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Abstract. Similarity measures play a key role in the Semantic Web perspective.
Indeed, most of the ontology related operations such as ontology learning, ontol-
ogy alignment, ontology ranking and ontology population are grounded on the
notion of similarity. In the last few years several similarity functions have been
proposed for measuring both concept similarity and ontology similarity. How-
ever, they lack of a comprehensive formal characterization that is able to explain
their behavior and value added, in particular when the ontologies are formulated
in description logics languages like OWL-DL. Concept similarity functions need
to be able to deal with the high expressive power of the ontology representation
language, and to convey the underlying semantics of the ontology to which con-
cepts refer. We propose a semantic similarity measure for complex Description
Logics concept descriptions that elicits the underlying ontology semantics. Fur-
thermore, we theorize a set of criteria that a measure has to satisfy in order to be
compliant with a semantic expected behavior.

1 Introduction

The notion of similarity has been active, prominent and seminal in the areas of cognitive
psychology [29, 16, 14], knowledge acquisition [25], data management and information
organization [15, 22, 17] for a long time. In the last years, the importance of the sim-
ilarity notion has been highlighted also in the Semantic Web (SW) context. Indeed,
most of the ontology related operations such as ontology learning, ontology alignment,
ontology ranking and ontology population are grounded on an idea of similarity. How-
ever, the definition of similarity or dissimilarity measures3 in the SW context is a topic
that has not been deeply investigated [4]. One of the main problems is the necessity to
cope with the high expressive power of OWL4 that is the standard ontology represen-
tation language. It is grounded on Description Logics (DLs) that are a family of logic
languages characterized by a well defined formal semantics and a set of reasoning op-
erators that are used for making explicit the knowledge that is implicitly asserted in the

3 Since a dissimilarity measure can be always obtained from a similarity measure (see [3]) in
the following we will consider only the notion of similarity measure
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knowledge base (KB). Differently from the measures formalized in other contexts, sim-
ilarity measures for ontological knowledge need to be able to deal with the semantics
of the compared objects (concepts, individuals, ontologies).

In the last few years, several measures for assessing concept similarity and/or ontol-
ogy similarity have been proposed. They are mainly an adaptation of measures defined
for different and less expressive representations (such as feature vectors, trees, graphs
(see [7] for the discussion)) to the SW context. As such, most of them are not able to
convey the underlying semantics of the ontological representation. On the contrary, it is
common wisdom that similarity measures for ontological knowledge need to be influ-
enced by the reference ontology. However, this influence has never been put on a solid
foundation with objective criteria.

Another important aspect, less considered in the literature, is the ability of a mea-
sure to assess similarity between the individuals of an ontology. Indeed, tasks such as
clustering and ranking most of the times focus on the resources rather than on their
conceptual descriptions. Furthermore, the purpose of a similarity measure is rarely the
modeling of similarity on a scale. More often similarity is a means to an end, such
as grouping the most similar entities for obtaining a more meaningful conceptual ex-
ploration or more efficient data management [11], ranking retrieved resources on the
ground of their relevance w.r.t. a request [19] or mapping or aligning ontologies [13].
For these tasks, the relative comparison of two similarity values is more important than
the absolute value of either. A similarity measure has to be able to characterize such
relative comparisons in a way that accommodates to the given ontological definitions.

In this paper, we first of all discuss the intended behavior of a semantic (dis)similarity
measure when it is applied to ontological knowledge (see Sect. 2). Then, we summarize
the most widely used approaches for computing concept (dis)similarity and we show
that, even if the measures defined in these approaches satisfy the mathematical defi-
nition of similarity function [3], they are not able to exploit the underlying ontology
semantics, thus sometimes failing the correct assessment of the similarity value (see
Sect. 3). To overcome this issue, we formalize a set of criteria that a measure has to
satisfy and propose a measure for DL complex concept descriptions that is compliant
with such formalization (see Sect. 5). Conclusions are drawn in Sect. 6.

2 Semantic Similarity Measures: Expected Behaviors

Ontologies represent a formal conceptualization of a certain domain where the meaning
of the concepts is defined and the relationships among them are specified. The most
important aspect of the ontological representation is its capacity of expressing domain
semantics. Measures for estimating concept similarity have to be able to appropriately
consider concept semantics in order to correctly assess their similarity value.

Let us consider the following example where the TBox5 T and the ABox A con-
cerning a few airport locations and air connections between them are specified:

T = {Service @ Top; Airport @ Top u ¬Service; Town @ Top u ¬Service u ¬Airport;

5 The TBox is a set of concept descriptions while the ABox contains the set of assertions con-
cerning the world state, namely concepts and roles. For more details see the appendix A.



