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Abstract. We present a method based on clustering techniques to detect con-
cept drift or novelty in a knowledge base expressed in Description Logics. The
method exploits an effective and language-independent semi-distance measure
defined for the space of individuals, that is based on a finite number of dimen-
sions corresponding to a committee of discriminating features (represented by
concept descriptions). In the algorithm, the possible clusterings are represented
as strings of central elements (medoids, w.r.t. the given metric) of variable length.
The number of clusters is not required as a parameter; the method is able to
find an optimal choice by means of the evolutionary operators and of a fitness
function. An experimentation with some ontologies proves the feasibility of our
method and its effectiveness in terms of clustering validity indices. Then, with a
supervised learning phase, each cluster can be assigned with a refined or newly
constructed intensional definition expressed in the adopted language.

1 Introduction

In the context of the Semantic Web (henceforth SW) there is an extreme need of autom-
atizing those activities which are more burdensome for the knowledge engineer, such
as ontology construction, matching and evolution. These phases can be assisted by spe-
cific learning methods, such as instance-based learning (and analogical reasoning) [5],
case-based reasoning [7], inductive generalization [8, 21, 15] and unsupervised learn-
ing (clustering) [19, 12] crafted for knowledge bases (henceforth KBs) expressed in the
standard representations of the field and complying with their semantics.

In this work, we investigate on the problem of conceptual clustering of semanti-
cally annotated resources. The benefits of conceptual clustering [24] in the SW context
are manifold. Clustering annotated resources enables the definition of new emerging
concepts (concept formation) on the grounds of the concepts defined in a KB; super-
vised methods can exploit these clusters to induce new concept definitions or to refine
existing ones (ontology evolution); intensionally defined groupings may speed-up the
task of search and discovery [6]; a clustering may also suggest criteria for ranking the
retrieved resources based on the distance from the centers. Approaches based on incre-
mental learning [9] and clustering have also been proposed [23] to detect novelties or
track the phenomenon of concept drift [25] over time. Most of the clustering methods
are based on the application of similarity (or density) measures defined over a fixed
set of attributes of the domain objects [16]. Classes of objects are taken as collections



that exhibit low interclass similarity (density) and high intraclass similarity (density).
These methods are rarely able to take into account some form of background knowledge
that could characterize object configurations by means of global concepts and seman-
tic relationships [24]. This hinders the interpretation of the outcomes of these methods
that is crucial in the SW perspective which enforces sharing and reusing the produced
knowledge to enable semantic interoperability across different KBs and applications.

Conceptual clustering methods can answer these requirements since they have been
specifically crafted for defining groups of objects through descriptions based on selected
attributes [24]. The expressiveness of the language adopted for describing objects and
clusters is extremely important. Related approaches, specifically designed for termi-
nological representations (Description Logics [1], henceforth DLs), have recently been
introduced [19, 12]. They pursue logic-based methods for attacking the problem of clus-
tering w.r.t. some specific DLs. The main drawback of these methods is that they are
language-dependent and cannot scale to standard SW representations that are mapped
on complex DLs. Moreover, purely logic methods can hardly handle noisy data.

These problems motivate the investigation on similarity-based clustering methods
which can be more noise-tolerant and language-independent. In this paper, an extension
of distance-based techniques is proposed. It can cope with the standard SW represen-
tations and profit by the benefits of a randomized search for optimal clusterings. The
method is intended for grouping similar resources w.r.t. a notion of similarity, coded in a
distance measure, which fully complies with the semantics KBs expressed in DLs. The
individuals are gathered around cluster centers according to their distance. The choice
of the best centers (and their number) is performed through an evolutionary approach
[13, 20]. From a technical viewpoint, upgrading existing distance-based algorithms to
work on multi-relational representations, like the concept languages used in the SW, re-
quires similarity measures that are suitable for such representations and their semantics.
A theoretical problem is posed by the Open World Assumption (OWA) that is generally
made on the language semantics, differently from the Closed World Assumption (CWA)
which is standard in other contexts. Moreover, as pointed out in a seminal paper on
similarity measures for DLs [3], most of the existing measures focus on the similar-
ity of atomic concepts within hierarchies or simple ontologies. Recently, dissimilarity
measures have been proposed for some specific DLs [5]. Although they turned out to be
quite effective for specific inductive tasks, they were still partly based on structural cri-
teria which makes them fail to fully grasp the underlying semantics and hardly scale to
more complex ontology languages. We have devised a family of dissimilarity measures
for semantically annotated resources, which can overcome the aforementioned limita-
tions [10]. Following the criterion of semantic discernibility of individuals, a family of
measures is derived that is suitable for a wide range of languages since it is merely based
on the discernibility of the input individuals w.r.t. a fixed committee of features repre-
sented by a set of concept definitions. In this setting, instead of the notion of centroid
that characterizes the distance-based algorithms descending from K-MEANS [16], origi-
nally developed for numeric or ordinal features, we recur to the notion of medoids [18].
The proposed clustering algorithm employs genetic programming as a search schema.
The evolutionary problem is modeled by considering populations made up of strings of
medoids with different lengths. The medoids are computed according to the semantic



