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Abstract

This work concerns non-parametric approaches for sta-
tistical learning applied to the standard knowledge rep-
resentations languages adopted in the Semantic Web con-
text. We present methods based on epistemic inference that
are able to elicit the semantic similarity of individuals in
OWL knowledge bases. Specifically, a totally semantic and
language independent semi-distance function is presented
and from it, an epistemic kernel function for Semantic Web
representations is derived. Both the measure and the ker-
nel function are embedded into non-parametric statistical
learning algorithms customized for coping with Semantic
Web representations. Particularly, the measure is embedded
into a k-Nearest Neighbor algorithm and the kernel function
is embedded in a Support Vector Machine. The realized al-
gorithms are used to performe inductive concept retrieval
and query answering. An experimentation on real ontolo-
gies proves that the methods can be effectively employed for
performing the target tasks and moreover that it is possible
to induce new assertions that are not logically derivable.

1 Learning from Ontologies

The Semantic Web (SW) represents an emerging do-
main where business, enterprise and organization on the
Web will have its own organizational model (an ontology),
and knowledge intensive automated manipulations on com-
plex relational descriptions are foreseen. Specific formal
languages for knowledge representation have been designed
for supporting a variety of applications in this context span-
ning from biological and geospatial fields to agents tech-
nology and service oriented architectures. Description Log-
ics (DLs) [1], a family of languages that is endowed with
well-founded semantics and reasoning services, have been
adopted as the core of the ontology language (OWL").

Uhttp://www.w3.0rg/2004/OWL/

Most of the research on formal ontologies has been fo-
cused on methods based on deductive reasoning. Yet, such
an approach may fail in case of noisy (and possibly incon-
sistent) data coming from heterogeneous sources. Inductive
learning method could be effectively employed to overcome
this problem. Nevertheless, the research on inductive meth-
ods and knowledge discovery applied to ontologic represen-
tations have received less attention [5, 17, 10, 9].

In this paper we propose two non-parametric statistical
learning methods suited on DL representation, namely the
Nearest Neighbor (henceforth NN) approach [18] and the
kernel methods [19], in order to perform important infer-
ences on semantic knowledge bases (KBs), such as con-
cept retrieval [1] and query answering. Indeed, concept
retrieval and query answering can be cast as classification
problems, i.e. assessing the class-membership of the indi-
viduals in the KB w.r.t. some query concepts. Reasoning
by analogy, similar individuals should likely belong to the
extension of similar concepts. Moving from such an intu-
ition, an instance-based framework (grounded on the NN
approach and kernel methods) for retrieving resources con-
tained in ontological KBs has been devised, to inductively
infer (likely) consistent class-membership assertions that
may not be logically derivable. As such, the resulting new
(induced) assertions may enrich the KBs; indeed they can be
suggested to the knowledge engineer that has only to vali-
date them, thus making the ontology population task less
time-consuming [2].

Both the NN approach and kernel methods are well
known to be quite efficient and noise-tolerant and, differ-
ently from the parametric statistical learning methods, they
allow the hypothesis (the model to be learnt) complexity to
grow with the data. Moreover, both of them are grounded
on the exploitation of a notion of (dis-)similarity. Specif-
ically, the NN approach retrieves individuals belonging to
query concepts, by analogy with the most similar training
instances, namely on the grounds of the classification of the
nearest ones (w.r.t. the dissimilarity measure). Kernel meth-
ods represent a family of statistical learning algorithms, in-



cluding the support vector machines (SVMs), that can be
very efficient since they map, by means of a kernel function,
the original feature space into a higher-dimensional space,
where the learning task is simplified and where the kernel
function implements a dissimilarity notion.

From a technical viewpoint, extending the setting of the
NN and the kernel methods to the DL representation re-
quired to solve several issues: 1) a theoretical problem is
posed by the Open World Assumption (OWA) that is gen-
erally made on the semantics of SW ontologies, differently
from the typical database standard where the Closed World
Assumption (CWA) is made; 2) both NN and kernel meth-
ods are devised for simple classifications where classes are
assumed to be pairwise disjoint. This is quite unlikely in
the SW context where an individual can be instance of
more than one concept; 3) suitable metrics, namely (dis-
)similarity measures and kernel functions, are necessary for
coping with the high expressive power of DL representa-
tions; such definitions could not be straightforward.