Fig. 1. Service and instance descriptions

Country @ Top u ¬Service u ¬Town u ¬Airport; Germany @ Country;
Italy @ Country u ¬Germany; UK @ Country u ¬Germany u ¬Italy;
CologneAirport @ Airport u ∀In.Germany; RomeAirport @ Airport u ∀In.Italy;
FrankfurtAirport @ Airport u ∀In.Germany u ¬CologneAirport;
LondonAirport @ Airport u ∀In.UK }

A = {FrankfurtAirport(fra); CologneAirport(cgn); RomeAirport(fco); LondonAirport(lhr)}

Based on this ontology, some new concepts and instances may be formulated as
follows. The principle situation, abstracting from some details, is depicted in Figure 1.

ServiceFraLon = Service u ∃From.FrankfurtAirport u ∀From.FrankfurtAirportu
u∃To.LondonAirport u ∀To.LondonAirport

ServiceCgnLon = Service u ∃From.CologneAirport u ∀From.CologneAirportu
u∃To.LondonAirport u ∀To.LondonAirport

ServiceRomeLon = Service u ∃From.RomeAirport u ∀From.RomeAirportu
u∃To.LondonAirport u ∀To.LondonAirport

ServiceFraLon(lh456);
ServiceCgnLon(germanwings123);
ServiceRomeLon(ba789)

Each concept description introduces a flight service respectively from Frankfurt,
Cologne and Rome to London. For each concept, a corresponding instance is specified.

Expressive ontology languages, such as OWL, let us now express interesting ques-
tions like “which service (at the concept level) brings us to London?” or “which con-
crete service instantiation runs into London Heathrow Airport (lhr)?”. Given an exam-
ple like lh456 at the instance level, an obvious question is, e.g. if lh456 is booked
out, which available service is more similar to lh456? Or similarly, given an example
like ServiceFraLon at the concept level, if e.g. Frankfurt airport is not usable due to



the presence of snow, which available service is more similar to ServiceFraLon? In-
tuitively, at the instance level, germanwings123 should be favored over ba789 and,
at concept level, ServiceCgnLon should be favored over ServiceRomeLon, since
from the KB, we know that FrankfurtAirport and CologneAirport are both Airports
in Germany, which is disjoint from Italy, where RomeAirport is located. A similarity
measure has to be able to catch such a similarity. In order to do this, it needs to appreci-
ate the underlying ontology semantics (that allows to know that FrankfurtAirport and
CologneAirport are both German airports). We will call this expected behavior of a
similarity measure soundness.

Now, let us assume to add the following criteria to the KB presented above:

{ItalianAirport v Airport; RomeAirport v ItalianAirport; GermanAirport v Air-
port; FrankfurtAirport v GermanAirport; CologneAirport v GermanAirport }

and the following concept definition:

ServiceItLon = Service u ∃From.RomeAirport u ∀From.RomeAirportu
u∀From.ItalianAirport u ∃To.LondonAirport u ∀To.LondonAirport

ServiceItLon is semantically equivalent (by applying the rewriting rules [12]) to Ser-
viceRomeLon. Hence, the similarity value of each of them w.r.t. another concept
should be equal, i.e. the similarity value of ServiceItLon and ServiceCgnLon should
be equal to the similarity value of ServiceRomeLon and ServiceCgnLon. We will
call this expected behavior of a similarity measure equivalence soundness.

Furthermore, similarity between disjoint concepts needs not always to be zero. Let
us suppose to have the following axiom ServiceCgnLon ≡ ¬ServiceFraLon in the
KB. By comparing ServiceCgnLon and ServiceFraLon it can be noted that they are
not totally different since both perform a flight from a German airport to London.
Consequently, sim(ServiceCgnLon,ServiceFraLon) should be greater than, for in-
stance, sim(ServiceCgnLon,Service) where the only thing that we know from the
KB is that ServiceCgnLon is a Service. However, in the same way we know that
ServiceRomeLon is a Service. This means that not so much semantic information
is shared by ServiceCgnLon and Service, differently from ServiceFraLon and Ser-
viceCgnLon that describe mainly the same service, the only difference is given by the
starting airport. We will call the ability of a similarity measure to recognize similarities
between disjoint concepts disjointness incompatibility.

In the following we show how most of the measures defined in the literature fail
these expected behaviors. In order to avoid this phenomenon, we approach a formaliza-
tion of a set of criteria that a similarity or a dissimilarity measure needs to satisfy.

3 Computing Concept Similarity: Related Works

Similarity and dissimilarity measures have been largely studied in the literature, consid-
ering several kinds of representations such as feature vectors, trees, graphs etc. Though
specific (dis-)similiarity measures have been proposed for description logics, the ques-
tion ”what constitutes a good semantic similarity measure in a description logics lan-
guage” has not been investigated so far. In the following, after recalling the formal



definition of (dis)similarity measure [3], the main approaches for computing concept
similarity are analyzed: the extensional-based and the intentional-based approaches.
Hence, the most representative measures for assessing concept similarity are consid-
ered. We show that, even if such measures satisfy the formal definition, they fail the
expected behaviors of a semantic similarity measure (see Sect. 2).

