persistently attempt to access unauthorized files.
	File resource exhaustion counter	Operational	

20

Rule-Based Detection

- Observe events in the system and apply a set of rules that decide if activity is suspicious or not
- Approaches focus on either:
 - Anomaly detection
 - Penetration identification

Intrusioni & Virus		

Rule-Based Anomaly

Detection

- Similar in terms of approach and strengths to statistical anomaly detection
- Automatically generate rules by analyzing historical audit records to identify usage patterns
- Assume the future will look like the past and apply rules to current behavior
- Does not require a knowledge of security vulnerabilities
- Requires a rather large database of rules (10⁴ to 10⁶)

Intrusioni & Virus

22

Rule-Based Penetration Identification

- Based on expert system technology
- Uses rules for identifying known penetrations or ones that exploit known weaknesses – suspicion rating
- Rules generated by experts and system specific
- Strength is a function of the skills of the rule makers – hire a hacker
- Early systems: NIDX, IDES, Haystack late 80's
- Best approach is a high level model that is independent of specific audit records
- USTAT, a state transition model, deals with general actions and reduces the number of rules

Base-Rate Fallacy

- IDS system must meet the standard of high rate of detections with a low rate of false alarms
- False alarm rate is the limiting factor for the performance of an IDS
- This is due to the Base-Rate Fallacy the belief that probability rates are false – i.e., failure to take base rates into account

Base-Rate Fallacy

A cab was involved in a hit-and-run accident at night. Two cab companies, the Green and the Blue, operate in the city.

You are given the following data:

85% of the cabs in the city are Green and 15% are Blue.

A witness identified the cab as a Blue cab.

The court tested his ability to identify cabs under the appropriate visibility conditions. When presented with a sample of cabs (half of which were Blue and half of which were Green) the witness made correct identifications in 80% of the cases and erred in 20% of the cases.

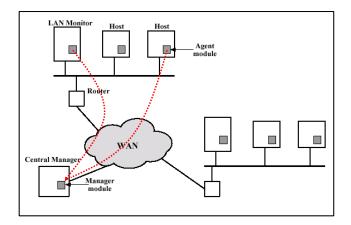
Question: What is the probability that the cab involved in the accident was Blue rather than Green?"

Base-Rate Fallacy

When people answer this, they tend to say that the probability it was Blue (the rare case) is about 80%, but the real probability is 41%, because this takes into account the fact that there are may more green cabs than blue ones.

The Base-Rate Fallacy and its Implications for the Difficulty of Intrusion Detection - <u>Stefan Axelsson</u>

Bottom Line: IDS systems have a long way to go!

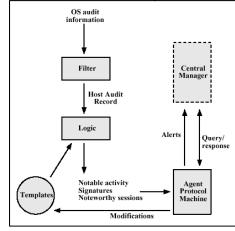

Intrusioni & Virus

26

Distributed Intrusion Detection Scalability Issues

- Too much overhead for standalone IDS on each host
- Heterogeneous environment different audit records
- Need IDS across the network
- Centralized vs decentralized issues

Distributed Intrusion Detection



Distributed Intrusion Detection

- Host agent module background process collects data and sends results to the central manager
- LAN monitor agent module analyzes LAN traffic and sends results to the central manager
- Central manager module processes and correlates received reports to detect intrusion

Agent Architecture

Machine Independent

Intrusioni & Virus

Intrusioni & Virus

Honeypots

- Decoy systems
- Lure attacker from critical systems
- Collect information about the attacker
- Keep attacker around long enough to respond
- Jury is still out on this!

Intrusioni & Virus

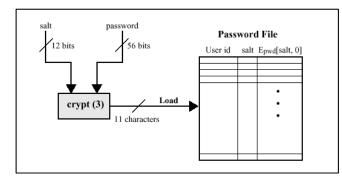
Intrusioni & Virus

29

Password Management

Password Protection

User ID and password:

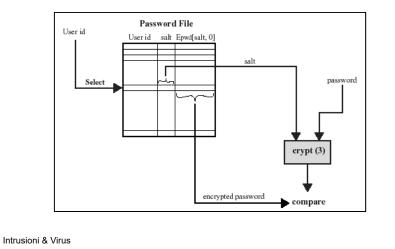

- User authorized to gain access to the system
- Privileges accorded to the user
- Discretionary access control

Password Protection

- Unix system (user ID, cipher text password, plain text salt)
 - password 8 printable characters 56-bit value (7-bit ASCII)
 - encryption routine (crypt(3)) based on DES
 - modified DES algorithm with 12-bit salt value (related to time of password assignment)
 - 25 encryptions with 64-bit block of zeros input
 - 64-bit 11 character sequence