Most of the existing measures focus on concept
(dis)similarity and particularly on the (dis)similarity of
atomic concepts within hierarchies or simple ontologies
(see the discussion in [4]). Conversely, for our purposes, a
notion of dissimilarity between individuals is required. Re-
cently, dissimilarity measures for specific DL concept de-
scriptions have been proposed [7, 8]. Although they turned
out to be quite effective for the inductive tasks of interest,
they are partly based on structural criteria (a notion of nor-
mal form) which determine their main weakness: they are
hardly scalable to deal with standard ontology languages.
To overcome these limitations, a semantic pseudo-metrics
[13] is exploited. This language-independent measure as-
sesses the dissimilarity of two individuals by comparing
them on the ground of their behaviors w.r.t. a committee of
features (concepts), namely those defined in the KB or that
can be generated to this purpose’. Since kernel functions
implement a notion of dissimilarity, we have derived a ker-
nel function from the semantic pseudo-metrics[13]. As for
the function from which it is derived, the kernel is language
independent and it is based on the semantics of the individ-
ual as epistemically elicited from the KB w.r.t. a number
of dimensions, represented by a committee® of discriminant
concept descriptions (features).

We have embedded the pseudo-metrics in a NN algo-
rithm and the kernel function in a kernel machine (specifi-
cally a SVM). The obtained framework have been used for
performing inductive concept retrieval and query answer-
ing with both approaches. We experimentally show that
the methods perform concept retrieval and query answering

2The choice of optimal committees may be performed in advance
through randomized search algorithms [13].

3 As for the pseudo-metrics [13], also for the kernel function, the fea-
ture set can be optimally generated by means of a simulated annealing
procedure[13]

comparably well w.r.t. a standard deductive reasoner. More-
over, we show that the proposed framework is sometimes
able to induce new concept assertions that are not logically
derivable, namely the reasoner does not give any reply if an
individual is instance of a certain concept or not while our
framework asserts that such an individual is instance of the
same considered concept (or its negation).

In the next section the reference representation is briefly
summarized. In Sect. 3 the basics of the NN approach and
its extension to the SW setting is analyzed. In Sect. 4 the
pseudo-metrics used for performing the NN search is pre-
sented. In Sect. 5 the basics of kernel methods and kernel
functions are illustrated while in Sect. 6 the kernel derived
from the pseudo-metrics is illustrated. In Sect. 7 the exper-
imental evaluation of the proposed methods is discussed.
Conclusions are drawn in Sect. 8.

2 Representation and Inference

We assume that concept descriptions are defined in terms
of a generic sub-language based on OWL-DL that may be
mapped to DLs with the standard model-theoretic seman-
tics (see [1] for a thorough reference). A knowledge base
K = (T,.A) contains a TBox T and an ABox A. T is a set
of axioms that define concepts. A contains factual asser-
tions concerning the resources, also known as individuals.
The unique names assumption may be made on the ABox
individuals, that are represented by their URIs. The set of
the individuals occurring in A will be denoted with Ind(.A).

As regards the inference services, like all other instance-
based methods, our procedures may require performing
instance-checking [1], which roughly amounts to determine
whether an individual, say a, belongs to a concept exten-
sion, i.e. whether C'(a) holds for a certain concept C. This
service is provided proof-theoretically by a reasoner. Note
that because of the OWA, a reasoner may be unable to give
a positive or negative answer to a class-membership query.

3 Query Answering as Nearest Neighbor
Search

Query answering boils down to determining whether a
resource belongs to a (query) concept extension. Here, an
alternative inductive method is proposed for retrieving the
resources that likely belong to a query concept. Such a
method may also be able to provide an answer even when it
may not be inferred by deduction.