3.1 Similarity Measure: Mathematical Foundation

Similarity and dissimilarity measures are applied to objects of a considered domain for
determining how much similar and different respectively they are. Intuitively, defining
a similarity measure requires two steps. In the first one, a set of similarity values, e.g.
{far, near} or {equal, similar, dissimilar, totally different}, is defined. A commonly used
scale is the set of the real number R. The second step consists in defining a function
from a pair of objects to the set of similarity values. Following [3], formal definitions
of similarity and dissimilarity measure can be given.

Definition 1 (Similarity Measure). Let D be a set of elements of a considered domain
and let (V,≤) be a totally ordered set. A function s : D × D → V is a similarity
function iff there exists an element 0V ∈ V and an element 1V ∈ V such that:

1. ∀x, y ∈ D : s(x, y) ≥ 0V (positiveness)
2. ∀x ∈ D : s(x, x) = 1V and ∀y ∈ D ∧ x 6= y : s(x, x) ≥ s(x, y) (reflexivity)
3. ∀x, y ∈ D : s(x, y) = s(y, x) (symmetry)

Definition 2 (Dissimilarity Measure). Let D be a set of elements of a considered do-
main and let (V,≤) be a totally ordered set. A function d : D×D → V is a dissimilarity
function iff there exists an element 0V ∈ V such that:

1. ∀x, y ∈ D : d(x, y) ≥ 0V (positiveness)
2. ∀x ∈ D : d(x, x) = 0V and ∀y ∈ D ∧ x 6= y : d(x, x) ≤ d(x, y) (reflexivity)
3. ∀x, y ∈ D : d(x, y) = d(y, x) (symmetry)

In the sequel the terms measure and function will be used interchangeably. For the
next properties, only the dissimilarity measure will be considered. They can be easily
obtained for the case of a similarity measure. It will be denoted with s a similarity
measure and with d a dissimilarity measure.

Definition 3 (Strictness property). Let D be a set of elements of a considered domain
and let (V,≤) be a totally ordered set. Let d be a dissimilarity function on D with
minimum value 0V ∈ V . The function d is strict iff ∀x, y ∈ D : d(x, y) = 0v ⇒ x = y

The strictness property ensures that the minimum dissimilarity value is assigned
only if the considered elements are equal. If the strictness property is not satisfied then
also elements that are different could assume the lowest dissimilarity value.

Definition 4 (Triangle inequality property). Let D be a set of elements of a con-
sidered domain and let (V,+,≤) be a totally ordered set equipped with an order-
preserving addition operation s.t. (V,+) is a commutative group. Let d be a dissim-
ilarity function on D. The function d satisfies the triangle inequality iff ∀x, y, z ∈ D :
d(x, y) + d(y, z) ≥ d(x, z)



Definition 5 (Pseudo-metric). A dissimilarity function is a pseudo-metric (or equiva-
lently a semi-distance) iff it satisfies the triangle inequality.

Definition 6 (Metric). A pseudo-metric is a metric (or equivalently a distance) iff it
satisfies the strictness property.

Definition 7 (Normalized Dissimilarity Function). Let D be a set of elements of a
considered domain. Let d : D ×D → R be a dissimilarity function. d is a normalized
dissimilarity function if ∀x, y ∈ D : 0 ≤ d(x, y) ≤ 1 where d(x, x) = 0 and
∀x ∈ D,∃y ∈ D : d(x, y) = 1

Given a dissimilarity function d, it is always possible to define the normalized dissimi-
larity function d′.

3.2 Extensional-based Similarity Measures

The extensional-based similarity measures are basically inspired from the Jaccard simi-
larity measure [18] and the Tversky’s contrast model [29]. Extensional measures mainly
assign to the compared concepts a similarity value that is proportional to the overlap of
the concept extensions, namely the sets of individuals that are instances of the consid-
ered concepts (see App. A for more details). In [9], a similarity measure for DL concept
descriptions is proposed. The similarity value is computed as the ratio between the over-
lap of the concept extensions and their union, weighted with a factor representing how
far the two concepts are from the equivalence or from the subsumption6. This mea-
sure (as all measures based on the overlap of concept extensions) fails the soundness
criterion (see Sect. 2), namely it is not able to fully convey the underlying ontology
semantics. Indeed, by considering the concepts ServiceFraLon and ServiceCgnLon
from the example above, their similarity will be zero, since they do not share any in-
stance. Instead, as observed in Sect. 2, we know from the KB that they are semantically
more similar than other pairs, since they both fly from Germany to London, differently
from a pair of flights that start in different countries.

