
Towards the Induction of Terminological Decision Trees

Nicola Fanizzi
Computer Science Dept.
University of Bari, Italy
fanizzi@di.uniba.it

Claudia d’Amato
Computer Science Depart.

University of Bari, Italy
claudia.damato@di.uniba.it

Floriana Esposito
Computer Science Dept.
University of Bari, Italy

esposito@di.uniba.it

ABSTRACT
A concept learning framework for terminological representa-
tions is introduced. It is grounded on a method for inducing
logic decision trees as an adaptation of the classic tree in-
duction methods to the Description Logics representations
adopted in the Semantic Web context. Differently from the
original setting of logical trees based on clausal representa-
tions, tree-nodes contain terminological concept descriptions
(corresponding to OWL-DL classes) which makes it appeal-
ing for the Semantic Web applications. The method has
been implemented in a prototypical system which has been
experimentally evaluated on real ontologies.

1. INTRODUCTION
The problems automated knowledge acquisition in the Se-

mantic Web (SW) context has recently gained lots of atten-
tion: besides of learning for the SW, the question is also
how to learn from the SW. Most of the works on this prob-
lem focus on ontology learning [13, 6], ontology matching and
alignment [9] etc. Only few methods on enrichment of exist-
ing ontologies have been proposed [2, 8, 10]. In this paper,
we propose a method for learning Description Logics (DLs)
concept definitions. the method is grounded on the induc-
tion of decision trees [14] with the interesting side-effect of
requiring new intermediate concepts for the knowledge base
(KB). Moreover, the induced decision trees can be used for
classifying individuals of an ontology w.r.t. a query concept,
as proposed in [8], where an inductive instance-based learn-
ing method is adopted for classifying individuals.

The induction of decision trees [14] is a classic machine
learning problem with a plenty of successful solutions pro-
posed. Decision trees have been extended from the classic
attribute-value representation to a multi-relational represen-
tation (logical decision trees) admitting the test of predicates
on the tree-nodes. Suitable methods for learning logical trees
have been proposed [3]. Our goal is to extend the representa-
tion of the logic decision trees to DLs languages and propose
solutions for their induction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

DLs constitute a family of languages underlying the stan-
dard ontology languages 1 designed for the SW. The family
is composed by (decidable) fragments of First Order Logic
(FOL) which differ from the typical clausal languages em-
ployed in ILP and related settings, They have a different
syntax and especially very different semantics [4]. Early
works on learning in DLs essentially focused on structural
supervised methods for terminological languages like Clas-
sic and its successors [7]. More recently, methods based on
refinement operators and sequential covering and [11, 10]
or genetic programming [12] have been proposed.

In this work we adopt an expressive DL for representing
the tests on tree nodes. This allows to describe different
concepts w.r.t. the original clausal representation and in-
herits the open-world semantics characterizing the DL lan-
guages. Moreover, learning in DLs requires a different set-
ting w.r.t. the clausal representation [10]. Particularly, a
special treatment of the unlabeled individuals is necessary.
Like its multi-relational predecessor, the method employs a
top-down divide-and-conquer strategy [5] which differs from
the standard strategies used for learning concept definitions
which are based on sequential covering [11, 10] or genetic
programming with the use of refinement operators [12].

The proposed algorithm has been implemented in the pro-
totype of the system TermiTIS (Terminological Tree Induc-
tion System) which was evaluated on the task of individual
classification w.r.t. query concepts using real ontologies al-
ready employed as testbeds for other related systems [11,
12, 10]. Given that instance checking in DLs yields three
possible answers, membership, non-membership, unknown-
membership, we had to resort to ad hoc performance indices
(already employed in [8, 10]) measuring the alignment of the
inductive classification decided by the learned model with
the deductive classification decided by a DL reasoner (in-
stance checking). This requires measuring the amount of
unlabeled instances that may be ascribed to the newly in-
duced concepts (or to their negations), which may constitute
a real value added brought by an inductive method. Actu-
ally these conclusions should be evaluated by the knowledge
engineer; however, this is not always possible.

The remainder of the paper is organized as follows. The
next section introduces the representation. In Sect. 3 the
formalization of: the learning problem and the method for
inducing terminological decision trees is presented. Experi-
ments are discussed in Sect. 4 while possible developments
are examined in Sect. 5.

1Such as OWL-DL: http://www.w3.org/TR/owl-ref/.