In similarity search [21] the basic idea is to find the
most similar object(s) to a query one (i.e. the one that has
to be classified) w.r.t. a similarity (or dissimilarity) mea-
sure. We review the basics of the k-NN method applied
to the SW context [8]. The objective is to induce an ap-
proximation for a discrete-valued target hypothesis function



h : IS — V from a space of instances IS to a set of values
V = {v1,...,vs} standing for the classes (concepts) that
have to be predicted. Note that normally |IS| < |Ind(.A)]
i.e. only a limited number of training instances is needed.
Let z, be the query instance whose class-membership is
to be determined. Using a dissimilarity measure, the set of
the k nearest (pre-classified) training instances w.r.t. z, is
selected: NN(zy) = {z; | i = 1,...,k}. A k-NN al-
gorithm approximates h for classifying x, on the grounds
of the value that h assumes for the training instances in
NN (z,), i.e. the k closest instances to z,. Precisely, the
value is decided by means of a weighted majority voting
procedure, namely the value is given by the most voted class
by the instances in NN (z,) weighted by the similarity of
the neighbor individual. Formally, the estimation of the hy-
pothesis function for the query individual is defined as:

k

h(:rq) —argmaxZwl (v, h(x;)) (1)

LIS e —

where § returns 1 in case of matching arguments and 0 oth-
erwise, and, given a dissimilarity measure d, the weights are
determined by w; = 1/d(z;, z4).

Note that the estimate function & is defined extension-
ally: the basic k-NN does not return an intensional classifi-
cation model (namely a function or a concept definition), it
merely gives an answer for the instances to be classified. It
should be also observed that this setting assigns a value to
the query instance which stands for one in a set of pairwise
disjoint concepts (corresponding to the value set V). In a
multi-relational setting such as the SW context this assump-
tion cannot be made in general since an individual may be
instance of more than one concept.

Another issue is represented by the CWA usually made
in the knowledge discovery context, opposite to the OWA
characterizing the SW context. To deal with the OWA, the
absence of information on whether a training instance x be-
longs to the extension of the query concept ) should not
be interpreted negatively, as in the standard settings which
adopt the CWA. Rather, it should count as neutral infor-
mation. Thus, assuming the alternate viewpoint, the multi-
class classification problem is transformed into a ternary
one. Hence another value set has to be adopted, namely
V = {41, —1,0}, where the three values denote: member-
ship, non-membership, and unknown, respectively.

The task can be cast as follows: given a query concept
(), determine the membership of an instance x, through the
NN procedure (see Eq. 1) where V' = {—1,0,+1} and the
hypothesis function values for the training instances are de-
termined as follows:

+1  KEQ()
holw) =4 ~1 Kk -Q@)
0 otherwise

i.e. the value of K for the training instances is determined
by the entailment* of the corresponding assertion from the
knowledge base.

Note that, being this procedure based on a majority vote
of the individuals in the neighborhood, it is less error-prone
in case of noise in the data (e.g. incorrect assertions) w.r.t. a
purely logic deductive procedure. Therefore it may be able
to give a correct classification even in case of inconsistent
knowledge bases. At the same time, it should be noted that
the inductive inference made by the procedure shown above
is not guaranteed to be deductively valid. Indeed, inductive
inference naturally yields a certain degree of uncertainty.

4 A Semantic Pseudo-Metric for Individuals

For the NN procedure, we intend to exploit a dissimi-
larity measure that totally depends on semantic aspects of
the individuals in the knowledge base. The measure is
based on the idea of comparing the semantics of the in-
put individuals along a number of dimensions represented
by a committee of concept descriptions. Indeed, on a se-
mantic level, similar individuals should behave similarly
w.r.t. the same concepts. Following the ideas borrowed
from [20], totally semantic distance measures for individu-
als can be defined in the context of a KB. More formally, the
rationale is to compare individuals on the grounds of their
semantics w.r.t. a collection of concept descriptions, say
F={F,Fs,...,F,}, which stands as a group of discrim-
inating features expressed in the OWL-DL sub-language
taken into account. In its simple formulation, a family of
distance functions for individuals inspired to Minkowski’s
norms L,, can be defined as follows [13]:

Definition 4.1 (family of measures) Let K = (7, A) be
a KB. Given a set F = {F\, Fs,...,Fy} of concept de-
scriptions, a family of dissimilarity functions dIF7 Ind(A) x
Ind(A) — [0, 1] is defined as follows:

1/p
F| /

Va,b € Ind(A) df(a,b): |F| Zwl|5 (a,b)

wherep > 0and¥i € {1, ..., m} the dissimilarity function
§; is defined by: ¥(a,b) € (Ind(A))?