Also similarity measures based on the notion of Information Content (IC) ultimately
exploit the extension overlap. The first measures grounded on this notion have been pro-
posed by Resnik [27, 28]. The main idea consists in measuring the similarity of concepts
(represented in a is-a taxonomy) on the ground of the amount of information that they
share. This is approximated with the quantity of information conveyed by the most spe-
cific ancestor7 of the considered concepts that is measured by recurring to the notion of
IC. The IC of a concept C is defined as: IC(C) = −log p(C) where p(C) is the prob-
ability of the concept C and it is computed by Resnik as the probability of occurrence
of C in a corpus. The main issue of using IC for measuring the similarity of concepts
in an ontology is how to compute the concept probability. In [10], it is approximated to
the ratio of the concept extension and the extension of the entire ABox and it is used
for computing the dissimilarity of ALC concept descriptions. Specifically, the dissim-
ilarity function assigns the maximum value, that is 1, if the considered concepts are

6 For the notion of concept equivalence and subsumption see App. A.
7 The most specific ancestor is the first parent node of the considered concepts in the hierarchy.



disjoint; the minimum value, that is 0 if the two concepts are equivalent; otherwise it
is recursively defined and the base step consists in measuring the dissimilarity between
primitive concepts that is computed as the variation of the IC of the considered primitive
concepts w.r.t. the IC of their Least Common Subsumer (LCS) (see Sect. A). This mea-
sure fails the disjointness incompatibility criterion (see Sect. 2), namely it is not able to
recognize similarities between disjoint concepts. It is important to note that almost all
the extensional-based similarity measures do not satisfy the disjointness incompatibility
criterion. Indeed, since they are based on the overlapping of concept extensions, such
an intersection will be always empty when disjoint concepts are considered.

3.3 Intentional-based Similarity Measures

The intentional-based similarity measures are functions that exploit the structure of the
concept definitions for assessing their similarity. One of the most well known mea-
sure based on this approach has been proposed by Rada et al. [26]. It is based on
the notion of path distance. Concepts are nodes linked by is-a edges8 in a semantic
network [6] having a tree structure. The similarity of two concepts C and D is com-
puted as the length of the shortest path connecting C and D. Formally, sim(C,D) =
length(C,E)+ length(D,E) where E is the most specific ancestor9 (msa for brevity)
of C and D and length(C,E) is the number of edges that link the concepts C and
E. The main drawback of this measure is that it is not able to cope with relationships
that are more expressive than is-a (as typically occurs in OWL). Moreover, it is highly
sensitive to the predefined hierarchical network; it tends to give coarse similarity values
to concepts that have the same ancestor but it is not able to rate them. Let us consider
the concepts ServiceFraLon, ServiceCgnLon and ServiceRomeLon from the ex-
ample above, and their msa that is Service. The similarity between ServiceFraLon,
ServiceCgnLon and the similarity between ServiceFraLon, ServiceRomeLon will
be the same. This result violates the soundness criterion (see Sect. 2). Indeed, we know
from the KB that ServiceFraLon and ServiceCgnLon are more semantically similar
than ServiceFraLon and ServiceRomeLon because the former perform flights from
a German airport to London, the latter perform flights starting from different countries.

A similar approach is used in [23], where the taxonomic overlapping between two
hierarchical ontologies is computed. The notion of semantic cotopy (SC) of a concept
C is introduced; it is given by the set of all direct super and sub-concepts of C in the
ontology O where C is defined. Given the SC of C in O1 and the SC of C in O2,
the taxonomic overlapping10 of O1 and O2 w.r.t. C is computed as the ratio between
the intersection of the two SCs and their union. As in the previous case, this measure
strongly depends from the predefined taxonomy, thus it can fail the soundness criterion.

Other intentional-based similarity measures compute concept similarity by compar-
ing the syntactic concept descriptions. In [8], a dissimilarity measure for ALC concept

8 Based on the same rationale, an extension of such a measure, that is able to consider other
kinds of relationships, has been also proposed.

9 Note that, since the considered semantic network is a tree, the msa of two given nodes always
exists and it is unique.

10 The overall taxonomic overlapping between O1 and O2 is given by the averaged taxonomic
overlapping computed w.r.t. to all concepts in the ontologies.



descriptions is presented. Concepts are assumed to be inALC normal form [5], namely
they are expressed as disjunction of conjunctive concepts, where the conjunctive con-
cepts can be primitive, universal and existential concept restrictions. Given two con-
ceptsC andD, the measure returns the maximum dissimilarity value computed between
all possible combination of disjunctive elements in C and D, namely the dissimilarity
value computed at the conjunctive level. The dissimilarity value at conjunctive level is
given by the sum of the dissimilarity values computed between: universal concept re-
strictions, existential concept restrictions and primitive concepts. The measure is recur-
sively defined; the ground step is given by the computation of the dissimilarity between
primitive concepts that is inversely proportional to the amount of extension overlap.
On the ground of this function, similarity measures for ALCNR and ALCHQ normal
form concept descriptions have been proposed [20, 21]. Measures based on the syntactic
comparison of concept definitions fail the equivalence soundness (see Sect. 2). Indeed,
given the concept definition Parent ≡ Human u ∃hasChild.Human and the concept
descriptions ParentuMan and Human u ∃hasChild.Human u Man it is straight-
forward to see that these concept descriptions are equivalent. However, by measuring
the similarity of each of them w.r.t. a third concept description i.e. Parent u Man
u ∃hasChild.(Human u ¬ Man), we will find a different similarity value since they
are written in two different ways.