Intrusioni & Virus	33	Intrusioni & Virus	34

Loading A New Password



Password Protection

Purposes of salt:

- Prevents duplicate passwords from being visible
- Effectively increases password length without the user needing to remember additional 2 characters (possible passwords increased by 4096)
- Prevent use of hardware DES implementation for a brute-force guessing attack

Verifying A Password

Observed Password Lengths In a Purdue Study

Length	Number	Fraction of Tota
1	55	.004
2	87	.006
3	212	.02
4	449	.03
5	1260	.09
6	3035	.22
7	2917	.21
8	5772	.42
Total	13787	1.0

Password Protection

Unix password scheme threats:

- Gain access through a guest account and run a password cracker
- Obtain a copy of the password file and run a password cracker

Goal: Run a password cracker

• Rely on people choosing easily

Passwords Cracked From A Sample Set

	Type of Password	Search Size	Number of Matches	Percentage of Passwords Matched	Cost/Benefit Ratio ¹
	User/account name	130	368	2.7%	2.830
	Character sequences	866	22	0.2%	0.025
	Numbers	427	9	0.1%	0.021
	Chinese	392	56	0.4%	0.143
	Place names	628	82	0.6%	0.131
sy pickin's —	 Common names 	2239	548	4.0%	0.245
	Female names	4280	161	1.2%	0.038
	Male names	2866	140	1.0%	0.049
	Uncommon names	4955	130	0.9%	0.026
	Myths & legends	1246	66	0.5%	0.053
	Shakespearean	473	11	0.1%	0.023
	Sports terms	238	32	0.2%	0.134
	Science fiction	691	59	0.4%	0.085
	Movies and actors	99	12	0.1%	0.121
	Cartoons	92	9	0.1%	0.098
	Famous people	290	55	0.4%	0.190
	Phrases and patterns	933	253	1.8%	0.271
	Surnames	33	9	0.1%	0.273
	Biology	58	1	0.0%	0.017
	System dictionary	19683	1027	7.4%	0.052
	Machine names	9018	132	1.0%	0.015
	Mnemonics	14	2	0.0%	0.143
	King James bible	7525	83	0.6%	0.011
	Miscellaneous words	3212	54	0.4%	0.017
	Yiddish words	56	0	0.0%	0.000
	Asteroids	2407	19	0.1%	0.007
	TOTAL	62727	3340	24.2%	0.053

Intrusioni & Virus

37

Access Control

One Method: Deny access to password file

- Systems susceptible to unanticipated breakins
- An accident in protection may render the password file readable compromising all accounts
- Users have accounts in other protection domains using the same passwords

Access Control

• Answer:

Force users to select passwords that are difficult to guess

• Goal:

Eliminate guessable passwords while allowing the user to select a password that is memorable

Intrusioni & Virus

42

Password Selection Strategies (Basic Techniques)

- User education
 - Users may ignore the guidelines
- Computer-generated passwords
 - Poor acceptance by users
 - Difficult to remember passwords

Intrusioni & Virus

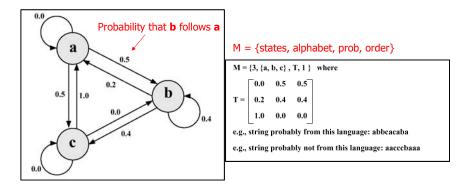
41

Password Selection Strategies

Reactive password checking

- System runs its own password cracker
- Resource intensive
- Existing passwords remain vulnerable until reactive checker finds them

Proactive password checking


- Password selection is guided by the system
- Strike a balance between user accessibility and strength
- May provide guidance to password crackers (what not to try)
- Dictionary of bad passwords (space and time problem)

Proactive Password Checker

There are two techniques currently in use:

- Markov Model search for guessable password
- Bloom Filter search in password dictionary

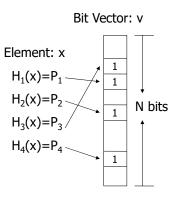
Markov Model

Intrusioni & Virus

46

Markov Model

- "Is this a bad password?"...same as...
- "Was this password generated by this Markov model?"
- Passwords that are likely to be generated by the model are rejected
- Good results for a second-order model