0 Fi(a) e ANF;(b) e A
1 Fi(a) € AN-F;(b) € Aor
-Fi(a) e ANE;(D) €

1/2 otherwise

51' (a’a b) =

#We use = to denote entailment, as computed through a reasoner.



or, model theoretically: ¥(a,b) € (Ind(A))?

0 K | Fi(a) NK = Fi(b)
stam—d 1 KEF@AKLE-F(®)or
z(a7 ) - I ): —\Fl(a) AKC |: Fl(b)

1/2 otherwise

The model theoretic definition for the projections, re-
quires the entailment of an assertion (instance-checking)
rather than the simple ABox look-up; this can make the
measure more accurate yet more complex to compute un-
less a KBMS is employed maintaining such information at
least for the concepts in F.

It can be proved [13] that these functions have
the standard properties for pseudo metrics (i.e. semi-
distances [21]). This means that it cannot be proved that
d;(a, b) = 0 iff @ = b (indiscernible case). anyway several
methods have been proposed for avoiding this case [13].

The measures strongly depend on F. Here, the assump-
tion that the F represents a sufficient number of (possibly
redundant) features that are able to discriminate really dif-
ferent individuals is implicitly made. Anyway, optimal fea-
ture can be learnt by the use of a randomized optimization
procedure [13]. Nevertheless, it has been experimentally
shown that good results could be obtained by using the very
set of both primitive and defined concepts in the KB.

Of course these approximate measures become more and
more precise as the knowledge base is populated with an
increasing number of individuals.

5 Kernel Methods and Kernel Functions

Kernel methods [19] represent a family of statistical
learning algorithms (including the support vector machines
(SVMys)) that have been effectively applied to a variety of
tasks, recently also in domains that typically require struc-
tured representations [14, 15]. They can be very efficient
since they map, by means of a kernel function, the origi-
nal feature space into a high-dimensional space, where the
learning task is simplified. Such a mapping is not explicitly
performed (kernel trick): the usage of a positive definite
kernel function (i.e. a valid kernel) ensures that the embed-
ding into a new space exists and that the kernel function
corresponds to the inner product in this space [19].

Two components of the kernel methods have to be distin-
guished: the kernel machine and the kernel function. The
kernel machine encapsulates the learning task, the kernel
function encapsulates the hypothesis language. In this way,
an efficient algorithm for attribute-value instance spaces can
be converted into one suitable for structured spaces (e.g.
trees, graphs) by merely replacing the kernel function.

Kernels functions are endowed with the closure prop-
erty w.r.t. many operations, one of them is the convolution

[16]: kernels can deal with compounds by decomposing
them into their parts, provided that valid kernels have al-
ready been defined for them.

D
> Il k@ o

z€ R Y(z) =1
ye R (y)

Econy (1'7 y) =

where R is a composition relationship building a single
compound out of D simpler objects, each from a space that
is already endowed with a valid kernel. The choice of the
function R is a non-trivial task which may depend on the
particular application.

On the ground of this property several kernel functions
have been defined: for string representations, trees, graphs
and other discrete structures [14]. In [15], generic kernels
based on type construction are formalized, where types are
declaratively defined. In [6], kernels parametrized on a uni-
form representation are introduced. Specifically, a syntax-
driven kernel definition, based on a simple DL representa-
tion (the Feature Description Language), is given.

Kernel functions for the SW representations have also
been defined [11, 3]. Scecifically, in [11] a kernel for com-
paring ALC concept definitions is intrduced. It is based on
the structural similarity of the AND-OR trees correspond-
ing to the normal form of the input concepts. This kernel is
not only structural, since it ultimately relies on the semantic
similarity of the primitive concepts on the leaves, assessed
by comparing their extensions through a set kernel. More-
over, the kernel is applied to couples of individuals, after
having lifted them to the concept level through realization
operators (actually by means of approximations of the most
specific concept, see [1]). In [3], a set of kernels for indi-
viduals and for the various types of assertions in the ABox
(on concepts, datatype properties, object properties) are pre-
sented. They should be composed for obtaining the final
kernel; anyway, it is not really specified how such separate
building blocks have to be integrated.