In [19] a dissimilarity measure for SHIF and SHOIN concept descriptions is
presented. Given two concepts C and D, they are unfolded so that only primitive con-
cept and role names appear in the definition. Hence, each concept is described by means
of a feature vector where each feature is a primitive concept name or a primitive role
name and its value is given by the (weighted) number of occurrences in the unfolded
concept description. Once that the feature vectors are obtained, concept dissimilarities
are computed as vector distances in high dimensional space. The role of the unfolding is
to make explicit the concept semantics. This measure fails the soundness criterion since
it is not able to fully exploit the knowledge in the reference ontology. Indeed, by con-
sidering the concepts ServiceFraLon and ServiceCgnLon from the example above,
the unfolding does not take advantage of the fact that CologneAirport and Frankfur-
tAirport are German airports since inclusion criteria are only used.

Tab. 1 summarizes the similarity measures recalled in this section and their behavior
w.r.t. the semantic criteria presented in Sect. 2.

4 Semantic Measure: Characterization

In this section, we define the formal criteria of equivalence soundness and (strict) mono-
tonicity that allow us to deal with the issues raised in Sect. 2, namely soundness, equiv-
alence soundness, disjointness incompatibility. Specifically, we define a set of criteria
that a similarity measure11 has to satisfy in order to be compliant with the expected
behavior presented in Sect. 2. The criteria are specified considering the case of a dis-
similarity measure. They are almost the same if a similarity measure is considered.

11 Note that a similarity measure is considered. Hence, the criteria of the formal definition (see
Def. 1 and Def. 2) have to be satisfied.



Table 1. Intentional and extensional based similarity measures and their behavior w.r.t. semantic
criteria. ”

√
” stands for criterion satisfied; ”X” stands for criterion not satisfied.

MEASURE Soundness Equiv. soundness Disj. Incompatibility

E
X

T. d’Amato et al. [9]
√

X
√

d’Amato et al. [10] X X
√

IN
T.

-B
A

S
E

D Rada et al. [26]
√

X X
Maedche et al. [23]

√
X X

d’Amato et al. [8] X
√ √

Janowicz et al. [20, 21] X
√

X
Hu et al. [19]

√
X X

Criterion 1 (Equivalence Soundness) Let (C, d) a metric space where C is the set of
DL concept descriptions expressible in the given language. A dissimilarity measure
d : C × C → [0, 1] obeys the criterion of equivalence soundness iff:
∀C,D,E ∈ C : D ≡ E ⇒ d(C,D) = d(C,E).

This criterion simply requires that if two concepts are equivalent than the dissimilar-
ity value of each of them w.r.t. a third concept has to be equal. This means, for instance,
that, given the concept Father defined as Parent u Man and the concept Child then
dis(Father,Child) = dis(Parent uMan,Child). Even if this is a quite obvious behavior,
as seen in Sect. 3, most of the existing measures do not satisfy this criterion. In the
following a proposition for helping the proof of the equivalence soundness is reported:

Proposition 1. If the triangle inequality holds for a given dissimilarity measure d then
it satisfies the equivalence soundness axiom.

Proof. Given the concepts C,D,E ∈ C and a dissimilarity measure d, as the triangle
inequality holds, it is true that: (1) d(C,D)+d(D,E) ≥ d(C,E) and also (2) d(C,E)+
d(E,D) ≥ d(C,D). If D ≡ E then, according to Def. 2 it holds that d(D,E) = 0 =
d(E,D). Hence, d(C,D) ≥ d(C,E) ≥ d(C,D)⇒ d(C,D) = d(C,E).

The proposition is analogously proved if a similarity measure s is considered.
In the following, the monotonicity criterion is presented. It formalizes the monotonic

behavior of the measure w.r.t. the specificity/generality of the considered concepts in the
KB. We show how the monotonicity criterion generalizes the notion of soundness and
disjointess incompatibility presented in Sect. 2.

Criterion 2 (Monotonicity) Let (C, d) a metric space, C is the set of DL concept de-
scriptions in the given language. A dissimilarity measure d : C × C → [0, 1] obeys the
monotonicity criterion iff given the concept expressions C,D,E,L, U ∈ C s.t:

1. C v L,D v L,C v U,D v U ,
2. E v U , and E 6v L
3. 6 ∃H ∈ C s.t. C v H ∧ E v H ∧D 6v H

imply that d(C,D) ≤ d(C,E).



This criterion asserts that, if given the concepts C, D and E, the concept general-
izing C and D is more specific (w.r.t. the subsumption relationship) than the concept
generalizing C and E, than C and D are more similar to each other w.r.t. C and E or
equivalently C and D have a lower dissimilarity value w.r.t. C and E.