measure mentioned above. On each generation, the strings in the current population are
evolved by mutation and cross-over operators, which are also able to change the num-
ber of medoids. Thus, this algorithm is also able to suggest autonomously a promising
number of clusters. Accordingly, the fitness function is based both on the optimization
of a cluster cohesion index and on the penalization of lengthy medoid strings.

We propose the exploitation of the outcomes of the clustering algorithm for detect-
ing the phenomena of concept drift or novelty from the data in the KB. Indeed ontolo-
gies evolve over the time (because new assertions are added or because new concepts
are defined). Specifically, the occurrence of new assertions can provoke the introduc-
tion of new concepts (defined only by the extensions) or can transform existing concepts
into more general or more specific ones. We consider the set of new assertions as a can-
didate cluster and we evaluate its nature w.r.t. the computed clustering model; namely
we assess if the candidate cluster is a normal cluster, a new concept or a drift concept.
Hence, new concepts could be induced and/or existing ones could be refined.

The remainder of the paper is organized as follows. Sect. 2 presents the basics of the
target representation and the semantic similarity measure adopted with the clustering
algorithm which is presented in Sect. 3. In Sect. 4 we report an experiment aimed at
assessing the validity of the method on some ontologies available in the Web. The utility
of clustering in the logic of ontology evolution is discussed in Sect. 5. Conclusions and
extensions of the work are examined in Sect. 6.

2 Semantic Distance Measures

In the following, we assume that resources, concepts and their relationship may be de-
fined in terms of a generic ontology language that may be mapped to some DL language
with the standard model-theoretic semantics (see the DLs handbook [1] for a thorough
reference). In the intended framework setting, a knowledge base K = 〈T ,A〉 con-
tains a TBox T and an ABox A. T is a set of concept definitions. The complexity of
such definitions depends on the specific DL language constructors. A contains asser-
tions (ground facts) on individuals (domain objects) concerning the current world state,
namely: class-membership C(a) which means that a is an instance of concept C; rela-
tions R(a, b) which means that a is R-related to b. The set of the individuals referenced
in the assertions ABox A will be denoted with Ind(A). The unique names assumption
can be made on the ABox individuals1 therein.

As regards the required inference services, the measure requires performing in-
stance-checking, which amounts to determine whether an individual, say a, belongs
to a concept extension, i.e. whether C(a) holds for a certain concept C. Note that, dif-
ferently from the standard DB settings, due to the OWA, the reasoner might be unable
to provide a definite answer. Hence one has to cope with this form of uncertainty.

Following some techniques for distance induction in clausal spaces developed in
ILP [22], we propose the definition of totally semantic distance measures for individuals
in the context of a KB which is also able to cope with the OWA. The rationale of the new
measure is to compare individuals on the grounds of their behavior w.r.t. a given set of

1 Each individual can be assumed to be identified by its own URI, however this is not bound to
be a one-to-one mapping.



features, that is a collection of concept descriptions, say F = {F1, F2, . . . , Fm}, which
stands as a group of discriminating features expressed in the considered DL language. A
family of dissimilarity measures for individuals inspired to the Minkowski’s distances
(Lp) can be defined as follows [10]:

Definition 2.1 (family of dissimilarity measures). Let K = 〈T ,A〉 be a knowledge
base. Given set of concept descriptions F = {F1, F2, . . . , Fm}, a family of functions
{dF

p}p∈IN with dF
p : Ind(A)× Ind(A) 7→ [0, 1] is defined as follows: ∀a, b ∈ Ind(A)

dF
p(a, b) :=

Lp(π(a), π(b))
m

=
1
m

(
m∑

i=1

| πi(a)− πi(b) |p
) 1

p

where p > 0 and ∀a ∈ Ind(A) the projection function πi is defined by:

πi(a) =

 1 K |= Fi(a)
0 K |= ¬Fi(a)

1/2 otherwise

The superscript F will be omitted when the set of features is fixed. The functions
{dF

p}p∈IN are semi-distance measures (see [10] for more details). The case πi(a) = 1/2
occurs when a reasoner cannot give the truth value for a certain membership query.
This is due to the OWA normally made in this context. Differently from other DLs
measures [4, 17], the presented measure is able to measure dissimilarity between indi-
viduals and moreover it does not depend on the constructors of a specific language. It
requires only the instance-checking service that is used for deciding whether an indi-
vidual that is asserted in the KB belongs to a concept extension. Such information can
be also pre-computed in order to speed-up the computation of the dissimilarity values
and consequently also the clustering process. The underlying idea in the measure defi-
nition is that similar individuals should exhibit the same behavior w.r.t. the concepts in
F. Here, we make the assumption that the feature-set F represents a sufficient number
of (possibly redundant) features that are able to discriminate really different individu-
als. Preliminary experiments, where the measure has been exploited for instance-based
classification (Nearest Neighbor algorithm) and similarity search [26], demonstrated
the effectiveness of the measure using the very set of both primitive and defined con-
cepts found in the KBs.

However, the choice of the concepts to be included in the committee F is crucial
and may be the object of a preliminary learning problem to be solved (feature selection
for metric learning). We have devised specific optimization algorithms [11] founded
in genetic programming and simulated annealing (whose presentation goes beyond the
scope of this work) which are able to find optimal choices of discriminating concept
committees. Differently from the goal of the this paper, in [11], the problem of man-
aging novelties and concept drift in an ontology has not been considered. Since the
measure is very dependent on the concepts included in the committee of features F,
two immediate heuristics can be derived: 1) control the number of concepts of the com-
mittee, including especially those that are endowed with a real discriminating power;
2) finding optimal sets of discriminating features, by allowing also their composition
employing the specific constructors made available by the DL of choice.



3 Evolutionary Clustering Procedure

Many similarity-based clustering algorithms [16] can be applied to semantically anno-
tated resources stored in a KB, exploiting the measures discussed in the previous section
even if, for the best of our knowledge, very few (conceptual) clustering algorithms for
coping with DL representations have been proposed in the literature. We focussed on the
techniques based on evolutionary methods which are able to determine also an optimal
number of clusters, instead of requiring it as a parameter (although the algorithm can be
easily modified to exploit this information that greatly reduces the search-space). Con-
ceptual clustering requires also to provide a definition for the detected groups, which
may be the basis for the formation of new concepts inductively elicited from the KB.
Hence, the conceptual clustering procedure consists of two phases: one that detects the
clusters in the data and the other that finds an intensional definition for the groups of
individuals detected in the former phase. The first phase of the clustering process is
presented in this section. The concept formation process is presented in Sect. 5.2.

The first clustering phase implements a genetic programming learning scheme,
where the designed representation for the competing genomes is made up of strings
(lists) of individuals of different lengths, with each gene standing as prototypical for a
cluster. Specifically, each cluster will be represented by its prototype recurring to the
notion of medoid [18, 16] on a categorical feature-space w.r.t. the distance measure pre-
viously defined. Namely, the medoid of a group of individuals is the individual that has
the minimal distance w.r.t. the others. Formally. in this setting:

Definition 3.1 (medoid). Given a cluster of individualsC = {a1, a2, . . . , an} ⊆ Ind(A),
the medoid of the cluster is defined:

medoid(C) := argmin
a∈C

n∑
j=1

d(a, aj)