In this paper a new kernel function for SW representation
is defined: the DL-kernel. Differently from those defined in
[11, 3], the DL-kernel is totally semantic and language in-
dependent. Jointly with a SVM, the DL-Link is used for
executing a classification task in order to perform inductive
concept retrieval and query answering. Note that, as for the
NN approach (see Sect. 3), the SVM assumes, in its general
setting, the CWA and the disjointness of the classes w.r.t.
which classification is performed. In order to cope with the
OWA and the multi-class classification problem (since an
individual can be instance of more than one concept) char-
acterizing the SW context, the same setting modifications
of the NN approach have been performed, namely an indi-
vidual is classified w.r.t. each class (concept) by the use of
a ternary set of value V' = {41,0, —1} where 0 represents
the unknown information.



6 A Family of Epistemic Kernels

In this section, we propose a family of kernels, derived
from the measure presented in Sect. 4, that can be directly
applied to individuals. It is parameterized on a set of fea-
tures (concepts) that are used for its computation. Simi-
larly to KFOIL, a sort of dynamic propositionalization takes
place. However, in this setting the committee of concepts
which are used as dimensions for the similarity function
are not due to be alternate versions of the same target
concept but may vary freely, reflecting contextual knowl-
edge. The form of the kernel function resembles that of the
Minkowski’s metrics for vectors of numeric features:

Definition 6.1 (DL-kernel) Let K = (7, A) be a knowl-
edge base. Given a set of concept descriptions F =
{F\,Fs,...,Fy.}, a family of kernel functions k;;
Ind(A) x Ind(A) — [0, 1] is defined as follows:

F|
Va,b € Ind(A)  kF(a,b) ;:ﬁ > | oia,b) P
i=1

where p > 0 and Vi € {1,...,m} the simple similarity
function o; is defined: Ya,b € Ind(A)

1 (K[ Fi(a) NK = Fi(b))V
V(K |= ~Fi(a) ANK = ~Fi(b))

oi(a,b) = 0 (KE-Fi(a) NK E F;(b)V
V(}’LC = Fi(a) AKX = —Fi(b))
% otherwise

The rationale for this kernel is that similarity between in-
dividuals is decomposed along with the similarity with re-
spect to each concept in a given committee of features (con-
cept definitions). Two individuals are maximally similar
w.r.t. a given concept F; if they exhibit the same behavior,
i.e. both are instances of the concept or of its negation. Con-
versely, the minimal similarity holds when they belong to
opposite concepts. Because of the OWA, sometimes a rea-
soner cannot assess the concept-membership, hence, since
both possibilities are open, we assign an intermediate value
to reflect such uncertainty.

It is also worthwhile to note that this is indeed a family of
kernels parameterized on the choice of the feature set. The
effectiveness and also the efficiency of the measure compu-
tation strongly depends on the choice of the feature com-
mittee (feature selection). Optimal features can be learnt by
the use of randomized optimization procedures [13, 12].

The instance-checking is to be employed for assessing
the value of the o; functions. Yet this is known to be com-
putationally expensive (also depending on the specific DL
language of choice). Alternatively, especially for largely
populated ontologies which may be the objective of mining
algorithms, a simple look-up may be sufficient.

If it is required that k(a,b) = 1 < a = b even though
the selected features are not able to distinguish the two in-
dividuals, one might make the unique names assumption on
the individuals occurring in the ABox .4, and employ a spe-
cial additional feature based on equality: o¢(a,b) = 1 iff
a = b (and O otherwise). Alternatively, equivalence classes
might be considered instead of mere individuals.

The most important property of a kernel function is its
validity.

Proposition 6.1 (validity) Given an integer p > 0 and a
committee of features F, the function kIF, is a valid kernel.

This result can be assessed by proving the property by
showing that the function can be obtained by composing
simpler valid kernels through operations that guarantee the
closure w.r.t. this property [16]. Specifically, since the sim-
ilarity functions o; (¢ = 1,...,n) correspond to matching
kernels, the property follows from the closure w.r.t. sum,
multiplication by a constant and kernel multiplication.

