DL-FOIL
Concept Learning in Description Logics

N. Fanizzi, C. d’Amato, and F. Esposito

LACAM - Dipartimento di Informatica — Universita degli studi di Bari
Via Orabona, 4 — 70125 — Bari, Italy
{fanizzi|claudia.damato|esposito}@di.uniba.it

Abstract. In this paper we focus on learning concept descriptions ex-
pressed in Description Logics. After stating the learning problem in this
context, a FOIL-like algorithm is presented that can be applied to general
DL languages, discussing related theoretical aspects of learning with the
inherent incompleteness underlying the semantics of this representation.
Subsequently we present an experimental evaluation of the implemen-
tation of this algorithm performed on some real ontologies in order to
empirically assess its performance.

1 Introduction

Description Logics (DLs) is the family of representation languages underlying the
standard ontology languages designed for knowledge bases in the Semantic Web
[3]. These logics constitute a specific fragment of First Order Logic (FOL) that
differs from the standard clausal forms employed in Inductive Logic Program-
ming and related multi-relational settings, namely they have a different syntax
and especially very different semantics [4, 12]. These considerations justify the
growing interest in investigating concept learning in such new formalisms.

Early work on learning in DLs essentially focused on demonstrating the PAC-
learnability for various languages derived from CLASSIC. In particular, Cohen
and Hirsh investigate the CORECLASSIC DL proving that it is not PAC-learnable
[6] as well as demonstrating the PAC-learnability of a peculiar class among
its sub-languages such as C-CLASSIC [7], through the LCSLEARN algorithm,
together with an empirical evaluation of its implementation.

These approaches tend to cast supervised concept learning as performed
through a structural generalizing operator working on equivalent graph repre-
sentations of the concept descriptions. It is also worth mentioning unsupervised
learning methodologies for DL concept descriptions, whose prototypical exam-
ple is KLUSTER [16], a polynomial-time algorithm for the induction of BACK
terminologies, which exploits the tractability of the standard inferences in this
DL language [1].

More recently also learning in hybrid languages, mixing clausal and descrip-
tion logics, have been investigated. Kietz [15] studied the learnability of DL

programs. Other related approaches propose learning methods for hybrid lan-
guages, such as CARIN-ALN [21] and AL-log [19], that allow simple DLs to be
combined with DATALOG.

In this work, we focus on learning concepts in expressive DLs endowed with
most of the constructors, seeking for a tradeoff between expressiveness, efficiency
and completeness of the resulting learning system. Indeed, more expressiveness
requires more computational resources for the most common inferences; hence,
algorithms dealing with larger DL languages must face the complexity of rea-
soning. In our vision inductive inference should be employed in order to help
the knowledge engineer construct new concept definitions that can eventually be
further refined, either manually or by means of other semi-automatic tools. This
would save the engineer from finding trivial regularities in the examples so that
he/she could concentrate the efforts in refining the induced definition.

We implemented a specific new version of the FOIL algorithm [20], resulting
in the DL-FoOIL system, that is adapted to learning the DL representations
supporting the OWL-DL language. The main components of this new systems
are represented by a set of refinement operators borrowed from other similar
systems [13, 18] proposed in the literature and by a different gain function which
must take into account the open-world assumption, namely, many instances may
be available which cannot be ascribed to the target concept nor to its negation.
This requires a different setting, similar to learning with unknown class attributes
[11], requiring a special treatment of the unlabeled individuals.

A preliminary experiment presented in this paper applies the DL-FOIL sys-
tem to real ontologies which represent a real testbed w.r.t. the datasets employed
for testing YINYANG [13] and DL-Learner [18] which limit their scope to ALC
ontologies. This also demonstrates the usage of the method as a means for per-
forming approximations of concepts across ontologies described with different
languages [5, 1].

The outcomes in terms of precision and recall were satisfactory, despite of
the employment of incomplete refinement operators. However these outcomes are
not as meaningful as they might be in a standard (closed-world) setting. Namely,
since many test instances might not be proved to be examples or counter-
examples, we resort to different performance metrics, measuring the alignment
of the classification decided by the concept descriptions induced by DL-FoIL
with the classification derived deductively by a DL reasoner. This allows mea-
suring the amount of unlabeled instances that may be ascribed to the newly
induced concepts (or to their negations), which may constitute a real added
value brought by the inductive method. Actually these abductive conclusions
should be evaluated by the expert who helped during the construction of the
ontology. However, this is not always possible.