2. BACKGROUND
In this section we shortly recall syntax and semantics of

the DL representation.
Basic elements are the primitive concepts and roles that

are used to describe restrictions on concepts. In a DL lan-
guage, primitive concepts NC = {C,D, . . .} are interpreted
as subsets of a domain of objects (resources) and primitive
roles NR = {R,S, . . .} are interpreted as binary relations on
such a domain (properties). The individuals represent the
objects through names selected from some NI = {a, b, . . .}.

Complex concept descriptions are built using atomic con-
cepts and primitive roles by means of specific constructors.
The meaning of the descriptions is defined by an interpre-
tation I = (∆I , ·I), where ∆I is the domain of the inter-
pretation and the functor ·I stands for the interpretation
function, mapping each concept C (resp. role R) to its ex-
tension CI ⊆ ∆I (resp., RI ⊆ ∆I ×∆I).

The top concept > is interpreted as the whole domain
∆I , while the bottom concept ⊥ corresponds to ∅. Complex
descriptions can be built, using the specific constructors.
For example, in ALC logic: full negation: given any con-
cept description C, denoted ¬C, it amounts to ∆I \ CI ;
concept conjunction, denoted with C1 u C2, corresponds to
the extension CI1 ∩CI2 and, dually, concept disjunction, de-
noted with C1 t C2, interpreted as CI1 ∪ CI2 . Moreover,
there are two restrictions on roles: the existential restric-
tion, denoted with ∃R.C, and interpreted as the set {x ∈
∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI} and the uni-
versal restriction, denoted with ∀R.C, whose extension is
{x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ RI → y ∈ CI}.

Further constructors extend the expressiveness of theALC
language giving a new name to the particular DL language.
OWL-DL is based SHOIQ(D) that, roughly, extends ALC
with transitive roles, role hierarchies, individual classes, in-
verse roles and qualified number restrictions. Besides, con-
crete domains (D) can be dealt with, i.e. data types with
their own semantics.

A knowledge base K = 〈T ,A〉 contains two sets of axioms:
a T-box T and an A-box A. T is a set of terminological ax-
ioms C v D, yet we will consider only definitions A ≡ D,
where A ∈ NC is a concept name and D is a concept de-
scription given in terms of the language constructors, mean-
ing AI = DI . The ABox A contains extensional assertions
(ground facts) on concepts and roles, e.g. C(a) and R(a, b),
meaning, respectively, that aI ∈ CI and (aI , bI) ∈ RI . A
model for K is an interpretation I satisfying all of its axioms.

Concept (resp. role) hierarchies are induced by the rela-
tionship of subsumption, given in terms of these models:

Definition 2.1 (subsumption). Given the knowledge
base K = 〈T ,A〉 and two concept (role) descriptions D1 and
D2, we say that D1 subsumes D2, denoted by D1 w D, iff for
every model I of K it holds that DI1 ⊇ DI2 . Hence, D1 ≡ D2

amounts to D1 w D2 and D2 w D1.

A noteworthy inference service, from the inductive point
of view, is instance checking [1], that amounts to ascertain-
ing concept-membership assertions: K |= C(a), where a is
an individual name and C is a concept description.

An important difference w.r.t. other FOL fragments is the
open-world assumption (OWA) which makes it more difficult
to answer concept-membership queries: an individual that
cannot be proved to belong to a certain concept does not
necessarily belong to the negation. The OWA just leads to

interpreting these situationsas cases of insufficient (incom-
plete) knowledge.

Example 2.1 (OWA reasoning). Given a TBox T
containing the concept definitions
Mother ≡ Female u ∃hasChild.>
MotherWithNoDaughter ≡ Mother u ∀hasChild.¬Female
and the following ABox:

A = {Female(ELISABETH), Female(DIANA),

Male(CHARLES), Male(EDWARD), Male(ANDREW),

MotherWithNoDaughter(DIANA),

hasChild(ELISABETH, CHARLES),

hasChild(ELISABETH, EDWARD),

hasChild(ELISABETH, ANDREW),

hasChild(DIANA, WILLIAM),

hasChild(CHARLES, WILLIAM)}

the instance check MotherWithNoDaughter(ELISABETH)? would
be answered unknown because it may well happen that a Female
individual which is a child of ELISABETH exists but it is not
known yet.

A related inference service is concept retrieval that amounts
to find all individuals occurring in the knowledge base that
can be proved to belong to a given concept.