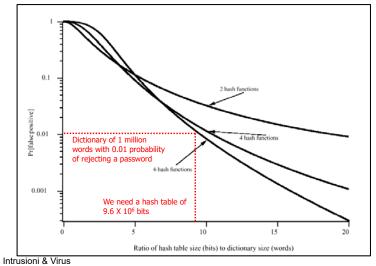

Bloom Filter

- A probabilistic algorithm to quickly test membership in a large set using multiple hash functions into a single array of bits
- Developed in 1970 but not used for about 25 years
- Used to find words in a dictionary also used for web caching
- Small probability of false positives which can be reduced for different values of k, # hash funcs
- <u>www.cs.wisc.edu/~cao/papers/summary-cache/node8.html</u> a good tutorial

Intrusioni & Virus

Bloom Filter

- . A vector v of N bits
- k independent hash functions. Range 0 to N-1
- For each element x, compute hash functions $H_1(x), H_2(x)...H_k(x)$
- Set corresponding bits to 1
- Note: A bit in the resulting vector may be set to 1 multiple times Intrusioni & Virus



49

Bloom Filter

- To query for existence of an entry x, compute $H_1(x)$, $H_2(x)$... $H_k(x)$ and check if the bits at the corresponding locations are 1
- If not, x is definitely not a member
- Otherwise there may be a false positive (passwords not in the dictionary but that produce a match in the hash table). The probability of a false positive can be reduced by $\underset{\label{eq:linear} \text{Intrusioni \& Virus}}{\text{choosing k and N}}$ 50

Performance of Bloom Filter

Password Cracking

Password Cracking

Unix Password File (/etc/passwd):

daemon: x: 1: 1: : /: bi n: x: 2: 2: : /usr/bi n: sys: x: 3: 3: : /: nobody: x: 60001: 60001: Nobody: /: eri c: GmTFg0AavFA0U: 1001: 10: Eri c Schwartz: /export/home/eri c: /bi n/ksh temp: kRWegG5i TZP5o: 1002: 10: IP Admi ni strati on: /export/home/i padmi n: /bi n/ksh j fr: kyzKR0ryhFDE2: 506: 506: : /home/j fr: /bi n/csh

Results of the password cracker:

\$ john passwd Loaded 3 passwords with 3 different salts (Standard DES [24/32 4K]) temp (temp) jenny (eric) solaris1 (jfr)

Intrusioni & Virus

53

Virus and Related Threats

Password Crackers

Tool	Capabilities	Website	Linux/ Unix	Win32	Cos
Crack 5	Unix password cracker	http://www.crypticide.org/users/alecm/	*		Free
Description	in Unix (or oth	ssword guessing program that is designed to q er) password files by scanning the contents of have misguidedly chosen a weak login passw	a passwo		
IMP 2.0	Novell Netware password cracker	http://www.wastelands.cien.nz		*	Fre
Description	Imp is a NetWare password cracking utility with a GUI (Win9GNT). It loads account information directly from NDS or Bindery files and allows the user to attempt to compromise the account passwords with various attack methods.				
John the Ripper	Windows and Unix password cracker	http://www.openwall.com/john/	*	*	Fre
Description	John the Ripper is a fast password cracker, currently available for many flavors of Unix, DOS, Win32, and BeOS. Its primary purpose is to detect weak Unix passwords, but a number of other hash types are supported as well.				
L0pht Crack	Windows password cracker	http://www.securityfocus.com/tools/1005		*	s
Description	A password cracking utility for Windows NT, 2000 and XP.				
	Novell Netware	http://ftp.cerias.purdue.edu/pub/tools/novell/		4	Fre
Nwperack	password cracker				

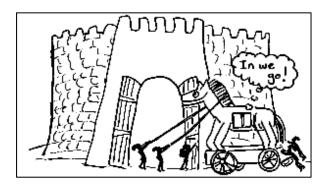
Intrusioni & Virus


54

Malicious Programs

- Due categorie:
 - Quelli che necessitano di un host program – o frammenti di programmi parasitic
 - Quelli indipendenti self contained
- Some replicate used as a differentiator