The paper is organized as follows. After the next section introducing the
representation, in Sect. 3 the refinement operators and the algorithm exploiting
them are discussed and then, Sect. 4, the adaptation of the FoIL algorithm. In
Sect. 5 the experiments proving the effectiveness of the approach are reported.
Finally, possible developments are reported in Sect. 6.

2 Description Logics: Syntax and Semantics

In this section we shortly recall syntax and semantics of the DL representation.
For brevity, we cannot report syntax and semantics of the various constructors,
which can be easily be found in the reference manual [1]. In turn, the DL con-
cept descriptions are straightforwardly mapped onto XML serializations of the
standard ontology languages [9].

Roughly, the formalisms are concept-centric: they distinguish concepts from
relations that are used to describe restrictions on concepts. In a DL language,
primitive concepts No = {C,D,...} are interpreted as subsets of a domain
of objects (resources) and primitive roles Np = {R,S,...} are interpreted as
binary relations on such a domain (properties). Individuals represent the objects
through names from N; = {a,b,...}.

Complex concept descriptions are built using atomic concepts and primitive
roles by means of specific constructors. The meaning of the descriptions is defined
by an interpretation T = (A%, 1), where A is the domain of the interpretation
and the functor -Z stands for the interpretation function, mapping the intension
of concepts and roles to their extension (respectively, a subset of the domain and
a relation defined on such domain).

The top concept T is interpreted as the whole domain A%, while the bottom
concept L corresponds to). Complex descriptions can be built in ALC using the
following constructors!. The language supports full negation: given any concept
description C, denoted —~C, it amounts to A7\ CZ. The conjunction of concepts,
denoted with Oy M Cy, yields an extension C¥ NC% and, dually, concept disjunc-
tion, denoted with C; U Cy, yields C U CZ. Finally, there are two restrictions
on roles: the existential restriction, denoted with dR.C, and interpreted as the
set {z € AT |y € AT: (x,y) € RT Ay € CT} and the value restriction, denoted
with VR.C, whose extension is {x € AT | Vy € AT: (2,y) € RT — y € CT}.

A knowledge base KK = (T, A) contains two components: a T-box 7 and an
A-box A. T is a set of terminological axioms C' T D, yet we will consider only
definitions A = D, where A € N¢ is a concept name (atomic) and D is a concept
description given in terms of the language constructors, meaning AZ = DZ. The
ABox A contains extensional assertions (ground facts) on concepts and roles,
e.g. C(a) and R(a,b), meaning, respectively, that aZ € CT and (a®,b?) € RZ.
Note that the unique names assumption is not necessarily made?.

Further constructors extend the expressiveness of the ALC language. We are
interested in the languages that constitute the counterpart of OWL-DL, namely
SHOIQ(D) that, roughly, extends ALC with transitive roles, role hierarchies,

! In fact, the ALC corresponds to the fragment of first-order logic obtained by re-
stricting the syntax to formulae containing two variables. ALC has a modal logic
counterpart, namely the multi-modal version of the logic K [1].

2 Different individual names may be mapped onto the same domain object, in princi-
ple.

individual classes, inverse roles and qualified number restrictions. Besides, con-
crete domains® (D) can be dealt with.

The set-theoretic notion of subsumption between concepts (or roles) can be
given in terms of the interpretations:

Definition 2.1 (subsumption). Given two concept descriptions C and D in
T, C subsumes D, denoted by C 1 D, iff for every interpretation T of T it holds
that CT D DZ. Hence, C = D amounts to C 3D and D 2 C.

Example 2.1. A concept definition in the proposed language may be:
Father = MMale M JhasChild. T
which translates the sentence: ”a father is a male that has someone as his child”
(T denotes the most general concept).
Now, if we define two new concepts:
FatherWithoutSons = Male M FhasChild.T I1VhasChild.(—Male)
and
Parent = (Male Ll Female) M JhasChild. T
then it is easy to see that Father J FatherWithoutSons and Parent J Father,
yet Father / Parent and FatherWithoutSons A Father.
A-box assertions are ground facts like:
Father(edward), Male(charles), hasChild.Male(edward,charles),
> l.hasChild(edward), JhasChild.T (charles) and so on.

The most important inference service from the inductive point of view is
instance checking [1], that amounts to ascertain class-membership assertions:
K E C(a), where K is the knowledge base a is an individual name and C is a
concept definition given in terms of the concepts accounted for in /C.