3. LEARNING TERMINOLOGICAL TREES

3.1 The Learning Problem in DLs
We formalize the learning problem to be solved induc-

ing TDTs. Given a knowledge base, let us suppose that an
expert provides proper ABox assertions to deem some indi-
viduals as exemplars (or non-exemplars) w.r.t. a new target
concept for which one wants to learn a DL definition [10]:

Definition 3.1 (learning problem).
Given

• a knowledge base K = (T ,A),

• the (new) target concept name C,

• the sets of positive and negative examples for C, resp.
Ind+

C(A) and Ind−C(A)

Build a new concept definition C ≡ D such that

• K |= D(a) ∀a ∈ Ind+
C(A)

• K 6|= D(b) ∀b ∈ Ind−C(A)

This is the setting of a generic supervised concept learning
problem. Note that, unlike the typical settings for learning
logic decision trees [3], or similar ones, were multiple dis-
joint concepts are to be learned, in this case one cannot
consider the target concepts as being disjoint unless that is
explicitly indicated in the knowledge base. Alternatively, a
stronger requirement may be made for the negative exam-
ples b ∈ Ind−C(A) that is K |= ¬D(b).

This setting may be extended to cover also the case of
refinement problems in which a definition for the target con-
cept may be inconsistent w.r.t. some positive (a ∈ Ind+

C(A) :
K 6|= D(a)) or negative (b ∈ Ind−C(A) : K |= D(b)) exam-
ple [10]. Consequently, it needs to be refined to restore the
consistency of the knowledge base.

hasPart.Worn

hasPart.(Worn * ¬Replaceable) ¬SendBack (m Ok)

¬SendBack (m Fix)SendBack

hasPart.>

¬Machine

Figure 1: A TDT whose leftmost path corresponds
to SendBack ≡ ∃hasPart.(Worn u ¬Replaceable).

function classify(a: individual, C: concept, T : TDTree,
K: knowledge base): boolean;

begin
N ← root(T);
while ¬leaf(N,T) do

〈D,Tleft, Tright〉 ← inode(N);
if K |= D(a)
then N ← root(Tleft)
else N ← root(Tright)

〈D, ·, ·〉 ← inode(N);
return (C = D);
end

Figure 2: Classification with TDTs.

3.2 Terminological Decision Trees
Blockeel and De Raedt [3] introduced the notion of first-

order logical decision trees (FOLDTs) as binary decision
trees in which (1) the nodes contain tests in the form of
conjunctions of literals, (2) left and right branches stand for
the truth-value (resp. true and false) determined by the test
evaluation and (3) different nodes may share variables, un-
der the following restriction: a variable that is introduced
(i.e. it occurs for the first time) in a certain node must not
occur in the right branch of that node.

As DLs represent different fragments of FOL with a com-
pact variable-free syntax and the related open-world seman-
tics, an extension of the FOLDTs is proposed where DL
descriptions are set as node tests (instead of LP predicates).
The result is a terminological decision tree (TDT) as the one
depicted in Fig. 1. Once that a TDT is obtained, it can be
used for classifying individuals w.r.t. a given query concept,
according to a simple algorithm in Fig. 2. The auxiliary
function leaf() determines whether a node is a leaf of the
input tree; root() returns the root node of the input tree;
inode() retrieves the test concept and the left and right
subtrees branching from a given internal node. Given an
individual a, a test concept in a node (say D) corresponds
to checking K |= D(a). An individual is sorted to the left or
the right branch depending on the test outcome.

Note that in TDTs, each child node may be meant as a
specialization of its parent. This can be given either (triv-
ially) by adding a concept description (like in FOLDTs) or
by refining a sub-description in the scope of an existential or
universal restriction. Note also that expressive DL languages
(like ALC) are endowed with full negation, hence the situa-

function deriveDefinition(C: class name, T : TDTree):
concept description;

begin
S ← associate(C, T, {});
return

F
D∈S D; // > if S is empty

end

function associate(C: class name, T : TDTree,
S: set of descriptions): set of descriptions;

begin
N ← root(T);
if leaf(N,T) then

〈D, ·, ·〉 ← inode(N);
if D = C then return S else return ∅;

else
〈D,Tleft, Tright〉 ← inode(N);
Sleft ← associate(C, Tleft, S);
Sright ← associate(C, Tright, S);
S′ ← ∅;
for each E ∈ Sleft do

S′ ← S′ ∪ {E uD};
for each E ∈ Sright do

S′ ← S′ ∪ {E u ¬D};
return S′

end

Figure 3: Mapping a TDT to a concept description.

tion is perfectly symmetric. No special care is to be devoted
to negated atoms and their variables as with FOLDTs [3]. It
is possible to derive a single concept definition from a TDT.
The algorithm is shown in Fig. 3. One follows all paths lead-
ing to success nodes for the target concept building possibly
many versions of the concept in the form of conjunctions Ci,
i = 1, . . . ,M . Then the single resulting concept is merely
the union of this finite set of concepts: D =

FM
i=1 Ci.