The intermediate value used in the uncertain cases may
be chosen more carefully so to reflect the inherent uncer-
tainty related to the specific features. An alternative choice
that is being experimented is related to the balance between
the number of known individuals that belong to the feature
concept and those that certainly belong to its negation.

7 Experimental Evaluation

The measure presented in Sect. 3 has been integrated
in the NN procedure (see Sect. 3) while the DL-Kernel
(Sect. 6) has been embedded in a SVM from the LIBSVM
library®. Both methods have been tested by applying them
to a number of retrieval and query answering problems.
In the following, the results of the experiments for each
method are reported.

7.1 Experiments with the Feature Com-
mittee Measure

In order to assess the validity of the k-NN algorithm
presented in Sect. 3 with the measure defined in Sect. 4,
a number of OWL ontologies from different domains
have been considered: SURFACE-WATER-MODEL (SWM),
NEWTESTAMENTNAMES (NTN) from the Protégé Ili-
brary®, Semantic Web Service Discovery dataset’ (SWSD);
an ontology generated by the Lehigh University Bench-

SSoftware downloadable at:
~cjlin/libsvm

Shttp://protege.stanford.edu/plugins/owl/owl-1library

"https://www.uni-koblenz.de/FB4/Institutes/IFI/
AGStaab/Projects/xmedia/dl-tree.htm

http://www.csie.ntu.edu.tw/



Table 1. Ontologies employed for the experi-
ments.

Ontology DL language #conc.  #obj. prop.  #individuals
SWM ALCOF(D) 19 9 115
BIOPAX ALCHF (D) 28 19 323
LUBM ALRHI(D) 43 7 555
NTN SHIF(D) 47 27 676
SWSD ALCH 258 25 732
FINANCIAL ALCTF 60 17 1000

mark® (LUBM); BioPax glycolysis ontology® (BioPax) and
FINANCIAL ontology'?. Tab. 1 summarizes details concern-
ing these ontologies.

For each ontology, 30 queries were randomly generated
by composition of (2 through 8) primitive or defined con-
cepts in each knowledge base by means of the operators of
the related OWL sub-language. We employed the simplest
version of the distance (d]) with the committee of feature F
made by all concepts in the knowledge base.

The parameter &k was set to y/|Ind(A)], as advised in the
instance-based learning literature. Yet we found experimen-
tally that much smaller values could be chosen, resulting in
the same classification.

The performance was evaluated comparing the classifier
responses to those returned by a standard reasoner'' as a
baseline, and the following indices have been considered
for the evaluation:

e match rate: number of cases of individuals that got
exactly the same classification by both classifiers with
respect to the overall number of individuals;

e omission error rate: amount of individuals for which
inductive method could not determine whether they
were relevant to the query or not (namely individuals
classified as belonging to the class 0) while they were
actually relevant (classified as +1 or —1 by the stan-
dard reasoner);

e commission error rate: amount of individuals (analog-
ically) found to be relevant to the query concept, while
they (logically) belong to its negation or vice-versa

e induction rate: amount of individuals found to be rel-
evant to the query concept or to its negation, while ei-
ther case is not logically derivable from the knowledge
base

Shttp://swat.cse.lehigh.edu/projects/lubm/

http://wuw.biopax.org/Downloads/Levellvl.4/
biopax-example-ecocyc-glycolysis.owl

10h‘ctp ://wuw.cs.put.poznan.pl/alawrynowicz/financial.
owl

"We employed PELLET v. 1.5.1. See http://pellet.owldl.com

Table 2. k-NN outcomes: averages + stan-
dard deviations and [min,max] intervals.

match  commission omission induction

SWM 933+103 0.0+00 25444 424105
[68.7;100.0] [0.0;0.0] [0.0;16.5] [0.0;31.3]
999+02 02+£02 00+00 00+0.0

BIoPAX

[99.4;100.0] [0.0;0.06] [0.0;0.0] [0.0;0.0]

LUBM 99.2+08 0.0+£00 08+0.8 0.0+0.0
[98.0;100.0] [0.0;0.0] [0.0;0.2] [0.0;0.0]

NTN 98.6+15 00+£01 08+1.1 06+14
[93.9;100.0] [0.0;0.4] [0.0;3.7] [0.0;6.1]