An important difference with other FOL fragments is the open-world assump-
tion (OWA) which makes it more difficult to answer class-membership queries.
Thus it may happen that an object that cannot be proved to belong to a certain
concept is not necessarily a counterexample for that concept. That would only be
interpreted? as a case of insufficient (incomplete) knowledge for that assertion.

Ezample 2.2 (cont’d). Given the concepts
MotherWithoutDaughters = Mother [VhasChild.—Female
and

Super-motherMother > 3.hasChild

and the ABox:
A = { Female(elisabeth), Female(diana),

Male(charles), Male(edward), Male(andrew),
MotherWithoutDaughters(diana),
hasChild(elisabeth,charles), hasChild(elisabeth,edward),
hasChild(elisabeth,andrew), hasChild(diana,william),
hasChild(charles,william) }

3 Concrete domains include data types such as numerical types, but also more elab-
orate domains, such as tuples of the relational calculus, spatial regions, or time
intervals.

* A model could be constructed for both the membership and non-membership case [1].

One may infer

K = Super-mother(elisabeth)

but not

K = MotherWithoutDaughters(elisabeth)

because it may well be that a daughter is not known yet.

This is perfectly compatible with the typical scenario related to the Semantic
Web, where new resources may continuously be made available across the Web,
hence a complete knowledge cannot be assumed at any time.

The other inference service provided by DL reasoner is concept retrieval:
given a certain concept, retrieve all the individuals that can be proved to belong
to it.

3 Learning as Search in DLs

After recalling the basics of DLs, we are ready to formally define the learning
problem in this setting.

Definition 3.1 (learning problem). Let K = (7, .A) be a knowledge base.
Given

— a (new) target concept name C

— a set of positive and negative ezamples Ind},(A) U Ind;(A) C Ind(A)
where Ind(A) is the set of individuals occurring in A,

Ind}(A) = {a € Ind(A) | K = C(a)}, Indo(A) = {a € Ind(A) | K = ~C(a)}

Suppose, in case a definition for C is already available (refinement problem),
that it holds:

Ja € Indf(A) K = C(a) or 3dbe Ind;(A)) K -C(b)
Buld a concept definition C = D such that
KEC(a) VacInd5(A) and K EC(b) Vb€ Ind;(A)

The definition given above can be interpreted as a generic supervised concept
learning task. Ind(A) and Ind; (A) represent respectively the sets of positive
and negative examples, whereas C' = D is the hypothesis to be induced. The
intermediate clause was added for generalizing the definition covering also re-
finement problems, in which a definition for C is already available but it may be
defective w.r.t. to some positive or negative examples.

As known from related works [10, 13, 17], the subsumption relationship (see
Def. 2.1) induces a partial order on the space of all the possible concept descrip-
tions. Hence the inductive problem stated above can be cast as a search of the
right concept definition (hypothesis) in the induced search space.

In such a setting, one can define suitable operators in order to traverse the
search space. As usual in inductive search, we will define two operators in order

to obtain, given a starting (incorrect) hypothesis in the search space, one (or
some) of its generalizations/specializations.

Of course, given a set of concept definitions belonging to the space of the
descriptions allowed by the reference language, which is partially ordered by
subsumption, there is an infinite number of generalizations and specializations.
Usually one tries to devise operators that can move efficiently throughout the
space in pursuit of one of the target hypotheses.

Now we can define both the downward (specializing) operator p and the
upward (generalizing) operator ¢ [13]:

Definition 3.2 (downward operator p). p = (pyu, pr), where:
[pL] given a description in normal form D = Dy U---U Dy:

— D' epu(D)if D' = U1<U<71D- for some j #£i,1<j<n
— D' epy(D)if D' = |_|J1;<é;j<n k for some D} € pr(D;)

[pn] given a conjunctive description C = Cy M --- 1 Cyy, and a set of concept
descriptions A~ = {Fy | 1 <k < p}:

- C'epn(C)ifC"=CMNCj
for some Cj41 2 C and Cj11 A Ey, forhe{l,...,p}
- C"epn(C) if C"=(CU=Cy)NC} for some j € {1,...,m}, where:
e (' =3R.D}, Cj =3R.D; and D’ € p,(Dj) or
o C' =VR.D), C; =VR.D; and D/, € p,,(D;)

pu simply drops one top-level disjunct or replaces it with a downward refinement
obtained with pn. pn adds new conjuncts or replaces one with a refinement
obtained by specializing (through py,) the concepts in the scope of a universal
or existential restriction.