3.3 Learning Terminological Decision Trees
The subsumption relationship (see Def. 2.1) induces a par-

tial order on the space of all the possible concept descrip-
tions [11, 12]. Hence a solution of the inductive problem
stated in the previous section can be cast as a search for the
right concept definition (hypothesis) in the induced search
space. In this perspective, suitable operators to traverse
the search space ought to be defined. As usual in inductive
search, we will define two kinds of operators, namely given
a starting (incorrect) hypothesis, they must return one (or
some) of its generalizations or specializations.

The solutions of the learning problem are generally found
adopting a separate-and-conquer strategy [11, 10]. Instead
here we opt for a different way to solve the problem, adopt-
ing a divide-and-conquer strategy [5] which is more typical in
decision tree induction. The aim is defining a learning algo-
rithm that can overcome the limitations of some DL learning
systems: avoiding the computation of language-dependent
descriptions2 (or their approximations) such as the most spe-
cific concepts or the least common subsumers [1]. The al-
gorithm implemented by DL-Learner [12] mitigates these
disadvantages. It is essentially based on a genetic program-
ming procedure grounded on operators producing refine-
ments whose fitness depends on their coverage.

2Early works [7, 11] present methods that require lifting the
instances to the concept level through a suitable approxi-
mate operator and then start learning from the resulting
(extremely specific) concept descriptions.

function induceTDTree(Ps, Ns, Us: set of individuals;
C: concept): concept description;

const Pr+,Pr−: prior probabilities
θ: threshold

begin
Initialize new TDTree T ;
if |Ps| = 0 and |Ns| = 0 then

if Pr+ ≥ Pr− then T.root← C else T.root← ¬C;
return T ;

if |Ns| = 0 and |Ps|/(|Ps|+ |Ns|+ 1) > θ then
T.root← C; return T ;

if |Ps| = 0 and |Ns|/(|Ps|+ |Ns|+ 1) > θ then
T.root← ¬C; return T ;

S ← generateNewConcepts(Ps,Ns);
D← selectBestConcept(S,Ps,Ns,Us);
〈〈P l, N l, U l〉, 〈P r, Nr, Ur〉〉 ← split(D,Ps,Ns,Us);
T.root← D;
T.left← induceTDTree(P l, N l, U l, C);
T.right← induceTDTree(P r, Nr, Ur, C);
return T ;
end

Figure 4: The main routine for learning TDTs.

In our TDT induction algorithm (see Fig. 4) the refine-
ment operators play a central role. The algorithm derives
from the standard tree induction algorithms [14, 3], with the
addition of the treatment of unlabeled training individuals.
This is due to the mentioned open-world semantics causing
some individuals not to be assigned to the target concept or
to its negation.

Essentially the set of all individuals is sorted through the
branches of the TDT under construction by choosing suit-
able test for the inner nodes. The aim of this progressive di-
vision is obtaining pure nodes (i.e. containing positive, resp.
negative, individuals only) which become leaves with the
assigned classification.

The three initial conditional statements take care of the
base cases of the recursion: 1) no individual got sorted to
the current node then the resulting leaf is decided on the
grounds of the priors; 2) no negative individual yet more
than a minimum number θ of positive ones got sorted to the
current node, then the leaf is labeled accordingly; 3) dual
case with no positive individual.

In the second part of the algorithm a set S of new test
descriptions are randomly generated: they must be satisfi-
able w.r.t. K and cover some of the positive and negative
individuals. Then, the best description is chosen. For best
description we mean the one that, among the others ran-
domly generated, is better able to discriminate the posi-
tive and negative examples. The quality of each candidate
test description is measured in terms of an improvement of
the purity of the subsets of individuals resulting from the
split based on the given description (a sort of information
gain [14]). Purity is measured by the entropy of the three
subsets, taking into account the unlabeled individuals.