This criterion of monotonicity covers the notion of soundness introduced in Sect. 2
which requires the ability of a measure to convey the underlying ontology seman-
tics. Indeed, by considering the concepts ServiceCgnLon, ServiceFraLon and Ser-
viceRomeLon defined in Sect. 2, due to Criterion 2 we have that dis(ServiceCgnLon,
ServiceFraLon) should be lower than dis(ServiceCgnLon, ServiceRomeLon) since
there exists the concept Serviceu ∃ From.(Airportu ∀ In.Germany)u ∀ From.(Airport
u ∀ In.Germany) u ∃ To.LondonAirport u ∀ To.LondonAirport generalizing Ser-
viceCgnLon and ServiceFraLon that is more specific than Service generalizing Ser-
viceCgnLon and ServiceRomeLon. This result is coherent with the semantic infor-
mation conveyed from the KB, from which we know that ServiceCgnLon and Ser-
viceFraLon are more similar than ServiceCgnLon and ServiceRomeLon since both
ServiceCgnLon and ServiceFraLon describe a flight from a German airport to Lon-
don, differently from ServiceCgnLon and ServiceRomeLon that describe a flight
starting from two different countries.

Moreover, the monotonicity criterion also captures the notion of disjointness incom-
patibility which requires that if two concepts are disjoint their similarity is not necessar-
ily null (or equivalently their dissimilarity is not necessarily maximal). This is straight-
forwardly verified by noting that, if the following disjointness axiom ServiceCgnLon
≡ ¬ServiceFraLon is considered, the relation dis(ServiceCgnLon, ServiceFraLon)
≤ dis(ServiceCgnLon, ServiceRomeLon) remains valid. This is further evident by
considering the following criterion:

Criterion 3 (Strict Monotonicity) Let (C, d) a metric space where C is the set of DL
concept descriptions expressible in the given language. A dissimilarity measure d :
C × C → [0, 1] obeys the soundness and disjointness incompatibility criteria iff given
the concept expressions C,D,E,L, U ∈ C s.t:

1. C @ L,D @ L,C @ U,D @ U ,
2. E @ U , and E 6@ L
3. 6 ∃H ∈ C s.t. C @ H ∧ E @ H ∧D 6@ H

imply that d(C,D) < d(C,E).

Considering the concepts ServiceCgnLon, ServiceFraLon, ServiceRomeLon,
due to Crit. 3, the relation dis(ServiceCgnLon, ServiceFraLon)< dis(ServiceCgnLon,
ServiceRomeLon) is valid although ServiceCgnLon and ServiceFraLon do not
have common instances. Therefore Strict Monotonicity criterion allows that also non-
empty extension intersections may still lead to a dissimilarity lower than one, that is the
maximum dissimilarity value.

Criteria 2 and 3 pose an open issue: ”how to compute a concept generalization that
is able to take into account both the concept definitions and the TBox of reference?”.
A first reply could be to consider the Least Common Subsumer (LCS) (see App. A)
of the considered concepts. Anyway, this is not the right solution. Indeed, for DLs



allowing for concept disjunction, the LCS is given by the disjunction of the considered
concepts. It is not the suitable generalization because: 1) it does not take into account
the TBox of reference; 2) it does not add further information besides of the information
given by the considered concepts. If less expressive DLs (i.e. those do not allow for
concept disjunction) are considered, again the LCS does not take into account the TBox
of reference and moreover it is computed in a structural way, namely by considering
the common concept and role names that appear in the concept definitions. A possible
generalization able to satisfy our requirements is the Good Common Subsumer (GCS)
(see App. A). Anyway, it is defined only for ALE(T ) concept descriptions. If most
expressive DLs are considered the problem remains still open.

5 The GCS-based Semantic Similarity Measure

From the discussion about the expected behaviors of a semantic similarity measure
(Sect. 2) and the violation of such behaviors of the extensional-based and the intentional-
based similarity measures, a possible conclusion is that a semantic similarity measure
should be defined in a way that is neither structural nor extensional. Moving from this
intuition we propose a semantic similarity measure that exploits the notion of concept
extension, but instead of counting the common instances between two considered con-
cepts, it assesses the similarity value as the variation of the number of instances in
the concept extensions w.r.t. the number of instances in the extension of their common
super-concept. The common super-concept is given by the GCS of the considered con-
cepts (see Sect. A). The new similarity measure, the GCS-based similarity, is able to
satisfy the semantic criteria presented in Sec. 4 and to exploit the underlying ontology
semantics. The measure is formally defined in the following [11].

Definition 8 (GCS-based Similarity Measure). Let T be an ALC TBox. For all C
and D ALE(T )-concept descriptions, the Semantic Similarity Measure s is a function
s : ALE(T )×ALE(T )→ [0, 1] defined as follows:

s(C,D) =
min(|CI |, |DI |)
|(GCS(C,D))I |

· (1− |(GCS(C,D))I |
|∆I |

· (1− min(|CI |, |DI |)
|(GCS(C,D))I |

))

where (·)I computes the concept extension w.r.t. the interpretation I .

As interpretation, the canonical interpretation is considered that adopts the set of
individuals in the ABox as domain and the identity as interpretation function [12, 24].