Definition 3.3 (upward operator 6). § = (dy,0n), where:
[0u] given a description in normal form D = Dy U---U D,, and a set of concept
descriptions AT = {Ej, | 1 < h < p}:

— D' € oy(D) if D) = DU Dypyq1 for some Dyyy such that Dpvy L Dy,
te{l,...,n} and D;11 3 E}, for some h e {l,...,p}
— D' eéy(D) if D' =D U U?zszHDz for some D} € 6n(D;)

[0n] given a conjunctive description C = Cy T+ T1Cp,:

— (e (;I"I(C) ’Lf ' = |_|]1;<£z,]<'rn

— " €6n(C) if O =THZ: ,2nCi NCY , where:
e (7 =3R.D}, Cj =3R.D; and D’ € 6,(D;) or
e Ci =VR.D}, C; =VYR.D; and D’ € 6,(D;)

0y and dn simply perform dual operation w.r.t. p, and pn, respectively. See [13]
for examples.

Other operators [13] may exploit also the knowledge conveyed by the positive
and negative examples in order to prune the possible results yielded by a single
generalization/specialization step and to better direct the search for suitable
solutions to the problem. Instead of using the examples in a mere generate-and-
test strategy based on these operators, they can be exploited more directly, in
order to influence the choices made during the refinement process.

These operators cannot be complete for most expressive DLs [17]. However,
we are not looking for too precise operators that likely lead to overfit the data.
E.g. the LCS function [7] is a generalizing operator that may be used to compute
upper refinement of a concept w.r.t. to an uncovered positive instance (repre-
sented by its most specific concept, see [1, 13]), yet this results in a simple union
of the two descriptions which deprives the result of any added generalization
w.r.t. future examples.

The next step is embedding these simple operators in a suitable learning
algorithm.

4 The Learning Algorithm

Various search strategies have been experimented as well as other evaluation
measures. Those that we will present in the following are those which gave the
best results.

The main aim of this work was conceiving a learning algorithm that could
overcome two limitation of the current DL learning systems, namely avoiding
the computation of the most specific concepts and the language dependence.
Indeed, following the early work, YINYANG [13] requires lifting the instances
to the concept level through a suitable approximate operator and then start
learning from such extremely specific concept descriptions. This setting has the
disadvantages of approximation and language-dependence.

DL-LEARNER [18] partly mitigates these disadvantages for it does not need
to compute such approximations since it is essentially based on a genetic pro-
gramming procedure based on refinement operators whose fitness is computed
on the grounds of the covered instances.

Also, in our new algorithm conceived in order to solve the learning problem,
the (downward) refinement operators previously defined play a central role. A
sketch of the main routine that makes up the algorithm is reported in Fig. 1.

Like in the original FOIL algorithm [20], the generalization routine computes
(partial) generalizations as long as they do not cover any negative example. If
this occurs, the specialization routine is invoked for solving these sub-problems.
This routine applies the idea of specializing using the (incomplete) refinement
operator defined in the previous section. The specialization continues until no
negative example is covered (or a very limited amount® of them). The partial

® The actual exit-condition for the inner loop being: | Negatives| — | CoveredNegatives| <
e, for some small constant e.

function DL-FoIL(Positives, Negatives, Unlabeled): Generalization
input Positives, Negatives, Unlabeled: positive, negative and unlabeled individuals
output Generalization: concept definition
begin
Generalization «— L
PositivesToCover «— Positives
while PositivesToCover # () do
begin
PartialDef — T
CoveredNegatives <— Negatives
while CoveredNegatives # () do
begin
PartialDef «— SPECIALIZE(PartialDef, Positives ToCover, CoveredNegatives, Unlabeled)
CoveredNegatives — {n € Negatives | K |= ~PartialDef(n)}
end
CoveredPositives < {p € PositivesToCover | K = PartialDef(p)}
Generalization «— Generalization |l PartialDef
Positives ToCover <« PositivesToCover\ CoveredPositives
end
return Generalization
end

Fig. 1. The main generalizing routine in DL-FOIL.

generalizations built on each outer loop are finally grouped together in a dis-
junction which is an allowed constructor for DLs more expressive than (or equal
to) ALC. Also the outer while-loop can be exited before covering all the positive
examples for avoiding overfitting generalizations.