Once the best test concept has been selected, it is installed
as the current subtree root and the sets of individuals sorted
to this node are subdivided according to their classification
w.r.t. such a concept (and the knowledge base K). Note that
unlabeled individuals must be sorted to both left and right
subtree. Finally the recursive calls for the construction of
the subtrees are made passing the proper sets of individuals.

Table 1: Ontologies employed in the experiments.
ontology language #concepts #roles #individuals

FSM SOF(D) 20 10 37

MDM0.73 ALCHOF(D) 196 22 112

Wines ALCOF(D) 75 12 161

BioPax ALCIF(D) 74 70 323

hDisease ALCIF(D) 1498 10 639

NTN SHIF(D) 47 27 676

Financial ALCIF 60 16 1000

4. PRELIMINARY EXPERIMENTS
The presented method has been implemented in Termi-

TIS (Terminological Tree Induction System) and has been
experimented on a number of real ontologies3 (see Tab. 1 for
details). TermiTIS was applied to retrieval problems solved
by using inductive classification of the individuals through
terminological trees w.r.t. 50 query concepts per ontology.
Queries were randomly generated by composition (intersec-
tion, union, universal or existential restriction) of 2 through
8 primitive or defined concepts.

A .632 bootstrap strategy was adopted for the design of the
experiments. A standard reasoner4was employed to decide
on the theoretical class-membership (and non-membership)
of the individuals w.r.t. the query concepts. The perfor-
mance was evaluated comparing the inductive classification
of the individuals with those found deductively by the rea-
soner. Due to the OWA, cases were observed when, it could
not be (deductively) ascertained whether an individual be-
longs or not to the given query. Hence, as argued in previous
works [8, 10], a ternary classification has been adopted and
the following indices have been employed:

match rate: cases of individuals that got the same classi-
fication by the reasoner and the inductive model;

omission error rate: cases of individuals for which class-
membership could not be determined using the in-
duced TDT, while the reasoner found them to belong
(do not belong) to the query concept;

commission error rate: cases of individuals classified
as not belonging to the query concept according to the
induced TDT, while the reasoner found them to belong
to it (and vice-versa);

induction rate: cases of individuals found to belong or
not to the query concept according to the TDT, while
either membership is not logically derivable.

Tab. 2 reports the outcomes of the experiments. The
elapsed time (not reported here) was very limited: about
0.5 hour on a (Quadcore linux box) for a whole experiment
including the time consumed by the reasoner.

Preliminarily, note that inductive classification was quite
accurate: it made few critical mistakes, especially when the
considered concepts have many examples (and counterexam-
ples) in the ontology. However, the commission error was
limited but not absent, as in the experiments with other
classification methods [8]. The cases in which this measure
was more sensible are due to the limited number of examples

3Swoogle (http://swoogle.umbc.edu) and the Protégé
ontology library (http://protege.stanford.edu/plugins/
owl/owl-library) were used.
4Pellet v. 2.0.0rc3 http://pellet.owldl.com

Table 2: Results in terms of the proposed evaluation
rates: average values ± standard deviations.

ontology match commission omission induction

FSM 97.72±01.98 00.99±01.35 00.02±00.18 01.27±00.51
MDM0.73 94.87±05.44 00.39±00.61 03.50±04.16 01.24±01.47

Wines 72.21±25.63 00.67±04.63 12.46±14.28 14.28±23,49
BioPax 98.59±06.03 01.30±05.72 00.11±00.51 00.00±00,00

hDisease 72.65±39.79 00.02±00.10 01.50±06.01 25.82±39.17
NTN 90.68±15.89 00.01±00.09 01.36±01.58 07.95±14.60

Financial 97.32±10.48 02.14±10.07 00.16±00.55 00.39±00.16

available (too narrow query concepts). Even few mistakes
provoked high error rates. This is also due to the absence of
axioms stating explicitly the disjointness of some concepts.

Also the omission error rates are quite low. They are
comparable with the amount of inductive conclusions that
could be drawn with the trees. Again these figures may vary
as a consequence of the availability of knowledge about the
disjunction of (sibling) concepts in the subsumption hierar-
chies. In an ontology population perspective, the cases of
induction are interesting because they suggest new asser-
tions which cannot be logically derived by using a deductive
reasoner yet they might be used to complete a knowledge
base [2], e.g. after being validated by an ontology engineer.
Better results were obtained on the same task with different
inductive methods (instance-based learning in DLs [8]).