SWSD 975+37 00+£00 18+26 08+1.5
[84.6;100.0] [0.0;0.0] [0.0;9.7] [0.0;5.7]
FINANCIAL 995+08 03+£07 00+00 02402
[97.3;100.0] [0.0;2.4] [0.0;0.0] [0.0;0.6]

Tab. 2 reports the outcomes in terms of these indices.
Preliminarily, it is important to note that, in each experi-
ment, the commission error was low or absent. This means
that the search procedure is quite accurate: it did not make
critical mistakes i.e. cases when an individual is deemed
as an instance of a concept while it really is an instance
of a disjoint one. Also omission error is quite low, yet it
more typical over all of the ontologies that were consid-
ered. A noteworthy difference was observed for the case
of the SWS knowledge base for which we find the lowest
match rate and the highest variability in the results over the
various concepts.

The usage of all concepts in each ontology for the set F
of df made the measure quite accurate, which is the reason
why the procedure resulted quite conservative as regards in-
ducing new assertions. In many cases, it matched rather
faithfully the reasoner decisions. The cases of induction are
interesting because they suggest new assertions which can-
not be logically derived by using a deductive reasoner, yet
they might be used to complete a knowledge base [2], e.g.
after being validated by an ontology engineer.

7.2 Experimental Evaluation of the Epis-
temic Kernel

In order to experimentally assess the validity of the epis-
temic kernel (see Def. 6.1), the instance classification task
has been performed on the ontologies detailed in Tab. 1.

The classification method was applied for all the individ-
uals in each ontology. Specifically, for each ontology, the
individuals were checked to assess if they were instances of
the concepts in the ontology through the SVM method and
the DL-Kernel'? (p = 2) embedded in it. A similar experi-

12The feature set F for computing the epistemic kernel was made by all
concepts in the considered ontology (see Def. 6.1).



Table 3. Results (average and std. deviation)
of the experiments on concept classification
with the DL-kernel.

Table 4. Results (average and standard devia-
tion) of the experiments for performing query
answering with the DL-kernel.

[ ONTOLOGY | match [ induction [ om.error [ com. error | [ ONTOLOGY | match [ induction [ om. error [ com. error |
SWM [ 8618 £ 1755 [ 7.98 £ 1608 | 583 +4.64 [ 0.00£0.00 | SWM | 8231 £ 2147 | 0.11 £ 1649 | 857 £847 | 000000 |
l NTN | 9095+ 13.14 | 3991155 [ 476 £748 | 030£143 | | NTN | 8038 £ 17.04 | 822 % 1687 | 9.98 £ 10.08 | 142 £291 |
BIOPAX | 92.05 £ 11.34 | 0.55£270 | 0.00=£0.00 | 741+ 11.38 BIOPAX | 84.04 £ 1455 | 0.00 £0.00 [ 0.00 £0.00 [ 15.96 & 1455
LUBM | 9295+ 12.11 | 353+ 12.24 | 3.52£4.90 | 0.00 % 0.00 LUBM | 76.75 £ 19.69 | 5.5 £591 | 0.00£0.00 | 17.50 £ 20.87
FINANCIAL | 9724 £6.75 | 0.32£0.15 | 002£0.08 | 242£6.75 FINANCIAL | 97.85 £ 341 | 042%023 | 0.02 * 007 1.73 £ 3.43
SWSD | 98.68 £4.06 | 000£0.00 | 1.32+4.06 | 0.00+0.00 SWSD | 9792 £3.79 | 0.00£0.00 | 2.09 £3.79 0.00 £ 0.00

mental setting has been considered in [3] with an exempli-
fied version of the GALEN Upper Ontology'?. There, the
ontologies have been randomly populated and only seven
concepts have been considered while no roles have been
taken into account'®. Differently from this case, we did not
apply any changes on the considered ontologies.

The performance of the classifier induced by the SVM
was evaluated by comparing its responses to those returned
by a standard reasoner'” used as baseline. The experiment
has been performed by adopting the ten-fold cross valida-
tion procedure. The average measures obtained over all the
concepts in each ontology are reported in Tab. 3, jointly
with their standard deviation.