The specialization function SPECIALIZE (reported in Fig. 2) is called from
within the inner loop of the generalization procedure in order to specialize an
overly general partial generalization. The function searches for proper refine-
ments that provide at least a minimal gain (see below) fixed with a threshold
(MINGAIN).

In Forr-I [14], the gain function has to take into account incomplete exam-
ples. Similarly to a semi-supervised learning setting, the gain function that is
evaluated for choosing the best refinement is computed as follows:

p1 + wwy Po + UoWo
p1- |log———— —log—————
p1+n1+u Po + 1o + U
where p1, n1 and u; represent, resp., the number of positive, negative and un-
labeled examples covered by the specialization and pg, ng and ug stand for the
number of positive, negative and unlabeled examples covered by the former def-
inition, and the weights wg,w; are determined by the prior probability of the
positive examples, resp., in the current and former concept definition. In order
to avoid null numerators, a further correction of the probabilities is performed
by resorting to the m-estimate procedure.

function SPECIALIZE(PartialDef, Positives, Negatives, Unlabeled): Refinement
input PartialDef: concept definition
Positives, Negatives, Unlabeled: positive, negative and unlabeled individuals
output Refinement: concept definition
const MAXNUM : maximum real number
MINGAIN: minimal acceptable gain
NUMSPECS: number of specializations to be generated
begin
bestGain «— —MAXNUM
while bestGain < MINGAIN do
for i — 1 to NUMSPECS do
begin
specialization < GETRANDOMREFINEMENT (p, PartialDef)
CoveredNegatives — {n € Negatives | K |= —~PartialDef(n)}
CoveredPositives — {p € Positives | K = PartialDef(p)}
thisGain «— GAIN(CoveredPositives, CoveredNegatives, Unlabeled, Positives, Negatives)
if thisGain > bestGain then
begin
bestConcept < refConcept
bestGain «— thisGain
end
end
return Refinement
end

Fig. 2. The specializing routine in DL-FoOIL.

Despite of its simplicity the complexity of the algorithm is largely determined
by the calls to reasoning services, namely subsumption and instance-checking. If
we consider the ALC logic the complexity of these inferences is P-space. How-
ever, the algorithm can be thought as building an (upper) ALC-approximation
of target concepts, given a knowledge base that can contain definitions expressed
in more complex languages, which in turn require more complex reasoning al-
gorithms (see details on SHOZN (D) [1]). The number of nodes visited during
the search grows with the expressiveness of the language because the algorithm
searches a sub-space of the actual search space induced by the adopted language.

5 Preliminary Experiments

5.1 Experimental Setting

In order to perform a preliminary experimentation on real ontologies DL-FoOIL, it
was applied to a number of concept retrieval problems solved by using inductive
classification of the individuals w.r.t. a number of query concepts.

To this purpose, we selected a number of ontologies from different domains
represented in OWL, namely: NEWTESTAMENTNAMES (NTN) from the Protégé

Table 1. Facts concerning the ontologies employed in the experiments.

Ontology DL language #concepts #object prop. #data prop. #individuals

BioPAX ALCHF (D) 28 19 30 323
NTN SHZIF(D) 47 27 8 676
FINANCIAL ALCIF 60 17 0 1000

library® accounting for characters and places mentioned in the book, the BioPax
glycolysis ontology” (BioPax) describing the glycolysis pathway from the EcoCyc
database, translated into BioPax format. It is intended to show what a pathway
from an existing database might look like after being translated into BioPAX
format. The FINANCIAL ontology®, built for eBanking applications, deals with
accounts, holders, loans and related events. Tab. 1 summarizes important details
concerning these ontologies. The sizes of the ontologies are to be measured in
terms of thousands of triples.

For each ontology, 30 target queries were randomly generated by composi-
tion of 2 through 8 primitive or defined concepts from each knowledge base by
means of the concept constructors: intersection, union, universal or existential
restrictions. Given the overall set of individuals mentioned in the ABox, this
was split in training and test sets according to the ten-fold cross-validation pro-
cedure. A standard reasoner’ was employed to decide their class-membership
(and non-membership) w.r.t. the query concepts. The performance was evalu-
ated comparing the definitions of the query concepts induced by the system to
those that were randomly generated, determining the class-membership of the
test examples.

Note that the constant NUMSPECS that determines the maximum number
of specializations evaluated per turn was set to 15 (larger numbers yield better
results but may lower the efficiency).