5. CONCLUSIONS AND OUTLOOK
In this work, we investigated new methods for learning

DLs descriptions. We proposed the terminological decision
trees as alternative structure for learning DL concept de-
scriptions and a method based on standard top-down tree
induction algorithms for their construction. The method es-
sentially makes use of an ad hoc gain function which takes
into account the classification of individuals w.r.t. the open-
world assumption. Namely many instances may be available
which cannot be ascribed to the target concept nor to its
negation.

The method was implemented in the TermiTIS system
which allowed for a preliminary experimentation presented
in this work, applying the system to learning from individ-
uals in real ontologies. Specifically, we measured the align-
ment of the classifications decided by the induced TDTs with
the classification decided deductively by a DL reasoner. This
allowed measuring the amount of unlabeled instances that
may be ascribed to the newly induced concepts (or to their
negations), which constituted a real added value brought
by an inductive method. The experiments showed that the
method is quite effective, and its performance depends on
the number (and distribution) of the available training indi-
viduals. Besides, the procedure appears robust to noise since
commission errors were limited in the experiments carried
out.

We plan to extend this work along various directions,
starting from the underlying DL language to be adopted.
The method can already manage ontologies represented in
more expressive languages than ALC but use the concepts
therein as atoms and building new ones exclusively thorough
ALC concept constructors. More impurity indices have to
be explored especially to better take into account the uncer-
tainty related to the unlabeled individuals. Then a complete
framework for abductive reasoning in DLs may be conceived.
Finally, the presented method may be the basis for alterna-

tive hierarchical clustering algorithms where clusters would
be formed grouping individuals on the grounds of the in-
vented subconcept instead of their similarity, as this may be
hardly defined with such complex representations [8].

6. REFERENCES
[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,

and P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

[2] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler.
Completing description logic knowledge bases using
formal concept analysis. In M. Veloso, editor, Proc. of
the 20th International Joint Conference on Artificial
Intelligence, IJCAI2007, pages 230–235, 2007.

[3] H. Blockeel and L. De Raedt. Top-down induction of
first-order logical decision trees. Artificial Intelligence,
101(1-2):285–297, 1998.

[4] A. Borgida. On the relative expressiveness of
description logics and predicate logics. Artificial
Intelligence, 82(1–2):353–367, 1996.

[5] H. Boström. Covering vs. divide-and-conquer for
top-down induction of logic programs. In Proceedings
of the 14th International Joint Conference on
Artificial Intelligence, IJCAI95, pages 1194–1200.
Morgan Kaufmann, 1995.

[6] P. Buitelaar, P. Cimiano, and B. Magnini, editors.
Ontology Learning from Text: Methods, Evaluation
and Applications. IOS Press, 2005.

[7] W. Cohen and H. Hirsh. Learning the CLASSIC
description logic. In P. Torasso and et al., editors,
Proceedings of the 4th International Conference on the
Principles of Knowledge Representation and
Reasoning, pages 121–133. Morgan Kaufmann, 1994.

[8] C. d’Amato, N. Fanizzi, and F. Esposito. Query
answering and ontology population: An inductive
approach. In S. Bechhofer and et al., editors, Proc. of
the European Semantic Web Conference, ESWC2008,
volume 5021 of LNCS, pages 288–302. Springer, 2008.

[9] J. Euzenat and P. Shvaiko. Ontology Matching.
Springer, 2007.

[10] N. Fanizzi, C. d’Amato, and F. Esposito. DL-Foil:
Concept learning in Description Logics. In F. Zelezný
and N. Lavrač, editors, Proc. of the 18th Int.
Conference on Inductive Logic Programming, ILP2008,
volume 5194 of LNAI, pages 107–121. Springer, 2008.

[11] L. Iannone, I. Palmisano, and N. Fanizzi. An
algorithm based on counterfactuals for concept
learning in the semantic web. Applied Intelligence,
26(2):139–159, 2007.

[12] J. Lehmann and P. Hitzler. A refinement operator
based learning algorithm for the ALC description
logic. In H. Blockeel and et al., editors, Proc. of the
17th Int. Conference on Inductive Logic Programming,
ILP2007, volume 4894 of LNCS. Springer, 2008.

[13] A. Maedche and S. Staab. Learning ontologies for the
semantic web. Intelligent Systems, IEEE, 16(2):72–79,
2001.

[14] R. Quinlan. Induction of decision trees. Machine
Learning, 1:81–106, 1986.