Intrusioni & Virus

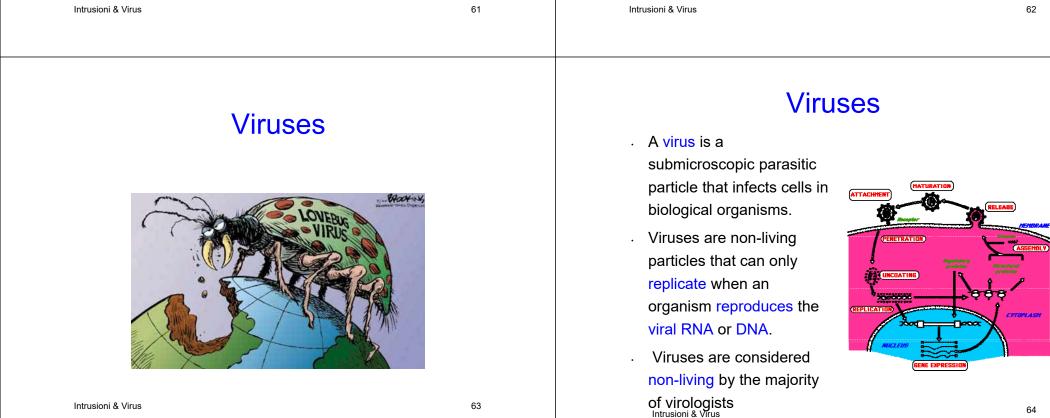

Taxonomy of Malicious Programs

Malicious Programs

- Logic Bombs: logic embedded in a program that checks for a set of conditions to arise and executes some function resulting in unauthorized actions
- Trapdoors: secret undocumented entry point into a program, used to grant access without normal methods of access authentication (*e.g., War Games*)

Trojan Horse

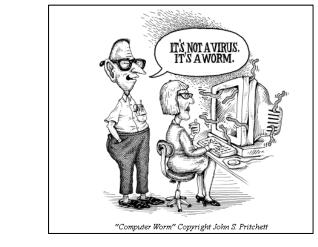
Cavallo di Troia Mimmo Paladino


Intrusioni & Virus

Malicious Programs

- Trojan Horse: secret undocumented routine embedded within a useful program, execution of the program results in execution of the routine
- Common motivation is data destruction

Malicious Programs


- Zombie: a program that secretly takes over an Internet attached computer and then uses it to launch an untraceable attack
- Very common in Distributed Denial-Of-Service attacks

Viruses

- Viruses: code embedded within a program that causes a copy of itself to be inserted in other programs and performs some unwanted function
- Infects other programs
- Code is the DNA of the virus

Worms

Intrusioni & Virus

Worms

- Worms: program that can replicate itself and send copies to computers across the network and performs some unwanted function
- Uses *network connections* to spread from system to system

Bacteria

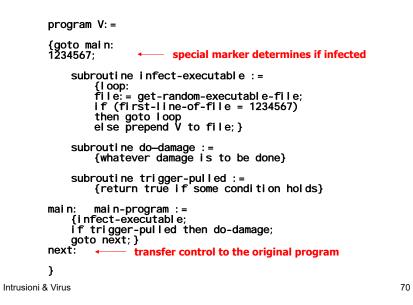
- Bacteria: *consume resources* by replicating themselves
- Do not explicitly damage any files
- Sole purpose is to replicate themselves
- Reproduce exponentially
- Eventually taking up all processors, memory or disk space

Intrusioni & Virus

65

Nature of Viruses

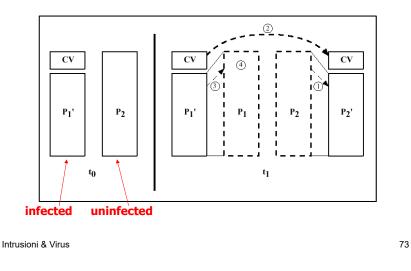
Four stages of virus lifetime


- Dormant phase: virus idle
- Propagation phase: cloning of virus
- Triggering phase: virus activation
- Execution phase: unwanted function performed

Intrusioni & Virus

Avoiding Detection

- Infected version of program is longer than the corresponding uninfected one
- Solution: compress the executable file so infected and uninfected versions are identical in length


Virus Structure

Avoiding Detection

program CV	:=
{goto main; 01234567;	
subroutine	infect-executable :=
	{loop:
	file := get-random-executable-file;
	if (first-line-of-file = 01234567) then goto loop;
(1)	compress file;
(2)	prepend CV to file;
}	
main: main-progr	am :=
	{if ask-permission then infect-executable;
(3)	uncompress rest-of-file;
(4)	run uncompressed file;}
}	

Compression Program

Types of Viruses

- Parasitic Virus: attached to executables, replicates when program is executed
- Memory-resident virus: part of a resident system program, affects every program executed
- Boot sector virus: infects a master boot record and spreads when system is booted from infected disk

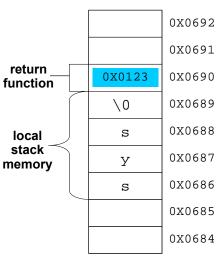
Types of Viruses

- Stealth virus: virus designed to hide itself from detection by antivirus software (compression, interception of I/O logic)
- Polymorphic virus: mutates with every infection making detection by "signature" impossible (mutation engine)
- Macro virus: infects Microsoft Word docs; 2/3's of all viruses