5.2 Results

Standard IR measures. Initially the standard IR measures precision, re-
call, Fi-measure were employed to evaluate the system performance. Specifi-
cally we considered a two-way classification where relevance coincides with class-
membership and the rest of instances are considered irrelevant (true negatives if
nothing could be concluded for their membership).

The outcomes are reported in Fig. 2. For each knowledge base, we report the
average values obtained over the 30 queries as well as their standard deviation
and minimum-maximum ranges of values.

5 http://protege.stanford.edu/plugins/owl/owl-library

" http://www.biopax.org/Downloads/Levellvi.4/biopax-example-ecocyc-glycolysis.
owl

8 http://www.cs.put.poznan.pl/alawrynowicz/financial.owl

9 PELLET v. 1.5.1 was employed for instance-checking. The reasoner is publicly avail-
able at: http://pellet.owldl.com.

Table 2. Experimental results in terms of standard IR measures: averages + standard

deviations and [min,max] intervals.

ontology precision recall F1-measure

BIOPAX 66.0 + 24.1 76.5 £+ 21.7 69.6 + 21.0

[28.3;99.4] [36.5;100.0] [31.9;99.7]

NTN 59.0 £ 36.8 64.9 £ 25.7 59.1 £ 30.0

[18.8;100.0] [27.9;100.0] [22.5;100.0]

FINANCIAL 62.1 +40.7 64.8 + 37.0 63.3 £ 39.1
[19.1;99.1] [24.3;99.0] [66.7;21.3;99.0]

It is possible to note that precision and recall are generally good but not
very high which is also reflected by the F-measure. This happens because these
parameters are taken on the grounds of the positive instances which are likely to
be in a limited amount w.r.t. the overall number of individuals, especially when
random concepts are considered. This is also the cause for the variance to be
quite high for all experiments. For the sake of repeatability, we did not employ
artificially populated ontologies. We rather employed ontologies as they can be
found in the Web. Of course more largely populated ontologies would help assess
more stable results. Actually for FINANCIAL we selected a reduced number of
instances. Selecting larger numbers of individuals, we could obtain better and
more stable results.

The reason for precision being less than recall is probably due to the OWA.
Indeed, in many cases it was observed that the inductive classification deemed
some individuals as relevant for the query issued while the DL reasoner was not
able to assess this relevance and this was computed as a mistake while it may
likely turn out to be a correct inference when judged by a human agent.

Because of the problems issued by the OWA, different indices would be
needed in this case that may make explicit both the rate of inductively clas-
sified individuals and the nature of the mistakes.

Alternative measures. Due to the OWA, cases were observed when, it could
not be (deductively) ascertained whether a resource was relevant or not for a
given query. Then a three-way classification is preferable. Hence, we introduced
the following indices for a further evaluation [8]. Essentially they measure the
correspondence between the classification provided by the reasoner for the in-
stances w.r.t. the test concept and the definition induced by our system.

— match rate: number of cases of individuals that got exactly the same classi-
fication with both definitions;

— omission error rate: amount of individuals for which class-membership w.r.t.
the given query could not determined using the induced definition, while they
actually belong (do not belong) to the query concept;

Table 3. Results with alternative indices: averages =+ standard deviations and
[min,max] intervals.

match commission omission induction
ontology rate error rate error rate rate
BIOPAX 76.9 £ 157 19.7 £159 7.0 £+ 20.0 7.5 + 23.7
[56.0;99.4] [0.0;44.0] [0.0;64.0] [0.0;75.0]
NTN 78.0 £ 19.2 16.1 £ 4.0 6.4 £ 8.1 14.0 £ 10.1
[43.6;95.4] [0.0;10.8] [1.2;21.3] [2.5;27.1]
FINANCIAL 75.5 £ 20.8 16.1 £ 128 4.5 £5.1 3.7+ 79
[50.2;98.1] [0.6;25.6] [1.0;12.6] [0.3;18.1]

— commission error rate: amount of individuals found not to belong to the
query concept according to the induced definition, while they actually belong
to it and vice-versa.

— induction rate: amount of individuals found to belong or not to belong to
the query concept according to the induced definition, while either case is
not logically derivable from the knowledge base with the original definition

Tab. 3 reports the outcomes in terms of these new indices. Preliminarily, we
found that the search procedure was accurate enough: it made few critical mis-
takes especially when the considered concepts are known to have many examples
(and counterexamples) in the ontology. However, it is important to note that,
in each experiment, the commission error was limited but not absent, as in the
experiments with other classification methods [8]. The cases of queries for which
this measure was high are due to the limited amount of examples available (too
narrow concepts). Even few mistakes provoked high error rates. This is also due
to the absence of axioms stating explicitly the disjointness of some concepts.