By looking at the table, it is important to note that, for
every ontology, the commission error is almost null. This
means that the classifier did not make critical mistakes, i.e.
cases when an individual is deemed as an instance of a con-
cept while it really is known to be an instance of another
disjoint concept. In the same time it is important to note
that a very high match rate is registered for every ontology.
Particularly, by considering both Tab. 3 and Tab. 1, it is in-
teresting to observe that the match rate increases with the
increase of the complexity of the considered ontology. This
is because the performance of a statistical method improves
with the augmentation of the set of the available examples,
that means that there is more information for better separat-
ing the example space.

Almost always the SVM-based classifier is able to in-
duce new knowledge. However, a more conservative behav-
ior w.r.t. the previous experiment has been also registered,
indeed the omission error rate is not null (even if it is very
close to 0). To decrease the tendency to a conservative be-
havior of the method, a threshold could be introduced for
the consideration of the “unknown” (namely labeled with
0) training examples.

Another experiment regarded testing the SVM-based

Bhttp://www.cs.man.ac.uk/~rector/ontologies/
simple-top-bio

14Due to the lack of information for replicating the ontology used in [3],
a comparative experiment with the proposed kernel framework cannot be
performed.

15We employed PELLET v. 1.5.1. See http://pellet.owldl.com

method when performing inductive concept retrieval w.r.t.
new query concepts built from the considered ontology. The
method has been applied to perform a number of retrieval
problems applied to the considered ontologies again using
the chosen SVM and the DL-kernel function. The experi-
ment was quite intensive, involving the classification of all
the individuals in each ontology. Specifically, the individu-
als were checked through the inductive procedure to assess
whether they were retrieved as instances of a query con-
cept. A number of 20 queries were randomly generated by
applying the available constructors to primitive and/or de-
fined concepts and roles from each ontology. The generated
concepts had also to be satisfiable (yet they may yield no
instance from the logic based retrieval). Like for the previ-
ous experiment, a ten-fold cross validation was performed
for each dataset. The outcomes are reported in Tab. 4, from
which it is possible to observe that the behavior of the clas-
sifier on these concepts is not very dissimilar with respect to
the outcomes of the previous experiment reported in Tab. 3.
These queries were expected to be harder than the previous
ones which correspond to the very primitive or defined con-
cepts for the various ontologies. Specifically, the commis-
sion error rate was low for all but two ontologies (BIOPAX
and LUBM) for which some very difficult queries were
generated which raised this rate beyond 10% and conse-
quently also the standard deviation values.

By comparing these results with those obtained by the
use of the NN approach (see Tab. 2) it is possible to assert
that both methods showed high accuracy in performing the
classification task, even if the NN method has resulted to be
more accurate when a lower number of instances are avail-
able for performing the learning task.

8 Conclusions and Outlook

With the aim of going beyond the limitations of classic
logic-based methods, we investigated on the application of
non-prametric statistical multi-relational learning methods
in the context of the SW representations. Specifically, a
family of semi-distance functions and kernel functions have
been defined for OWL descriptions. They have been inte-



grated respectively in a NN algorithm and a SVM for in-
ducing a statistical classifier working with the complex rep-
resentations. The resulting classifiers could be tested on in-
ductive retrieval and classification problems.

The peculiarity of learning with ABoxes that are natu-
rally assumed to be interpreted with an open-world seman-
tics required a peculiar assessment of the performance of the
induced classifiers, since conclusions have to deal with the
chance of uncertainty: some instances cannot be attributed
to a class or to its negation.

Experimentally, it was shown that performance of both
classifiers are not only comparable to a standard deductive
reasoner, but they are also able to induce new knowledge,
which is not logically derivable. Particularly, an increase
in prediction accuracy was observed for ontologies that are
homogeneously populated (similar to a database).

The induced classification results can be exploited for
predicting or suggesting missing information about individ-
uals, thus completing large ontologies. Specifically, it can
be used to semi-automatize the population of an ABox. In-
deed, the new assertions can be suggested to the knowledge
engineer that has only to validate their inclusion. This con-
stitutes a new approach in the SW context, since the effi-
ciency of the statistical and numerical approaches and the
effectiveness of a symbolic representation have been com-
bined.
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