In the proposed evolutionary algorithm, the population will be made up of genomes
represented by a list of medoids G = {m1, . . . ,mk} of variable lengths. The algorithm
performs a search in the space of possible clusterings of the individuals, optimizing
a fitness measure that maximizes the discernibility of the individuals of the different
clusters (inter-cluster separation) and the intra-cluster similarity measured in terms of
the dF

p pseudo-metric. On each generation those strings that are considered as best w.r.t.
a fitness function are selected for passing to the next generation. Note that the algorithm
does not prescribe a fixed length of the genomes (as, for instance in K-MEANS and its
extensions [16]), hence it searches a larger space aiming at determining an optimal
number of clusters for the data at hand. In the following, a sketch of the algorithm,
named ECM, Evolutionary Clustering around Medoids is reported.

medoidVector ECM(maxGenerations)
input: maxGenerations: max number of iterations;
output: medoidVector: list of medoids
static: offsprings: vector of generated offsprings

fitnessVector: ordered vector of fitness values
generationNo: generation number



INITIALIZE(currentPopulation,popLength)
generationNo = 0
while (generationNo < maxGenerations)

begin
offsprings = GENERATEOFFSPRINGS(currentPopulation)
fitnessVector = COMPUTEFITNESS(offsprings)
currentPopulation = SELECT(offsprings,fitnessVector)
++generationNo
end

return currentPopulation[0] // fittest genome

After the call to the INITIALIZE() function returning (to currentPopulation) a ran-
domly generated initial population of popLength medoid strings, the algorithm essen-
tially consists of the typical generation loop of genetic programming, where a new
population is computed and then evaluated for deciding on the best genomes to be se-
lected for survival to the next generation. On each iteration, new offsprings of current
best clusterings in currentPopulation are computed. This is performed by suitable ge-
netic operators explained in the following. The fitnessVector recording the quality of
the various offsprings (i.e. clusterings) is then updated, and then the best offsprings are
selected for the next generation. The fitness of a single genome G = {m1, . . . ,mk} is
computed by distributing all individuals among the clusters ideally formed around the
medoids in that genome. For each medoid mi (i = 1, . . . , k), let Ci be such a cluster.
Then, the fitness is computed by the function:

FITNESS(G) =

(
λ(k)

k∑
i=1

∑
x∈Ci

dp(x,mi)

)−1

The factor λ(k) is introduced to penalize those clusterings made up of too many clusters
that could enforce the minimization in this way (e.g. by proliferating singletons). A
suggested value is λ(k) =

√
k + 1 which was used in the experiments (see Sect. 4).

The loop condition is controlled by the maximal number of generation (the max-
Generations parameter) ensuring that eventually it may end even with a suboptimal
solution to the problem. Besides other parameters can be introduced for controlling the
loop based on the best fitness value obtained so far or on the gap between the fitness
of best and of the worst selected genomes in currentPopulation. Eventually, the best
genome of the vector (supposed to be sorted by fitness in descending order) is returned.

It remains to specify the nature of the GENERATEOFFSPRINGS procedure and the
number of such offsprings, which may as well be another parameter of the ECM algo-
rithm. Three mutation and one crossover operators are implemented:

DELETION(G) drop a randomly selected medoid: G := G \ {m},m ∈ G
INSERTION(G) select m ∈ Ind(A) \G that is added to G: G := G ∪ {m}
REPLACEMENTWITHNEIGHBOR(G) randomly selectm ∈ G and replace it withm′ ∈

Ind(A)\G s.t. ∀m′′ ∈ Ind(A)\G d(m,m′) ≤ d(m,m′′):G′ := (G\{m})∪{m′}
CROSSOVER(GA, GB) select subsets SA ⊂ GA and SB ⊂ GB and exchange them

between the genomes: GA := (GA \ SA) ∪ SB and GB := (GB \ SB) ∪ SA



The representation of centers by means of medoids has two advantages. First, it
presents no limitations on attributes types, and, second, the choice of medoids is dictated
by the location of a predominant fraction of points inside a cluster and, therefore, it is
less sensitive to the presence of outliers. In K-MEANS case a cluster is represented by
its centroid, which is a mean (usually weighted average) of points within a cluster. This
works conveniently only with numerical attributes and can be negatively affected even
by a single outlier.