Also the omission error rates are quite low. They are comparable with the
amount of inductive conclusions that could be drawn with the induced defini-
tions. Again these figures may vary as a consequence of the presence / absence
of knowledge about the disjunction of (sibling) concepts in the subsumption
hierarchies. In an ontology population perspective, the cases of induction are in-
teresting because they suggest new assertions which cannot be logically derived
by using a deductive reasoner yet they might be used to complete a knowl-
edge base [2], e.g. after being validated by an ontology engineer. Better results
were obtained on the same task with different inductive methods (instance-based
learning [8]). Yet, with DL-Foil we have the added value of having an intensional
definition of the target concepts.

The elapsed time (not reported here) was very limited: about 0.5 hour for a
whole ten-fold cross validation experiment including the time consumed by the
reasoner to make the judgments.

5.3 Learned Concepts

For each ontology, we report examples of the concept descriptions that were
learned during the experiments and compare them to the query concept that
generated the examples and counterexamples.

BioPax

induced:

Or(And(physicalEntity protein) dataSource)

original:

Or(And(And(dataSource externalReferenceUtilityClass)

ForA11 (ORGANISM ForAll(CONTROLLED phys icallnteraction))) protein)

NTN

induced:

Or(EvilSupernaturalBeing Not(God))
original:

Not (God)

FINANCIAL

induced:

Or(Not(Finished) NotPaidFinishedLoan Weekly)
original:

Or(LoanPayment Not(NoProblemsFinishedLoan))

These concepts totally overlap in terms of their extensions w.r.t. the known
individuals.

Of course for a correct qualitative interpretation of the value of these concepts
some familiarity is assumed with the ontologies. As mentioned, they are all freely
available at standard repositories.

6 Conclusions and Outlook

In this work, we investigated learning expressive DLs supporting ontology lan-
guages such as OWL. We implemented a FoiL-like algorithm in the DL-FoIL
system, that is an adaptation to the issues related to the different representation.
The main components of this new system are represented by a set of refinement
operators and by a different gain function which takes into account the open-
world assumption. Namely many instances may be available which cannot be
ascribed to the target concept nor to its negation. This requires a different set-
ting and a special treatment of the unlabeled individuals.

A preliminary experimentation has been presented in this paper, applying the
DL-FoIL system to learning from individuals in real ontologies which represent
a harder testbed w.r.t. the datasets employed for testing YINYANG [13] and
DL-Learner [18] that limited their scope to ALC ontologies.

The outcomes in terms of precision and recall were satisfactory. However,
since these outcomes are not as meaningful as they might be in a standard
(closed-world) setting, we recurred to different performance metrics, measuring

the alignment of the classification decided by the concept descriptions induced
by DL-FoIL with the classification derived deductively by a DL reasoner. This
allowed measuring the amount of unlabeled instances that may be ascribed to the
newly induced concepts (or to their negations), which constituted a real added
value brought by the inductive method. Actually these abductive conclusions
should be evaluated by the expert who helped during the construction of the
ontology which was not possible unless toy-ontologies were employed.

The experiments made on various ontologies showed that the method is quite
effective, and its performance depends on the number (and distribution) of the
available training instances. Besides, the procedure appears also robust to noise
since commission errors were limited in the experiments carried out so far.

We plan to extend this work evaluating the benefits the algorithm can receive
from the addition of other reasoning strategies such as abstraction and abduc-
tion. Another important issue is related to the employment of suitable distance
or similarity measures that could influence chosen generalization strategy as
well as example ordering in the training set. The measure may be applicable to
other instance-based tasks which can be approached through machine learning
techniques. Then the measure might be plugged in a hierarchical clustering al-
gorithm where clusters would be formed grouping instances on the grounds of
their similarity assessed through the measure.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook. Cambridge University Press, 2003.

[2] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing description logic
knowledge bases using formal concept analysis. In M. Veloso, editor, Proceedings
of the 20th International Joint Conference on Artificial Intelligence, pages 230—
235, Hyderabad, India, 2007.

[3] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Amer-
ican, 284(5):34-43, 2001.

[4] A. Borgida. On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence, 82(1-2):353-367, 1996.