The rationale of the measure is that if two concepts are semantically similar, such
as credit-card-payment and debit-card-payment, then they should have a good com-
mon superconcept, e.g. card-payment, that is close to the two concepts, namely the
extensions of the superconcept and even the lesser-sized input concept share many in-
stances. Consequently the similarity value will be close to 1. On the contrary, if the
concepts are very different, e.g. car-transfer and debit-card-payment, their GCS, e.g.
service, will be high up in the TBox, and it will have many instances that are not con-
tained in the two compared concepts. Consequently the similarity value will be next to
0. In Fig. 2 and Fig. 3 this rationale is illustrated.



Fig. 2. Concepts C ≡credit-card-payment,
D ≡debit-card-payment are similar as the ex-
tension of their GCS≡card-payment does not
include many other instances besides of those
of C and D.

Fig. 3. Concepts C ≡car-transfer, D ≡ debit-
card-payment are different as the extension
of their GCS≡service includes many other in-
stances besides of those of C andD extensions.

The minimum concept extension is considered in the definition, in order to avoid
incorrect similarity values (high similarity value) when one of the concepts, let say C,
is very similar to the super-concept but very different from the other one, let say D.

Since the GCS is used in the measure definition, only ALC and ALE(T ) DLs
have been considered. If a different way for determining the common super-concept
is adopted, other DLs can be used. The GCS has been chosen since it is not so specific
as the ALC LCS, that is simply given by the disjunction of the concepts, neither it is
too much general as the ALE LCS computed without taking into account the KB.

Differently from the existing similarity measures, the function defined above does
not require the extension overlap of the compared concepts, and it does not take into
account neither the path distance nor the structural comparison of concept defintions.

The GCS-based function is really a similarity measure: it is a positive definite func-
tion (from the definition), it is symmetric (this is ensured by the commutativity of the
operators used in the definition) and it assumes the maximum value, which is 1, when
the compared concepts are equivalent, indeed, only in this case the GCS will be equiv-
alent to the considered concepts, and consequently, the extensions will be all equal.

Moreover, the GCS-based similarity measure is a semantic similarity measure. In-
deed, given two equivalent concepts D and E and a third concept C, for the GCS
definition [2], the GCS of C and D will be equivalent to the GCS of C and E and this
ensures that the equivalence soundness criterion is satisfied. In the same way, the dis-
jointness incompatibility criterion is also satisfied. Let us assume the following TBox
T = {Humanv Top; Femalev Top; Malev Top; Tablev Top; Woman≡ Human
u Female; Man≡ Human u Male;} and the concepts Woman and Man (that are de-
clared to be disjoint in the KB) having Human as GCS. By applying the GCS-based
measure to the concepts Woman and Man we find that their similarity value is not
null, which satisfies the disjointness incompatibility criterion. The soundness criterion
is straightforwardly satisfied by considering the GCS as concept generalization. Indeed,
by measuring the similarity between the concepts ServiceFraLon and ServiceCgn-
Lon (defined in Sect. 2) and the similarity between ServiceCgnLon and Service we
find that the former couple has a higher similarity value w.r.t. the latter. Futhermore,
since the GCS is used in the concept definition, this allows to ”understand” that Ser-
viceCgnLon and ServiceFraLon are both flight performed from a German airport.



The GCS-based similarity can be also used for measuring individual similarity by
first computing the Most Specific Concepts (see App. A) of the individuals to compare.

6 Conclusions

In this paper we have analyzed the attended behaviors that a similarity measure should
have when it is used for measuring concept similarity in ontological knowledge. We
have formalized such behaviors by introducing the notions of (equivalence) soundness
and disjointness incompatibility. Hence we have showed that most of the measures cur-
rently used do not fully satisfy these notions. For this reason, we have formalized a set
of criteria (equivalence soundness, (strict) monotonicity) that a measure needs to fulfil
in order to be compliant with the attended behavior and we have introduced a new se-
mantic similarity measure satisfying these criteria. This measure is based on the notion
of Good Common Subsumer and it is able to exploit the semantics of the underlying
ontology to which concepts refer. The measure is grounded on the concept extensions
but, differently from the current approaches, it does not evaluate the extension overlap
but the variation of the cardinality of the extensions of the considered concepts w.r.t. the
cardinality of the extension of their GCS. This allow to overcome the limitations of the
extensional-based similarity measures, while the use of the GCS allows to overcome
the drawback of the intentional-based measures.
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A Appendix Foundation

Description Logics are a family of logic languages with different expressive power, depending
from the constructors that are allowed for building complex concept descriptions. We will mainly
focus on ALE and ALC logic. Even if they are sub-languages of OWL12, they are considered
a good compromise between expressive power and computational complexity required by the
inference operators [12].