A (10+60) selection strategy has been implemented, with the numbers indicating,
resp., the number of parents selected for survival and the number of their offsprings
generated employing the mutation operators presented above.

4 Evaluation

The feasibility of the clustering algorithm has been evaluated with an experimentation
on KBs selected from standard repositories. For testing our algorithm we preferred
using populated ontologies (which may be more difficult to find) rather than randomly
generating assertions for artificial individuals, which might have biased the procedure.

4.1 Experimental Setup

A number of different OWL ontologies, selected from various sources2, have been con-
sidered for the experimentation: FSM, SURFACEWATERMODEL, TRANSPORTATION,
NEWTESTAMENTNAMES, and FINANCIAL. Table 1 summarizes details concerning
such ontologies. Of course, the number of individuals gives only a partial indication
of the number of assertions concerning them which affects both the complexity of rea-
soning and distance assessment.

Table 1. Ontologies employed in the experiments.

Ontology DL lang. #concepts #obj.prop. #data prop. #individuals

FSM SOF(D) 20 10 7 37
SURFACEWATERMODEL ALCOF(D) 19 9 1 115

TRANSPORTATION ALC 44 7 0 331
NEWTESTAMENTNAMES SHIF(D) 47 27 8 676

FINANCIAL ALCIF 60 16 0 1000

In the computation of the distances between individuals all concepts in the KB
have been used for the committee of features, thus guaranteeing meaningful measures
with high redundancy. The PELLET reasoner3 was employed to perform the instance-
checking that were necessary to compute the projections.

2 See the Protégé library: http://protege.stanford.edu/plugins/owl/owl-library
and the website: http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

3 http://pellet.owldl.com



The experimentation consisted of 10 runs of the algorithm per knowledge base. The
indexes which were chosen for the experimental evaluation were: the generalized R-
Squared (modRS), the generalized Dunn’s index, the average Silhouette index, and the
number of clusters obtained. We will consider a generic partition P = {C1, . . . , Ck} of
n individuals in k clusters. The indexes are formally defined as follows.

The R-Squared index [14] is a measure of cluster separation, ranging in [0,1].
Instead of the cluster means, we generalize the measure by computing it w.r.t. their
medoids, namely:

RS(P ) :=
SSb(P )

SSb(P ) + SSw(P )

where SSb is the between clusters Sum of Squares defined as SSb(P ) :=
∑k

i=1 d(m,mi)2

wherem is the medoid of the whole dataset and SSt is the within cluster Sum of Squares
that is defined as SSw(P ) :=

∑k
i=1

∑
a∈Ci

d(a,mi)2

The generalized Dunn’s index is a measure of both compactness (within clusters)
and separation (between clusters). The original measure is defined for numerical feature
vectors in terms of centroids and it is known to suffer from the presence of outliers.
To overcome these limitations, we adopt a generalization of Dunn’s index [2] that is
modified to deal with medoids. The new index can be defined:

VGD(P ) := min
1≤i≤k

 min
1≤j≤k

i6=j

{
δp(Ci, Cj)

max1≤h≤k {∆p(Ch)}

}
where δp is the Hausdorff distance for clusters derived4 from dp, while the cluster di-
ameter measure ∆p is defined as ∆p(Ch) := 2

|Ch|
∑

c∈Ch
dp(c,mh). It is more noise-

tolerant w.r.t. the original measure. It ranges in [0,+∞[ and has to be maximized.
The average Silhouette index [18] is a measure ranging in the interval [-1,1], thus

suggesting an absolute best value for the validity of a clustering. For each individual
xi, i ∈ {1, . . . , n}, the average distance to other individuals within the same cluster Cj ,
j ∈ {1, . . . , k}, is computed: ai := 1

|Cj |
∑

x∈Cj
dp(ai, x) Then the average distance to

the individuals in other clusters is also computed: bi := 1
|Cj |

∑h6=j
x∈Ch

dp(ai, x) Hence,
the Silhouette value for the considered individual is obtained as follows:

si :=
(bi − ai)

max(ai, bi)

The average Silhouette value s for the whole clustering is computed: s := 1
k

∑k
1=1 si

We also considered the average number of clusters resulting from the repetitions of
the experiments on each KB. A stable algorithm should return almost the same number
of clusters on each repetition. It is also interesting to compare this number to the one of
the primitive and defined concepts in each ontology (see Tab. 1), although this is not a
hierarchical clustering method.