Macro Viruses

- 2/3s of all viruses
- Mainly Microsoft products platform independent
- Affect documents not executables
- Easily spread by e-mail
- Autoexecuting macro is the culprit

Intrusioni & Virus


Worms

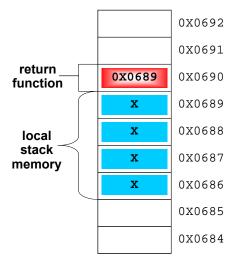
- Uses network connections to spread from system to system
- Similar to a virus has same phases: dormant, propagation, trigger and execution
- Morris Worm most famous
- Recent: OSX.Leap.A, Kama Sutra,Code

Red

Mechanics of stack-based buffer overflow

- Stack is like a pile of plates
- When a function is called, the return address is pushed on the stack
- In a function, local variables are written on the stack
- Memory is written on stack
 - char username[4]
 reserved 4 bytes of
 space on stack

Buffer Overflow


- Program attempts to write more data into buffer than that buffer can hold...
- ... Starts overwriting area of stack memory
- Can be used maliciously to cause a program to execute code of attackers choose
- Overwrites stack point

Intrusioni & Virus

78

verflow Mechanics of stack-based buffer overflow

- When function copies too much on the stack...
-the return pointer is overwritten
- Execution path of function changed when function ends
- Local stack memory has malicious code

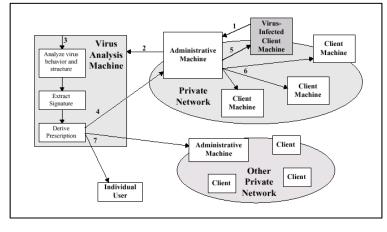
Antivirus Approaches

- Detection determine that it has occurred and locate the virus
- Identification identify the specific virus
- Removal remove all traces and restore the program to its original state

Generations of Antivirus Software

- First: simple scanners (record of program lengths)
- Second: heuristic scanners (integrity checking with checksums)
- Third: activity traps (memory resident, detect infected actions)
- Fourth: full-featured protection (suite of antivirus techniques, access control capability)

Intrusioni & Virus	81	Intrusioni & Virus	82
Advanced Techniques	S	Generic Decryption	
 Generic Decryption Digital Immune System Behavior-Blocking Software 		 Easily detects even most complex polymorphic virus No damage to the personal computer Contains following elements: CPU emulator – software based virtual computer Virus signature scanner – scans target code for known signatures Emulation control module – control execution of target code 	
Intrusioni & Virus	83	Intrusioni & Virus	84


Digital Immune System

- Pioneered by IBM
- Response to rate of virus propagation
 - Integrated mail systems Outlook
 - Mobile program systems ActiveX, Java
- Expands the use of program emulation
- Depends on a central virus analysis machines

Intrusioni & Virus

85

Digital Immune System

Intrusioni & Virus

86

Behavior-Blocking Software

- Monitors program behavior in real-time for malicious actions – part of OS
- Look for well defined requests to the OS: modifications to files, disk formats, mods to scripts or macros, changes in config settings, open network connections, etc.
- IPS Intrusion Prevention Systems

Malicious Code Protection Types of Products

- Scanners identify known malicious code search for *signature strings*
- Integrity Checkers determine if code has been altered or changed – *checksum* based
- Vulnerability Monitors prevent modification or access to particularly sensitive parts of the system – user defined
- Behavior Blockers list of rules that a legitimate program must follow – sandbox concept

Important URLs

http://www.ciac.org/ciac/ Computer Incident Advisory Capability -another http://www.cert.org/ bookmark-able site to visit regularly Originally DARPA's computer emergency response team. An essential security site http://csrc.nist.gov/publications/nistpubs/800-42/NIST-Guideline on Network Security Testing – covers IBM's site on virus information. Very good papers - a password cracking little outdated http://www.openwall.com/iohn/ http://www.afsa.org/fsi/sept00/Denning.cfmHacktivism: . Very good password cracker, "John the Ripper" An Emerging Threat to Diplomacy, another Denning term along with Information Warfare http://csrc.nist.gov/publications/nistpubs/800-36/NISThttp://csrc.nist.gov/virus/Computer Security Resources Guide to Selecting Information Security Products Center – Virus information and alerts http://www.xensource.com/ Xen Source - Hottest Area In Virtualization Intrusioni & Virus Intrusioni & Virus 89

Important URLs