In DLs, descriptions are inductively defined starting with a setNC of primitive concept names
and a set NR of primitive roles. The semantics of the descriptions is defined by an interpretation
I = (∆I , ·I), where ∆I is a non-empty set representing the domain of the interpretation, and
·I is the interpretation function that maps each A ∈ NC to a set AI ⊆ ∆I and each R ∈ NR

to RI ⊆ ∆I × ∆I . The top concept > is interpreted as the whole domain ∆I . The bottom
concept ⊥ corresponds to ∅. Complex descriptions can be built in ALC using primitive concepts
and roles and the following constructors whose semantics is also specified. The language supports
full negation, denoted¬C (given any descriptionC), it amounts to∆I\CI ; concept conjunction,
denoted C1 u C2, yields an extension CI1 ∩ CI2 ; concept disjunction, denoted C1 t C2, yields
the union CI1 ∪ CI2 ; existential restriction, denoted ∃R.C, is interpreted as the set {x ∈ ∆I |
∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)} and the value restriction ∀R.C that has the extension
{x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}.
ALE logic is a sub-language of ALC as only a subset of ALC constructors is allowed.

Specifically, concept disjunction is not allowed and only the atomic negation can be used, namely
complex concept descriptions cannot be negated.

The main inference in DLs is subsumption between concepts:

Definition 9 (subsumption). Given two descriptions C andD, C subsumesD, denoted by C w
D, iff for every interpretation I it holds that CI ⊇ DI . When C w D and D w C then they are
equivalent, denoted with C ≡ D.

A knowledge base K = 〈T ,A〉 contains a TBox T and an ABox A. T is the set of definitions
C ≡ D, meaning CI = DI , where C is the concept name and D is its description. A contains
assertions on the world state, e.g. C(a) and R(a, b), meaning that aI ∈ CI and (aI , bI) ∈ RI .
Subsumption based axioms (D v C) are also allowed in the TBoxes as partial definitions.

Another inference operator is the instance checking, that is deciding whether an individual is
an instance of a concept or not [12]. Conversely, the Most Specific Concept is the most specific
description (w.r.t. the subsumption relationship) of which an individual is instance of.

Definition 10 (Most Specific Concept). Given an ABoxA and an individual a, the most specific
concept of a w.r.t. A is the concept C, denoted MSCA(a), such that A |= C(a) and ∀D such
that A |= D(a), it holds: C v D.

In the general case of a cyclic ABox expressed in a DL endowed with existential or numeric
restriction, the MSC cannot be expressed as a finite concept description [12], it can only be
approximated [24]. The Least Common Subsumer is the most specific concept subsuming all
concept descriptions in given set:

Definition 11 (Least Common Subsumer). Let L be a description logic. A concept description
E of L is the least common subsumer (LCS) of the concept descriptions C1, · · · , Cn in L
(LCS(C1, · · · , Cn) for short) iff it satisfies:

1. Ci v E for all i = 1, · · · , n and

12 For OWL we mean OWL-DL that is the one allowing enough expressive power without loosing
decidability of reasoning procedures.



2. E is the least L-concept description satisfying (1), i.e. if E′ is an L-concept description
satisfying Ci v E′ for all i = 1, · · · , n, then E v E′.

Depending on the DL language, the LCS needs not always exist. If it exists, it is unique up to
equivalence. In ALC and ALE logic, the LCS always exists [1, 12]. In ALC (as in every DL
allowing for concept disjunction) the LCS is given by the disjunction of the considered concepts.
In ALE , where disjunction is disallowed, the LCS is computed by taking the common concept
names in the concept descriptions (also in the concepts scope of universal and existential restric-
tions w.r.t. the same role), without considering the TBox (see [1] for more details). The ALE
LCS computed using such an approach often results to be very general. For this reason the notion
of LCS computed w.r.t. the TBox13 has been introduced [2].

Definition 12 (LCS w.r.t. a TBox). Let L1 and L2 be DLs s.t. L1 is a sub-DL of L2. For a given
L2-TBox T , let L1(T )-concept descriptions be those L1-concept descriptions that may contain
concepts defined in T . Given an L2-TBox T and L1(T )-concept descriptions C1, . . . , Cn, the
least common subsumer (LCS) of C1, . . . , Cn in L1(T ) w.r.t. T is the most specific L1(T )-
concept description that subsumes C1, . . . , Cn w.r.t. T , i.e., it is an L1(T )-concept description
D such that:

1. Ci vT D for i = 1, . . . , n
2. if E is an L1(T )-concept satisfying Ci vT E for i = 1, . . . , n, then D vT E

In [2], the case L2 = ALC and L1 = ALE is focused and a brute force algorithm for
computing the LCS is defined which is hardly practically usable. For this reason, an algorithm
for computing an approximation of theALE LCS w.r.t. anALC TBox has been presented. Such
an approximation is called Good Common Subsumer (GCS) w.r.t. a TBox [2]. It is computed by
determining the smallest conjunction of (negated) concept names subsuming the conjunction of
the top level concept names of each considered concept, and the same for the concepts that are
range of role restrictions w.r.t. the same role. The GCS is more specific than the LCS computed
by ignoring the TBox.

13 The TBox can be described by a DL that is more expressive than ALE .