4 δp is defined δp(Ci, Cj) := max{dp(Ci, Cj), dp(Cj , Ci)}, where dp(Ci, Cj) :=
maxa∈Ci{minb∈Cj{dp(a, b)}}.



4.2 Results

The experiment consisted in 10 runs of the evolutionary clustering procedure with an
optimized feature set (computed in advance). Each run took from a few minutes to 41
mins on a 2.5GhZ (512Mb RAM) machine. These timings include the pre-processing
phase needed to compute the distance values between all couples of individuals. The
elapsed time for the core clustering algorithm is actually very short (max 3 minutes).
The outcomes of the experiments are reported in Tab. 2. For each KB and for each index,
the average values observed along the various repetitions is considered. The standard
deviation and the range of minimum and maximum values are also reported.

Table 2. Results of the experiments: for each index, average value (±standard deviation) and
[min,max] interval of values are reported.

Ontology R-Squared Dunn’s Silhouette #clusters

FSM
.39 (±.07) .72 (±.10) .77 (±.01) 4 (±.00)
[.33,.52] [.69,1.0] [.74,.78] [4,4]

SURFACEWATERMODEL
.45 (±.15) .99 (±.03) .999 (±.000) 12.9 (±.32)
[.28,.66] [.9,1.0] [.999,.999] [12,13]

TRANSPORTATION
.33 (±.04) .67 (±.00) .975 (±.004) 3 (±.00)
[.26,.40] [.67,.67] [.963,.976] [3,3]

NEWTESTAMENTNAMES
.46 (±.08) .79 (±.17) .985 (±.008) 29.2 (±2.9)
[.35,.59] [.5,1.0] [.968,.996] [25,32]

FINANCIAL
.37 (±.06) .88 (±1.16) .91 (±.03) 8.7 (±.95)
[.29,.45] [.57,1.0] [.87,.94] [8,10]

The R-Squared index values denotes an acceptable degree of separation between
the various clusters. We may interpret the outcomes observing that clusters present a
higher degree of compactness (measured by the SSw component). It should also pointed
out that flat clustering penalizes separation as the concepts in the knowledge base are
not necessarily disjoint. Rather, they naturally tend to form subsumption hierarchies.
Observe also that the variation among the various runs is very limited.

Dunn’s index measures both compactness and separation; the rule in this case is the
larger the better. Results are good for the various bases. These outcomes may serve for
further comparisons to the performance of other clustering algorithms. Again, note that
the variation among the various runs is very limited, so the algorithm was quite stable,
despite its inherent randomized nature.

For the average Silhouette measure, that has a precise range of values, the perfor-
mance of our algorithm is generally very good, with a degradation with the increase
of individuals taken into account. Besides, the largest KB (in terms of its population)
is also the one with the maximal number of concepts which provided the features for
the metric. Thus in the resulting search space there is more freedom in the choice of
the ways to make one individual discernible from the others. Surprisingly, the number
of clusters is limited w.r.t. the number of concepts in the KB, suggesting that many
individuals gather around a restricted subset of the concepts, while the others are only



complementary (they can be used to discern the various individuals). Such subgroups
may be detected extending our method to perform hierarchical clustering.

As regards the overall stability of the clustering procedure, we may observe that the
main indices (and the number of clusters) show very little variations along the repe-
titions (see the standard deviation values), which suggests that the algorithm tends to
converge towards clusterings of comparable quality with generally the same number of
clusters. As such, the optimization procedure does not seem to suffer from being caught
in local minima. However, the case needs a further investigation.

Other experiments (whose outcomes are not reported here) showed that sometimes
the initial genome length may have an impact to the resulting clustering, thus suggest-
ing the employment of different randomized search procedures (e.g. again simulated
annealing or tabu search) which may guarantee a better exploration of the search space.