[5] S. Brandt, R. Kiisters, and A.-Y. Turhan. Approximation and difference in de-
scription logics. In D. Fensel, F. Giunchiglia, D. McGuinness, and M.-A. Williams,
editors, Proceedings of the International Conference on Knowledge Representa-
tion, pages 203-214. Morgan Kaufmann, 2002.

[6] W.W. Cohen and H. Hirsh. Learnability of description logics. In Proceedings
of the Fourth Annual Workshop on Computational Learning Theory, Pittsburgh,
PA, 1992. ACM Press.

[7] W.W. Cohen and H. Hirsh. Learning the CLASSIC description logic. In
P. Torasso, J. Doyle, and E. Sandewall, editors, Proceedings of the 4th Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning,
pages 121-133. Morgan Kaufmann, 1994.

[8] C. d’Amato, N. Fanizzi, and F. Esposito. Query answering and ontology popula-
tion: An inductive approach. In S. Bechhofer, M. Hauswirth, J. Hoffmann, and
M. Koubarakis, editors, Proceedings of the 5th European Semantic Web Confer-
ence, ESWC2008, volume 5021 of LNCS, pages 288-302. Springer, 2008.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

M. Dean and G. Schreiber. Web Ontology Language Reference. W3C recommen-
dation, W3C, 2004. http://www.w3.org/TR/owl-ref.

F. Esposito, N. Fanizzi, L. Iannone, I. Palmisano, and G. Semeraro. Knowledge-
intensive induction of terminologies from metadata. In F. van Harmelen, S. McIl-
raith, and D. Plexousakis, editors, ISWC2004, Proceedings of the 3rd International
Semantic Web Conference, volume 3298 of LNCS, pages 441-455. Springer, 2004.
S. A. Goldman, S. Kwek, and S. D. Scott. Learning from examples with unspecified
attribute values. Information and Computation, 180(2):82-100, 2003.

B.N. Grosof, I. Horrocks, R. Volz, and S.Decker. Description logic programs:
combining logic programs with description logic. In Proceedings of the 12th inter-
national conference on World Wide Web, WWW03, pages 48-57, New York, NY,
2003. ACM.

L. Tannone, I. Palmisano, and N. Fanizzi. An algorithm based on counterfactuals
for concept learning in the semantic web. Applied Intelligence, 26(2):139-159,
2007.

N. Inuzuka, M. Kamo, N. Ishii, H. Seki, and H. Itoh. Tow-down induction of
logic programs from incomplete samples. In S. Muggleton, editor, Inductive Logic
Programming Workshop, volume 1314 of LNAI, pages 265-282. Springer, 1997.
J.-U. Kietz. Learnability of description logic programs. In S. Matwin and C. Sam-
mut, editors, Proceedings of the 12th International Conference on Inductive Logic
Programming, volume 2583 of LNAI pages 117-132, Sydney, 2002. Springer.
J.-U. Kietz and K. Morik. A polynomial approach to the constructive induction
of structural knowledge. Machine Learning, 14(2):193-218, 1994.

J. Lehmann and P. Hitzler. Foundations of refinement operators for description
logics. In H. Blockeel, J. Ramon, J. Shavlik, and P. Tadepalli, editors, Proceedings
of the 17th International Conference on Inductive Logic Programming, ILP2007,
volume 4894 of LNCS, pages 161-174. Springer, 2008.

J. Lehmann and P. Hitzler. A refinement operator based learning algorithm for
the ALC description logic. In H. Blockeel, J. Ramon, J. Shavlik, and P. Tade-
palli, editors, Proceedings of the 17th International Conference on Inductive Logic
Programming, ILP2007, volume 4894 of LNCS. Springer, 2008.

F.A. Lisi. Principles of inductive reasoning on the Semantic Web: A framework
for learning in AL-Log. In F. Fages and S. Soliman, editors, Proceedings of the 3rd
International Workshop on Principles and Practice of Semantic Web Reasoning,
PPSWRZ2005, volume 3703 of LNCS, pages 118-132, Dagstuhl Castle, Germany,
2005. Springer.

R. Quinlan. Learning logical definitions from relations. Machine Learning, 5:239—
266, 1990.

C. Rouveirol and V. Ventos. Towards learning in CARIN-ALN . In J. Cussens and
A. Frisch, editors, Proceedings of the 10th International Conference on Inductive
Logic Programming, volume 1866 of LNAI, pages 191-208. Springer, 2000.