5 Automated Concept Evolution in Dynamic Ontologies

In this section we illustrate the utility of clustering in the process of the automated
evolution of dynamic ontologies. Namely, clustering may be employed to detect the
possible evolution of some concepts in the ontology as reflected by new incoming re-
sources as well as the emergence of novel concepts. These groups of individuals may
be successively employed by supervised learning algorithms to induce the intensional
description of revised or newly invented concepts.

5.1 Incrementality and Automated Drift and Novelty Detection

As mentioned in the introduction, conceptual clustering enables a series of further activ-
ities related to dynamic settings: 1) concept drift [25]: i.e. the change of known concepts
w.r.t. the evidence provided by new annotated individuals that may be made available
over time; 2) novelty detection [23]: isolated clusters in the search space that require to
be defined through new emerging concepts to be added to the knowledge base.

The algorithms presented above are suitable for an online unsupervised learning
implementation. Indeed as soon as new annotated individuals are made available these
may be assigned to the closest clusters (where closeness is measured as the distance to
the cluster medoids or to the minimal distance to its instances). Then, new runs of the
evolutionary algorithm may yield a modification of the original model (clustering) both
in the clusters composition and in their number.

Following [23], the model representing the starting concepts is built based on the
clustering algorithm. For each cluster, the maximum distance between its instances and
the medoid is computed. This establishes a decision boundary for each cluster. The
union of the boundaries of all clusters is the global decision boundary which defines
the current model. A new unseen example that falls inside this global boundary is con-
sistent with the model and therefore considered normal; otherwise, a further analysis
is needed. A single such individual should not be considered as novel, since it could
simply represent noise. Due to lack of evidence, these individuals are stored in a short-
term memory, which is monitored for the formation of new clusters that might indicate



two conditions: novelty and concept drift. Using the clustering algorithm on individu-
als in the short-term memory generales candidate clusters. For a candidate cluster to be
considered valid, i.e. likely a concept in our approach, the following algorithm can be
applied.

(decision,NewClustering) DRIFT NOVELTY DETECTION(Model, CCluster)
input: Model: current clustering; CandCluster: candidate cluster;
output: (decision, NewClustering);

mCC := medoid(CandCluster);
for each Cj ∈ Model| do mj := medoid(Cj);
doverall := 1

|Model|
∑

Cj∈Model

(
1
|Cj |

∑
a∈Cj

d(a,mj)
)

;
dcandidate := 1

|CandCluster|
∑

a∈CCluster d(a,mCC);
if doverall ≥ dcandidate then // valid candidate cluster

begin
m := medoid({mj | Cj ∈ Model}); // global medoid
dmax := maxmj∈Model d(m,mj);
if d(m,mCC) ≤ dmax then

return (drift, replace(Model,CandCluster))
else return (novelty, Model ∪ CandCluster)

end
else return (normal, integrate(Model,CandCluster))

The candidate cluster CandCluster is considered valid5 for drift or novelty detection
when the average mean distance between medoids and the respective instances for all
clusters of the current model is greater than the average distance of the new instances to
the medoid of the candidate cluster. Then a threshold for distinguishing between con-
cept drift and novelty is computed: the maximum distance between the medoids of the
model and the global one6. When the distance between overall medoid and the medoid
of the candidate cluster exceeds the maximum distance then the case is of concept drift
and the candidate cluster is merged with the current model. Otherwise (novelty case)
the clustering is simply extended. Finally, when the candidate cluster is made up of
normal instances these can be integrated by assigning them to the closest clusters.

The main differences from the original method [23], lie in the different represen-
tational setting (simple numeric tuples were considered) which allows for the use of
off-the-shelf clustering methods such as k-MEANS [16] based on a notion of centroid
which depend on the number of clusters required as a parameter. In our categorical
setting, medoids substitute the role of medoids and, more importantly, our method is
able to detect an optimal number of clusters autonomously, hence the influence of this
parameter is reduced.

5 This aims at choosing clusters whose density is not lower than that of the model.
6 Clusters which are closer to the boundaries of the model are more likely to appear due to a

drift occurred in the normal concept. On the other hand, a validated cluster appearing far from
the normal concept may represent a novel concept.



5.2 Conceptual Clustering for Concept Formation

The next step may regard the refinement of existing concepts as a consequence of con-
cept drift or the invention of new ones to account for emerging clusters of resources.
The various cluster can be considered as training examples for a supervised algorithm
aimed at finding an intensional DL definition for one cluster against the counterexam-
ples, represented by individuals in different clusters [19, 12].

Each cluster may be labeled with an intensional concept definition which charac-
terizes the individuals in the given cluster while discriminating those in other clusters
[19, 12]. Labeling clusters with concepts can be regarded as a number of supervised
learning problems in the specific multi-relational representation targeted in our set-
ting [15]. As such it deserves specific solutions that are suitable for the DL languages
employed. A straightforward solution may be found, for DLs that allow for the com-
putation of (an approximation of) the most specific concept (msc) and least common
subsumer (lcs) [1] (such as ALC). The first operator, given the current knowledge base
and an individual, provides (an approximation of) the most specific concept that has the
individual as one of its instances. This would allow for lifting individuals to the con-
cept level. The second operator computes minimal generalizations of the input concept
descriptions. Indeed, concept formation can be cast as a supervised learning problem:
once the two clusters at a certain level have been found, where the members of a cluster
are considered as positive examples and the members of the dual cluster as negative
ones. Then any concept learning method which can deal with this representation (and
semantics) may be utilized for this new task. Given these premises, the learning process
can be described through the following steps:

let Cj be a cluster of individuals

1. for each individual ai ∈ Cj

do compute Mi := msc(ai) w.r.t. A;
2. let mscsj := {Mi | ai ∈ Cj};
3. return lcs(mscsj)

As an alternative, more complex algorithms for learning concept descriptions ex-
pressed in DLs may be employed such as YINYANG [15] or other systems based on
refinement operators [21]. Their drawback is that they cannot deal with the most com-
plex DL languages. The concepts resulting from conceptual clustering can be used for
performing weak forms of abduction that may be used to update the ABox; namely, the
membership of an individual to a cluster assessed by means of the metric, may yield
new assertions that do not occur in the ABox may be added (or presented to the knowl-
edge engineer as candidates to addition). Induced assertions coming for newly available
individuals may trigger further supervised learning sessions where concepts are refined
by means of the aforementioned operators.

6 Conclusions and Extensions

This work has presented a framework for evolutionary conceptual clustering that can be
applied to standard relational representations for KBs in the SW context. Its intended



usage is for discovering interesting groupings of semantically annotated resources and
can be applied to a wide range of concept languages. Besides, the induction of new
concepts may follow from such clusters, which allows for accounting for them from
an intensional viewpoint. The method exploits a dissimilarity measure that is based on
the undelying resource semantics w.r.t. a committee of features represented by a group
of concept descriptions in the chosen language. A preliminary learning phase, based
on randomized search, can be used to optimize the choice of the most discriminating
features. The evolutionary clustering algorithm is an extension of distance-based clus-
tering procedures employing medoids as cluster prototypes so to deal with complex
representations of the target context. Variable-length strings of medoids yielding differ-
ent partitions are searched guided by a fitness function based on cluster separation. The
algorithm can also determine the length of the list, i.e. an optimal number of clusters.

As for the metric induction part, a promising research line, for extensions to match-
making, retrieval and classification, is retrieval by analogy [5]: a search query may
be issued by means of prototypical resources; answers may be retrieved based on lo-
cal models (intensional concept descriptions) for the prototype constructed (on the fly)
based on the most similar resources. The presented algorithm may be the basis for the
model construction activity. The distance measure may also serve as a ranking criterion.
The natural extensions of the clustering algorithm that may be foreseen are towards
incrementality and hierarchical clustering. The former may be easily achieved by as-
signing new resources to their most similar clusters, and restarting the whole algorithm
when some validity measure crosses a given threshold. The latter may be performed by
wrapping the algorithm within a level-wise procedure starting with the whole dataset
and recursively applying the partitive method until a criterion based on quality indices
determines the stop. This may produce more meaningful concepts during the next su-
pervised phase. Better fitness functions may be also investigated for both distance opti-
mization and clustering. For instance, some clustering validity indices can be exploited
in the algorithm as measures of compactness and separation.
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